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External evaluation of a deep 
learning‑based approach 
for automated brain volumetry 
in patients with huntington’s 
disease
Robert Haase 1, Nils Christian Lehnen 1, Frederic Carsten Schmeel 1, Katerina Deike 1, 
Theodor Rüber 2, Alexander Radbruch 1 & Daniel Paech 1*

A crucial step in the clinical adaptation of an AI-based tool is an external, independent validation. 
The aim of this study was to investigate brain atrophy in patients with confirmed, progressed 
Huntington’s disease using a certified software for automated volumetry and to compare the results 
with the manual measurement methods used in clinical practice as well as volume calculations of the 
caudate nuclei based on manual segmentations. Twenty-two patients were included retrospectively, 
consisting of eleven patients with Huntington’s disease and caudate nucleus atrophy and an age- and 
sex-matched control group. To quantify caudate head atrophy, the frontal horn width to intercaudate 
distance ratio and the intercaudate distance to inner table width ratio were obtained. The software 
mdbrain was used for automated volumetry. Manually measured ratios and automatically measured 
volumes of the groups were compared using two-sample t-tests. Pearson correlation analyses were 
performed. The relative difference between automatically and manually determined volumes of 
the caudate nuclei was calculated. Both ratios were significantly different between the groups. 
The automatically and manually determined volumes of the caudate nuclei showed a high level of 
agreement with a mean relative discrepancy of − 2.3 ± 5.5%. The Huntington’s disease group showed 
significantly lower volumes in a variety of supratentorial brain structures. The highest degree of 
atrophy was shown for the caudate nucleus, putamen, and pallidum (all p < .0001). The caudate 
nucleus volume and the ratios were found to be strongly correlated in both groups. In conclusion, 
in patients with progressed Huntington’s disease, it was shown that the automatically determined 
caudate nucleus volume correlates strongly with measured ratios commonly used in clinical 
practice. Both methods allowed clear differentiation between groups in this collective. The software 
additionally allows radiologists to more objectively assess the involvement of a variety of brain 
structures that are less accessible to standard semiquantitative methods.

Abbreviations
3D	� Three-dimensional
CCI/IT	� Intercaudate distance to inner table width
FH/CC	� Frontal horn width to intercaudate distance
HD	� Huntington’s disease

A large number of artificial intelligence-based software solutions are entering the diagnostic imaging market 
every year1. The technology has applications across the spectrum of radiology, particularly in characterization2, 
segmentation3,4, and detection tasks5. For radiologists, the integration into the daily workflow required in the face 
of increasing workloads is becoming a growing challenge—also due to the necessary assessment of the validity of 
various available software solutions. The diagnosis and follow-up of a large variety of neurodegenerative diseases 
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are based on the assessment and evaluation of the volume loss of single or multiple brain regions. In addition 
to manual volume determinations using classical segmentation or the use of scoring systems and standardized 
measurement methods, an increasing number of automated software solutions are available to radiologists due 
to advances in machine learning. The software mdbrain (mediaire, Berlin, Germany) is an AI-based, CE-labelled, 
and commercially available software solution with approval as a medical device in the European Union. Among 
other features, it can be used for automated brain volumetry in patients with suspected neurodegenerative dis-
ease in addition to standard diagnostic procedures. The software has been used in scientific studies, including 
investigations of the impact of diseases such as autoimmune disorders6 and COVID-197, or specific procedures8 
on brain volumes.

Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by an expanded cytosine-
adenine-guanine-repeat in an allele of the huntingtin gene located on the short arm of chromosome four9. The 
prevalence of the mutation leading to an elongation of the polyglutamine strand in the huntingtin protein is 
about four to ten cases per 100,000 individuals in populations of Western European origin10. The mechanism of 
pathogenesis is complex and remains the subject of current research with an unclear role of the described aggre-
gations of mutant huntingtin and other proteins10. Structural brain imaging using magnetic resonance imaging 
helps in guiding towards a possible diagnosis and is of importance in the subsequent assessment of progression. 
Here, however, semiquantitative measurements focus mostly on the basal ganglia, more precisely the heads of 
the caudate nuclei. Common ratios are the frontal horn width to intercaudate distance (FH/CC) ratio and the 
intercaudate distance to inner table width (CCI/IT) ratio11,12.

The aim of this study was to investigate the distribution of brain atrophy in patients with genetically confirmed 
HD and positive imaging findings of caudate nucleus atrophy using automated volumetry and to compare the 
results with the standard measurement methods used in clinical practice. The automatically determined vol-
umes of the caudate nuclei were additionally validated using manual segmentations. Thus, this study serves as 
an external, independent evaluation of the present software utilized in our department using a small patient 
collective of a rare neurodegenerative disease.

Methods
Patients
By screening our in-house radiologic information system, all adult patients receiving MR imaging of the brain 
in our department since 2010 who met the inclusion criteria listed below were included.

Inclusion criteria were (a) imaging of the brain including a three-dimensional (3D), T1w sequence, (b) 
genetically confirmed HD diagnosis, and (c) imaging pathology in association with HD diagnosis in written 
report. All patients had positive imaging findings consistent with HD and were thus at an advanced stage of dis-
ease. This was necessary for the study to verify that present atrophy patterns are detected by the tested software. 
Eleven patients fulfilled the inclusion criteria and formed the HD group. Exclusion due to image artifacts (e.g., 
strong motion artifacts reducing the delineation of brain structures) or structural abnormalities (e.g., tumors in 
the area of the caudate nucleus) confounding the volume measurements was not necessary. No other exclusion 
criteria were applied. An age- and sex-matched control group of healthy patients was retrospectively composed 
that was examined with brain MR imaging in our department including an unenhanced, 3D T1w sequence. 
Patient characteristics, including age at time of examination, sex, disease duration, and age of symptom onset 
are summarized in Table 1.

MR imaging protocol
MR imaging of the brain was performed with a clinical 1.5T and 3T scanner (Achieva, Philips Healthcare, Best, 
The Netherlands). Eight HD patients were examined with a 3T scanner and three HD patients were examined 
with a 1.5T scanner. All patients in the control group received imaging with the 3T scanner. The standard imag-
ing protocol of the HD patients included at least sagittal 3D T1w imaging, axial and coronal T2w imaging, axial 
FLAIR, axial DWI with ADC map, and SWI. In one of the included HD patients, the imaging protocol deviates 
slightly from this standard missing SWI. All control patients received at least an FLAIR, axial DWI with ADC 
map, and sagittal unenhanced 3D T1w imaging. The parameters of the 3D T1w sequence were TR in msec/TE in 
msec 8.7 ± 5.5 (6.6–25)/3.3 ± 0.5 (3.0–4.6) in the HD group and 7.3 ± 0 (7.3–7.4)/3.9 ± 0 (3.9–3.9) in the control 
group. 3D T1w images were acquired with a slice thickness of 1 mm and a resolution of at least 1 × 1 × 1 mm 

Table 1.   Patient characteristics. *Data are means ± standard deviation (range).

Variable Huntington group Control group

No. included patients 11 11

Age (y)* 48.2 ± 13.0 (22–62) 48.3 ± 12.0 (26–60)

M/F 8/3 8/3

Field strength 1.5/3 3/8 0/11

Disease duration (y)* 3.1 ± 2.6 (1–10) Not applicable

Age of symptom onset (y)* 44.6 ± 11.9 (21–58) Not applicable

CAG triplets 45 ± 6 (38–61) Not applicable
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(in-plane resolution × spacing between slices). In one case of the HD group the slice thickness of the 3D T1w 
sequence was 2 mm.

Quantitative analysis
A retrospective reading session was performed by two readers in consensus (R.H. and D.P. with three and ten 
years’ experience in neuroimaging) to quantify caudate head atrophy by obtaining the FH/CC and CC/IT ratios 
on axial planes obtained on the anterior commissure and posterior commissure line. Additionally, the caudate 
nuclei were segmented using the open-source image computing platform 3D Slicer (Version 5.6.0)13 by one 
reader (R.H.). Segmentations were checked by D.P. and used to calculate the respective volumes using the same 
platform. For obtaining the ratios, the distance between the lateral margins of the frontal horns, the distance 
between the inner table of the skull, and the distance between the caudate heads were measured on the plane 
where the caudate heads were closest. An example of the performed measurements can be seen in Fig. 1.

Subsequently, the 3D T1w sequence was sent to the mdbrain software (mediaire, Berlin, Germany), version 
4.4.1, for automated volumetry. The determined volumes of all evaluated structures and the corresponding per-
centiles (based on an internal reference collective of the software) were saved and checked for plausibility. The 
measured structures were whole brain, whole white matter, whole gray matter, cerebral cortex, cerebellar cortex, 
frontal lobe, parietal lobe, precuneus, occipital lobe, temporal lobe, hippocampus, parahippocampal gyrus, 
entorhinal cortex, caudate nucleus, putamen, globus pallidum, thalamus, brainstem, mesencephalon, pons, lat-
eral ventricle, third ventricle, and fourth ventricle. For paired structures, volumes were determined for each site.

The automated volumetry consists of the following steps:

1.	 Segmentation of the structures of interest. To this end, a custom deep learning segmentation model based 
on the U-Net architecture14 is employed. Before training of this model, the training data sets (balanced 
M/F, n = 2869 MRI scans with segmentation annotations obtained using a proprietary annotation process 
involving multiple human raters) were cropped to contain only the head and then resampled to a fixed size. 
To increase the model’s generalizability, various augmentation techniques were used, such as augmentation 
of contrast, resolution, rotation, and elastic deformation. The model was then trained on the preprocessed 
training data using the Adam variant of the stochastic gradient descent optimization algorithm15.

2.	 Determination of the volume of the structures of interest from the segmentation, by counting the number 
of voxels present in a segmentation mask and multiplying this count with the voxel volume.

3.	 Comparison to a reference population of healthy individuals (n = 6099, balanced M/F, mean age 41 ± 23 years, 
range 10–97 years, diverse image origin from Europe, the United States of America, Australia, and China) 
to determine percentiles while accounting for age, sex, and total intracranial volume.

Figure 1.   Sample excerpt of the software output (headings modified by the authors for translation from 
German) and manual measurements of the frontal horn width to intercaudate distance ratio and the 
intercaudate distance to inner table width ratio on axial planes obtained on the anterior commissure and 
posterior commissure line in a patient with severe atrophy of the caudate nucleus due to Huntington’s disease.
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As a Class IIb medical device, performance is validated internally for accuracy and repeatability. The supplier 
of the software confirmed that caudate volumetry passed all performance tests and was as reliable as volumetry 
of other small regions such as the hippocampus. However, these internal results were never published. Addition-
ally, we could not find any publication that specifically investigated the capabilities of the software for caudate 
nucleus volumetry.

The software can run on a modern desktop PC (e.g., Intel i7 with 3 GHz and 16 GB RAM) with runtimes of 
about 10 min. Utilizing a GPU can significantly decrease runtimes to as low as one minute.

Statistical analysis
Data were analyzed by using R version 4.2.1 (R Foundation for Statistical Computing, Vienna, Austria) and 
RStudio version 2022.07.01.554 (RStudio Team, Boston, MA). Installed packages were readxl, rstatix, pastecs, 
ggplot2, ggpubr, and dplyr. The a priori significance level was set to 0.05, and all reported p-values are two tailed. 
The assumption of a normal distribution of the FH/CC ratio, the CC/IT ratio, the structures’ volumes, and their 
percentiles was tested in each of the two groups using the Shapiro–Wilk test of normality. Two-sample t-tests 
were used to evaluate whether the true difference in means of the FH/CC ratio, the CC/IT ratio, and the volumes 
of the assessed structures between the HD group and control group was not equal to zero. Wilcoxon rank-sum 
tests were performed to compare the volumes of structures with significant results in the Shapiro–Wilk test, and 
to compare the percentiles of assessed structures of the groups provided by the software. p-values were adjusted 
using the Holm-Bonferroni method to prevent the problem of multiple comparisons (considering all 25 p-values). 
Pearson correlation analyses were performed to examine the correlation of the manually measured ratios and 
the automatically measured volumes. For paired structures, the mean value was used.

Ethics approval
The study was approved by the Ethics Committee for Clinical Trials on Humans and Epidemiological Research 
with Personal Data of the Faculty of Medicine of the Rheinische Friedrich-Wilhelms-Universität Bonn (refer-
ence no. 118/22).

Informed consent
This study did not require written informed consent due to the retrospective character.

Results
Table 1 shows the patients characteristics including number of patients, age, sex, and field strength as well as 
disease duration and age of symptom onset. All cases could be processed by the software. The automatically deter-
mined volumes of the caudate nuclei showed a high level of agreement with the manually determined volumes 
with a mean relative discrepancy of − 2.3 ± 5.5% (range of − 12.1–7.9%) (HD group: − 2.7 ± 4.9%; Control group: 
− 1.8 ± 6.0%). The Shapiro–Wilk test of normality indicated that the null hypothesis of a normal distribution could 
be accepted for all ratios and volumes in both groups, except for the volumes of the parahippocampal gyrus in 
the HD group and the volumes of the lateral ventricle, parietal lobe, and temporal lobe in the control group (HD 
group: FH/CC, p = 0.89; CC/IT, p = 0.14; whole brain, p = 0.89; caudate nucleus, p = 0.16; Control group: FH/CC, 
p = 0.07; CC/IT, p = 0.75; whole brain, p = 0.27; caudate nucleus, p = 0.34). The percentiles of the HD group could 
not be considered normally distributed in the majority of structures.

The mean FH/CC and CC/IT ratios were significantly different between the HD and control group (FH/CC: 
p < 0.0001, HD group: 1.83 ± 0.27, Control group: 3.18 ± 0.54; CC/IT: p < 0.0001, HD group: 0.17 ± 0.03, Control 
group: 0.09 ± 0.02). Analysis of the results of the automated brain volumetry showed significantly lower volumes 
of the whole brain, whole grey matter, whole white matter, cerebral cortex, caudate nucleus, putamen, globus 
pallidus, thalamus, frontal lobe, parietal lobe, temporal lobe, occipital lobe, precuneus, hippocampus, parahip-
pocampal gyrus, and entorhinal cortex in the HD group compared with the control group. The highest levels 
of significance were shown for the caudate nucleus, putamen, and globus pallidus (all p < 0.0001). The mean, 
standard deviation, as well as original and adjusted p-values of some of the many structures analyzed can be 
found in Table 2. The results for all brain volumes are reported in the Supplementary Table S1. Figure 2 shows 
Box-and-whisker plots for all assessed structures.

The software compares the determined volumes with an internal reference group and provides a percentile 
value in addition to the volume. The comparison of the percentiles of both groups yielded similar results (see 
also Supplementary Table S2). A decreased volume of both caudate nucleus, putamen, and globus pallidus by at 
least two standard deviations compared with the internal reference group of the software was present in all cases 
of the HD group and in no case of the study control group (see also Table 2). The median and interquartile range 
as well as all original and adjusted p-values of the Wilcoxon rank-sum tests are reported for all brain volumes 
in Supplementary Table S2. Box-and-whisker plots of the percentiles for all assessed structures are shown in 
Supplementary Fig. S1.

The volume of the caudate nucleus and the measured ratios (FH/CC and CC/IT) were found to be strongly 
correlated in both groups (HD group: FH/CC: r(9) = 0.71, p = 0.015; CC/IT: r(9) = − 0.76, p = 0.007; Control 
group: FH/CC: r(9) = 0.68, p = 0.022; CC/IT: r(9) = − 0.68, p = 0.021) (Fig. 3). Both ratios and the automatically 
determined caudate nucleus volume allowed clear differentiation between groups in this collective, with a cutoff 
value of 2.28 for the FH/CC ratio, 0.139 for the CC/IT ratio, and 2.0 ml for the mean volume of the caudate nuclei.
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Discussion
In this monocentric study of patients with confirmed, progressed HD and an associated imaging pathology 
in written report, it was shown that the caudate nucleus volume automatically determined by the tested deep 
learning-based software shows a high level of agreement with the manually determined volumes and correlates 
strongly with measured ratios commonly used in clinical practice. With both the volume and the ratios, a clear 
identification of patients with advanced HD was possible.

The values of FH/CC and CC/IT ratios for both groups are consistent with those reported in the literature for 
adult patients11. The automated volumetry of the patients’ brains showed broad atrophy of supratentorial struc-
tures in the HD group, with emphasis not only in the caudate nucleus but also in the putamen, globus pallidus, 
temporal lobe, precuneus, and occipital lobe. The significance of the determined volume differences between the 
study groups remained when comparing the percentile values output by the software using an internal reference 
group. This controlled for the influence of possible differences in intracranial volume between the HD group and 
control group. The output of percentiles and their classification in terms of standard deviations from the stored 
reference collective of the software enables assessments of the determined volumes of individual cases without 
a control group in everyday clinical practice.

Our findings of regional atrophies are consistent with other structural imaging studies in which the subcorti-
cal structures showed the earliest16 and most severe atrophy17,18. The known involvement of white matter17 in 
the disease and the accentuation of atrophy of posterior cortical structures17,19–21 and the relative preservation 
of cerebellar cortex19 predescribed in other studies was also evident by automated volumetry in our study. 
Volumetric analyses of HD patients using the open-source software FreeSurfer (http://​surfer.​nmr.​mgh.​harva​rd.​
edu/) showed similar atrophy patterns with atrophy prominence in striatal structures and the occipital lobe22.

Our study serves as an external evaluation of the tested software for automated brain volumetry using a study 
sample with a rare neurodegenerative disease. This is a crucial step in the adaptation of an artificial intelligence-
based tool in everyday clinical practice23. While the detectability of intracranial aneurysms detection has already 
been investigated in a clinical setting24, the published evidence on brain volumetry employing the investigated 
software is limited to a few publications6–8 and conference abstracts25–27.

Our study has limitations.
First, the number of patients was relatively small. This is due to the rarity of the disease studied. However, 

the study sample includes all patients with HD who received in-hospital imaging with a comparable imaging 
protocol from 2010 to present. Nonetheless, we were able to demonstrate that the tested software allows reliable 
volume determination for the identification of patients with basal ganglia atrophy.

Second, in contrast to the control group, three patients in the HD group were examined at a field strength of 
1.5T instead of 3T, introducing the possibility of a volume difference bias. However, as the determined volumes 
at 3T are expected to be lower than at 1.5T due to the improved tissue-CSF contrast,28,29 such a bias would hin-
der rather than assist the detection of differences between the groups in this study. Given the low proportion of 
patients with 1.5T in the HD group, the significant differences in measured volumes between the groups, and the 
high agreement with manually determined volumes at both field strengths, we consider this bias to be negligible.

Table 2.   Mean volume, Standard deviation (SD), Results of Two-sample t-tests, Statistical significance, 
and Number of cases marked as potentially pathologic by the software of selected volumes. a Application 
of the Holm correction (Considering all 25 p-values). b Used convention for symbols indicating statistical 
significance: ns: p > .05; *: p ≤ .05; **: p ≤ .01; ***: p ≤ .001; ****: p ≤ .0001. c FH/CC and CC/IT: Number of cases 
with a pathological ratio assuming a ratio of 0.09–0.12 for CC/IT and of 2.2–2.6 for FH/CC as normal12. Other: 
Number of cases marked by the software as potentially pathologic with a difference of the volume from the 
internal reference collective of the software by more than two standard deviations. Results of all structures can 
be found in Supplementary Table S1.

Variable

Mean ± SD 
(Huntington), volume 
in ml

Mean ± SD (Control), 
volume in ml

Two-sample t-test, 
p-value

Adjusted p-value 
(Holm)a Statistical Significanceb

Marked cases (out 
of 11), Huntington/
Control groupc

FH/CC 1.83 ± 0.27 3.18 ± 0.54 < .0001 < .0001 **** 10/ 0

CC/IT 0.17 ± 0.03 0.09 ± 0.02 < .0001 < .0001 **** 11/ 0

Whole brain 1073 ± 101 1266 ± 118 .0005 .008 ** 7/ 0

Whole white matter 463 ± 74 558 ± 72 .006 .045 * 4/ 0

Whole gray matter 609 ± 53 708 ± 50 .0002 .004 ** 7/ 0

Cerebral cortex 411 ± 42 488 ± 39 .0002 .004 ** 7/0

Cerebellar cortex 103 ± 12 110 ± 7 .11 .32 ns 1/0

Occipital lobe 27.9 ± 3.0 35.0 ± 4.3 .0003 .005 ** 6/0

Caudate nucleus 1.4 ± 0.4 3.2 ± 0.4 < .0001 < .0001 **** 11/0

Putamen 2.5 ± 0.6 4.4 ± 0.4 < .0001 < .0001 **** 11/0

Globus pallidus 1.0 ± 0.2 1.4 ± 0.2 < .0001 < .0001 **** 11/0

Thalamus 7.2 ± 0.8 8.3 ± 0.7 .003 .03 * 5/1

Brainstem 25.3 ± 3.3 27.8 ± 2.8 .06 .32 ns 3/0

Third ventricle 1.8 ± 0.5 1.0 ± 0.4 .0008 .01 * 11/1

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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Third, this is a retrospective study. Prospective investigations of the use of the software would provide further 
insight regarding the impact on diagnostic decisions and time efficiency.
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Figure 2.   Box-and-whisker plots of the automated volume measurements of all structures in the Huntington 
and control group. Volume in ml. Used convention for symbols indicating statistical significance: ns: p > .05; *: 
p ≤ .05; **: p ≤ .01; ***: p ≤ .001; ****: p ≤ .0001.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9243  | https://doi.org/10.1038/s41598-024-59590-7

www.nature.com/scientificreports/

Fourth, all patients had positive imaging findings consistent with HD and were thus at an advanced stage 
of disease. Although this was necessary for the study to verify that present atrophy patterns are detected by the 
tested software, it remains unclear whether automated volumetry using the software allows earlier detection of 
atrophy pattern in HD. This question should be addressed in future studies.

Conclusions
In conclusion, the software allows radiologists to objectively assess the involvement of a variety of brain structures 
in patients with HD that are less accessible to standard semiquantitative methods. Our data suggests that the 
software can help in providing a more detailed assessment of the impact of HD on the individual patient. The 
significantly lower barrier in the application compared to most script-based, open-source software could allow 
a broad application in the clinical setting outside of scientific research. In particular for follow-up examinations, 
the objectivity could have additional value.

Data availability
Data: The imaging data and datasets generated during during the current study are not publicly available due to 
data protection laws and the retrospective character of the study, which did not require written informed consent, 
but are available from the corresponding author on reasonable request.

Code availability
The tested program is a commercially available product.
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