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Identification 
of metabolism‑related key 
genes as potential biomarkers 
for pathogenesis of immune 
thrombocytopenia
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Jirui Tang 3, Li Jing 3, Jie Luo 1, Jing Luo 1 & Lin Liu 1*

Immune thrombocytopenia (ITP), an acquired autoimmune disease, is characterized by immune‑
mediated platelet destruction. A biomarker is a biological entity that contributes to disease 
pathogenesis and reflects disease activity. Metabolic alterations are reported to be associated with 
the occurrence of various diseases. As metabolic biomarkers for ITP have not been identified. This 
study aimed to identify metabolism‑related differentially expressed genes as potential biomarkers 
for pathogenesis of ITP using bioinformatic analyses.The microarray expression data of the peripheral 
blood mononuclear cells were downloaded from the Gene Expression Omnibus database (GSE112278 
download link: https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE11 2278). Key module genes 
were intersected with metabolism‑related genes to obtain the metabolism‑related key candidate 
genes. The hub genes were screened based on the degree function in the coytoscape sofware. The key 
ITP‑related genes were subjected to functional enrichment analysis. Immune infiltration analysis was 
performed using a single‑sample gene set enrichment analysis algorithm to evaluate the differential 
infiltration levels of immune cell types between ITP patient and control. Molecular subtypes were 
identified based on the expression of hub genes. The expression of hub genes in the ITP patients 
was validated using quantitative real‑time polymerase chain reaction analysis. This study identified 
five hub genes (ADH4, CYP7A1, CYP1A2, CYP8B1, and NR1H4), which were be associated with the 
pathogenesis of ITP, and two molecular subtypes of ITP. Among these hub genes, CYP7A1 and CYP8B1 
involved in cholesterol metabolism,were further verified in clinical samples.

Immune thrombocytopenia (ITP), an acquired autoimmune hematological disease, is characterized by increased 
platelet destruction and decreased platelet  production1. The annual incidence of ITP is estimated to be 3–4 cases 
per 100,000 individuals. The incidence of ITP, which is slightly more common in females than males, is the high-
est in children and patients aged > 60  years2. Clinically, ITP-related bleeding symptoms widely vary, ranging from 
bleeding in the skin and mucosal regions to severe visceral hemorrhage, and can be life-threatening. The mortality 
rate in adults with ITP is 1.3–2.2 times higher than that in the general  population3. The complex pathogenesis 
of ITP has not been completely elucidated. Dysfunctional proliferation of autoreactive T cells is suggested to 
be the etiological factor for the loss of tolerance to platelet autoantigens in  ITP4. Additionally, previous studies 
have demonstrated that B lymphocytes and natural killer (NK) cells are involved in the pathogenesis of  ITP5. 
Thus, the major pathogenetic mechanism of ITP involves the loss of immune tolerance to platelet autoantigen, 
resulting in the aberrant activation of humoral and cellular immunity, the upregulation of platelet destruction, 
and the downregulation of platelet production by  megakaryocytes6.

ITP is primarily diagnosed by excluding other causes of thrombocytopenia owing to the lack of unambiguous 
diagnostic markers. Thus, some patients with ITP can be misdiagnosed. One study reported that one in seven 
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patients with suspected primary ITP was misdiagnosed at some point during the disease  course7. Hence, in clini-
cal practice, suspected patients are diagnosed based on medical history, physical examination, peripheral blood 
cell count, and peripheral blood smear. Splenomegaly and concomitant symptoms, which are aberrant clinical 
presentations, should be examined carefully to exclude the presence of other underlying  diseases8. To decrease 
the rate of misdiagnosis, bone marrow examination and antinuclear antibody, anti-phospholipid antibody, anti-
thyroid antibody, thyroid function, and coagulation parameter tests were recommended in the recent Chinese 
ITP  guideline9. The diagnosis of ITP may be further complicated in clinical practice. Approximately 60–70% of 
ITP cases are estimated to progress to persistent or chronic  ITP10. The annual incidence of refractory ITP is 100 
cases per million  individuals11.

Alterations in the metabolome are implicated in disease  development12. A case–control study of metabolomics 
illustrated that ITP was related to phenylalanine, tyrosine, and tryptophan biosynthesis-related, phenylalanine 
metabolism-related, and glyoxylate and dicarboxylate metabolism-related13. However, the correlation between 
these metabolic alterations and metabolism-related genes in the occurrence of ITP has not been elucidated, 
preventing the clinical application of these potential biomarkers. Thus, there is a need to identify potential bio-
markers for pathogenesis of ITP to improve diagnostic accuracy and to guide treatment decisions.

Metabolic alterations are associated with the pathogenesis of several diseases, including cancer, diabetes, 
metabolic disorders, and neurodegeneration. The differential serum metabolite levels between patients with acute 
leukemia and healthy controls indicated a shift in energy metabolism. This study aimed to identify metabolism-
related hub genes involved in the pathogenesis of ITP using public datasets. The expression data were obtained 
from the Gene Expression Omnibus (GEO) database (GSE112278) and subjected to integration analysis. Com-
prehensive bioinformatics and enrichment analyses were performed to identify the differentially expressed genes 
(DEGs) and their functions in ITP. Key module genes were screened using weighted gene co-expression net-
work analysis (WGCNA) and intersected with metabolism-related genes to obtain the metabolism-related key 
candidate genes. Furthermore, a protein–protein interaction (PPI) network was constructed using the STRING 
database and the Cytoscape program to screen hub genes. The following five hub genes were identified: ADH4, 
CYP7A1, CYP1A2, CYP8B1, and NR1H4. The expression levels of these five hub genes in clinical peripheral 
blood samples were validated using quantitative real-time polymerase chain reaction (qRT-PCR). The potential 
diagnostic values of CYP7A1 and CYP8B1 for ITP were examined using the receiver operating characteristic 
(ROC) curve. The hub genes identified in this study can may provide novel insights into the mechanisms under-
lying ITP pathogenesis and serve as potential diagnostic biomarkers for ITP.

Methods
Data source
One study reported that clonal T-cell correlates of response and non-response to eltrombopag therapy accord-
ing to blood transcriptome analysis in a cohort of patients with chronic  immune14. The gene expression dataset 
GSE112278 was downloaded from the GEO database (http:// www. ncbi. nlm. nih. gov/ geo), which is an open-
source repository of next-generation sequencing data, hybridization arrays, chips, and  microarrays15. The 
GSE112278 dataset comprised the sequencing data of peripheral blood samples of 17 patients with ITP and 7 
healthy control subjects (download link: https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE11 2278).

Identification of DEGs in patients with ITP
The DEGs between the ITP and control groups were identified using the R package “limma” based on the follow-
ing criteria: |log2 fold-change (FC)|> 0.5; P < 0.05. The heatmap was generated using the R packages “pheatmap” 
and “dplyr.” The top 25 significantly upregulated and downregulated genes were used for constructing the dif-
ferential gene heatmap.

Screening of key modules and target genes based on WGCNA
WGCNA was performed to identify a specific clinical features-related gene set. The WGCNA method was 
adopted to gene expression data using the “WGCNA”R package to identify the correlation between gene expres-
sion and the ITP-related disease phenotype. Outlier samples were examined by using hierarchical clustering, 
then followed by scale-free network construction. An adjacent matrix was constructed by adopting the optimal 
soft threshold power(β = 5,  R2 = 0.95), which was gained from the pick soft function analysis and transformed 
into a corresponding topological overlap matrix (TOM). The gene network was hierarchically clustered adopting 
l—TOM as the distance measure to screen the gene groups (module eigengenes, ME) whose expression varied 
across clinical features. Modules were merged if the correlations of their ME exceeded a threshold(0.75). Pearson 
correlation analysis was adopted to uncover the correlations between modules and clinical features.

PPI construction and hub gene screening
The PPI network map of the candidate genes was mapped to the STRING database (https:// string- db. org) assem-
bly and visualized using the “Cytoscape”  software16. Next, the STRING database was used for interaction analysis 
of candidate genes. As PPI analysis can aid in the identification of hub genes with core functions, the PPI of genes 
in the identified key modules was further  examined17. Cytoscape software was used to identify the important 
nodes in the  network16 and the hub genes from the whole PPI network using the degree function. According to 
degree, the top 5 genes are screened out as the hub genes.

Enrichment analysis
Gene Ontology (GO) enrichment and Genes and Genomes (KEGG) pathway analyses are performed with the 
packages “clusterProfiler”, “org.Hs.eg.db”, and “ggplot2” and a cut-off criterion of a P value < 0.05. DEGs were 
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subjected to GO enrichment analysis, which is an informatic method to identify the significant enrichment of 
biological functions in the GO terms biological process (BP), cellular component (CC), and molecular function 
(MF)18. Additionally, DEGs were subjected to KEGGpathway enrichment analysis using the KEGG  database19.

Gene set enrichment analysis (GSEA)
GSEA is a gene set-based algorithm that is used to construct a database of molecular characteristics accord-
ing to known information, including gene characteristics, location, and biological  functions20. Single-sample 
GSEA (ssGSEA) was performed using the GSVA R package. The scores of the relevant immune pathways were 
calculated based on the gene expression matrix of individual samples using the ssGSEA  method21. The “viop-
lot” package was used to calculate the scores between the ITP and control groups and compare the activity of 
immune-related pathways. The results were visualized using the pheatmap R package. The Pearson correlation 
between the expression levels of hub genes and the scores of the immune-related pathway activities in the ITP 
group were compared using the R package “ggplot2” and “reshape2,” respectively.

The scores of the proportion of immune cells based on the gene expression matrix were determined using 
ssGSEA with the GSVA R package. The “vioplot” package was used to calculate the scores between the ITP and 
control groups to compare the proportion of cells in different immune-related pathways, and the results were 
visualized by heatmap. The Pearson correlation between the expression levels of hub genes and the relative 
proportions of immune cells in the ITP group were compared using the R packages “ggplot2” and “reshape2,” 
respectively.

The GSVA R package was used to perform ssGSEA.
The background reference geneset of metabolism-related pathways was from the a previous  study22 and the 

metabolism-related pathways are downloaded from the official website (https:// www. gsea- msigdb. org/ gsea/ index. 
jsp;). The ssGSEA method was used to calculate the enrichment scores of different metabolism-related path-
ways between the ITP and control groups based on the gene expression matrix for each sample. The differential 
metabolic pathways between the ITP and control groups were screened using the “limma” package in R, and the 
results were visualized using a heatmap.The Pearson correlation between the expression levels of hub genes in 
the ITP group and the relative proportions of enrichment in differential metabolic pathways between the ITP 
and control groups were compared using the R packages “ggplot2” and “reshape2,” respectively.

Identification of ITP molecular subtypes
As ITP exhibits heterogeneity, the presence of distinct ITP subtypes was determined. The concordant cluster-
ing algorithm was used to cluster molecular subtypes according to the expression level of hub genes in ITP 
samples using the Consensus Cluster Plus R package. The optimal cluster number k was determined according 
to the cumulative distribution function (CDF) and area under the CDF  curve23. In this study, the number of 
clusters of subgroups was determined according to the CDF value of > 0.824. The R package limma was used to 
compare the differential expression of hub genes in different subtypes. Principal component analysis (PCA) is a 
multidimensionality-reduction technique used to visualize similarities and differences between  samples25. The 
PCA result was visualized using the ggplot2 package. Cell-type identification by estimating relative subsets of 
RNA transcripts (CIBERSORT) analysis was performed to calculate the proportion of 22 infiltrating immune cell 
types in different ITP molecular subtypes according to the gene expression signature. The predicted results were 
filtered based on the criterion P < 0.05. The GSVA R package was used to perform ssGSEA. The KEGG signaling 
and metabolic pathways were compared among the subtypes. The KEGG gene set “c2.cp.kegg.symbols.gmt” was 
used to retrieve various metabolism-related pathways from the literature to screen differential signaling pathways 
and differential metabolism-related pathways between the two subtypes.

Hub gene validation
The expression levels of hub genes in the peripheral blood samples of patients with ITP and healthy controls 
were determined using qRT-PCR analysis. The samples of 39 patients with ITP and 21 healthy controls were 
collected from the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, the Affiliated 
Hospital, Southwest Medical University and the Affiliated Traditional Chinese Medicine Hospital, Southwest 
Medical University, Luzhou, China. The clinical characteristics of 39 patients with ITP are shown in Table 1. Total 
RNA was isolated from the peripheral blood sample using an adsorption column (Mei5 Biotechnology Co. Ltd) 
and reverse-transcribed into complementary DNA using the PrimeScript™ RT reagent kit with a gDNA eraser 
(Mei5 Biotechnology Co. Ltd). The optical density value was measured to calculate the concentration and purity 
of RNA. qRT-PCR analysis was performed using the M5 One-Step q-PCR kit (SYBR green) (Mei5 Biotechnol-
ogy Co. Ltd) with an Applied Scan Fast Real-Time PCR System with Step One Plus Real-Time. All procedures 
were performed following the manufacturer’s instructions. The expression levels of hub genes were normalized 
to those of GAPDH. The relative expression level was calculated using the  2−ΔΔCt method. The primers used in 
this study are listed in Supplementary Material Table 1. The amplification was performed using a two-step PCR 
protocol under the following conditions: 95 °C for 30 s, followed by 40 cycles of 95 °C for 5 s and 60 °C for 30 s.

Statistical analysis
All statistical analyses were performed using R software (version 3.6.0) and GraphPad Prism 9. Means between 
the groups were compared using the unpaired t-test. Differences were considered significant at P < 0.05.

Ethics approval and consent to participate
This study was carried out in accordance with the Helsinki declaration and approved by the ethics committee of 
The First Affiliated Hospital of Chongqing Medical University.

https://www.gsea-msigdb.org/gsea/index.jsp;
https://www.gsea-msigdb.org/gsea/index.jsp;
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Results
Identification of DEGs
DEGs were identified in the single-cell RNA sequencing dataset GSE112278 based on the following criteria: 
P < 0.05; |log2FC|> 0.5. The top 25 upregulated and the top 25 downregulated genes were selected to construct 
a heatmap (Fig. 1a).

WGCNA and identification of the key module and hub genes
The key parameter associated with a scale-free network is the soft threshold power value. In this study, the soft 
threshold power value for screening the gene set associated with the clinical phenotype of ITP was 5 to achieve 
scale independence of 0.95 (power = 5) (Fig. 1b–d). The MEgreen module was correlated with ITP ((r = 0:99, 
P = 4e − 23)) and was selected for further analysis (Fig. 1e). In total, 1341 metabolism-related genes were retrieved 
from the GSEA database. The Venn diagram of DEGs, WGCNA-derived genes, and metabolism-related gene 
sets revealed 32 intersection genes (Fig. 1f). A PPI network was constructed using these candidate genes. Based 
on the degree score, five hub genes were identified from the PPI network (Fig. 1g).

GO and KEGG pathway analyses
GO enrichment analysis revealed that the intersection genes obtained from DEGs, WGCNA analysis and metab-
olism-related genes were enriched in various terms as follows: BP term: lipid catabolic process, steroid metabolic 
process, and hormone metabolic process; CC term: lipid droplet; MF term: monooxygenase activity and steroid 
hydroxylase activity (Fig. 2a). KEGG enrichment analysis revealed that intersection genes were enriched in the 
following pathways: retinol metabolism, glycerolipid metabolism, primary bile acid biosynthesis, bile secretion, 
tyrosine metabolism, fatty acid degradation, arachidonic acid metabolism, phosphatidylinositol signaling system, 
AMPK signaling pathway, PPAR signaling pathway, and glucagon signaling pathway (Fig. 2b).

Additionally, GO enrichment analysis revealed that the DEGs were enriched in various terms as follows: BP 
term: cell–cell adhesion via plasma membrane adhesion molecules, homophilic cell adhesion via plasma mem-
brane adhesion molecules, sensory perception of bitter taste, adenylate cyclase-inhibiting G protein-coupled 
receptor signaling pathway, and detection of chemical stimulus involved in sensory perception of bitter taste; 
CC term: RISC complex, RNAi effector complex, keratin filament, and neurotransmitter receptor complex; MF 
term: mRNA base-pairing translational repressor activity, mRNA base-pairing translational repressor activity, 
bitter taste receptor activity, and taste receptor activity (Fig. 2c). KEGG enrichment analysis revealed that the 
DEGs were enriched in the following pathways: taste transduction, neuroactive ligand-receptor interaction, 
retinol metabolism, microRNAs in cancer, bile secretion, pancreatic secretion, cAMP signaling pathway, tyrosine 
metabolism, and metabolism of xenobiotics by cytochrome P450 (Fig. 2d).

ssGSEA
ssGSEA was performed to further compare the scores of immune cells and immune-related pathways between 
the ITP and control groups. The GSE112278 dataset was subjected to ssGSEA to examine the relative infiltration 
abundance of 26 immune cell subpopulations in the ITP and healthy control groups, and the results were repre-
sented as a heatmap (Fig. 3a). The violin plot of immune cell infiltration revealed that compared with those in the 
healthy control group, the infiltration levels of Th1 cells and NK cells were upregulated in the ITP group (Fig. 3b). 
In this study, ssGSEA revealed that the five hub genes were strongly correlated with immune cells. ADH4 expres-
sion was negatively correlated with monocyte abundance. CYP1A2 expression was negatively correlated with 

Table 1.  Clinical characteristics of patients with immune thrombocytopenia (ITP). TPO-RA thrombopoietin 
receptor agonists.

Baseline characteristics ITP statistics

Age, median (range) in years 54 (16–84)

Sex, n (%)

 Female 23 (58.97)

 Male 16 (41.03)

Type of ITP, n (%)

 New diagnosis (duration: < 3 months) 18 (46.2)

 Persistent (duration: 3–12 months) 2 (5.1)

 Chronic (duration: > 12 months) 19 (48.7)

 Baseline platelet count, median (range) 8 (0–56) ×  109

Prior treatment, n (%)

 None 4 (10.3)

 Corticosteroids 31 (79.5)

 Immunoglobulins 6 (15.4)

 TPO-RA agonists 0

 Rituximab 0

 Splenectomy 0
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Figure 1.  (a) Heat map of the DEGs between ITP patient and control; (b) The values of soft-threshold power 
based on scale independence and mean connectivity; (c) and (d) Check scale-free topology. The correlation 
coefficient of the connection degree k and p(k) was 0.95, indicating scale-free topology was constructed; (e) 
Heatmap of the module-trait relationships; (f) The result of Venn diagram of the intersection genes via DEGs 
WGCNA analysis, and GSEA datdbase; (g) The results of protein–protein interaction network.
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activated dendritic cell, monocyte, and Th1 cell abundances. CYP7A1 was negatively correlated with central 
memory CD4 + T cell, central memory CD8 + T cell, effector memory CD8 + T cell, and monocyte abundances. 
CYP8B1 expression was positively correlated with CD56 bright NK cell and NK T (NKT) cell abundances but 
was negatively correlated with plasmacytoid dendritic cell abundance. NR1H4 was negatively correlated with 
activated CD8 T cell, central memory CD4 T cell, effector memory CD4 T cell, and effector memory CD8 T cell 
abundances and positively correlated with regulatory T cell abundance (Fig. 3c).

Pathway analysis
The heatmap of differential metabolism-related pathways between the ITP and control groups revealed the 
enrichment of retinoid metabolism, drug metabolism by cytochrome P450, metabolism of xenobiotics by 
cytochrome P450, tyrosine metabolism, and phenylalanine metabolism (Fig. 3d). Correlation analysis of the hub 
genes and metabolism-related pathways demonstrated that CYP1A2 was significantly and positively correlated 
with the metabolism of xenobiotics by cytochrome P450 and drug metabolism by cytochrome P450(P < 0.05, 
Fig. 3e).

The heatmap of differential immune-related pathways between the ITP and control groups revealed the 
enrichment of antigen-presenting cell (APC) co-inhibition, parainflammation, type I IFN response, T cell co-
inhibition, cytolytic activity, inflammation-promoting activity, type II IFN response, APC co-stimulation, and 

Figure 2.  Functional enrichment analysis of intersection genes and DEGs. Intersection genes were obtained 
from DEGs, WGCNA analysis and metabolism-related genes. (a) The results of GO analysis of intersection 
genes; (b) The results of KEGG analysis of intersection genes; (c) The results of GO analysis of DEGs; (d) The 
results of KEGG analysis of DEGs. GO gene ontology, KEGG Kyoto Encyclopedia of Genes and Genome.
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T cell co-stimulation (Fig. 3f). The correlation analysis of the hub genes and immune-related pathways demon-
strated that ADH4 expression was negatively correlated with APC co-inhibition and parainflammation. CYP1A2 
expression was negatively correlated with type I IFN response and type II IFN response. CYP7A1 expression 
was negatively correlated with APC co-stimulation and T cell co-stimulation. CYP8B1 expression was positively 
correlated with T cell co-inhibition. NR1H4 expression was negatively correlated with cytolytic activity (Fig. 3g).

Molecular subtypes of ITP samples
To further explore the profile and characteristics of five metabolism-related hub genes in ITP, a consensus 
clustering algorithm was used to stratify patients with ITP based on the expression levels of five hub genes. The 
consistency coefficient was calculated to obtain the optimal clustering number (k value). This study determined 
that k = 2 was the optimal clustering number for stratifying the entire cohort into cluster 1 (C1) and cluster 2 
(C2) (Fig. 4a,b). PCA revealed that patients with ITP were distinctly clustered into two clusters (Fig. 4c). The 
expression levels of the hub genes in the two molecular subtypes are shown in Fig. 4d. The CYP8B1, ADH4, and 
CYP1A2 expression levels in the C2 subtype were significantly upregulated when compared with those in the 
C1 subtype. However, the NR1H4 and CYP7A1 expression levels were not significantly different between the C1 
and C2 subtypes. The differential infiltration levels of immune cells between the two molecular subtypes were 
examined. The infiltration of B cells memory and mast cells resting significantly varied between the two subtypes 

Figure 3.  (a–c) The result of GSVA analysis; (d) differential metabolism-related pathways between ITP 
patient and control; (e) the correlation analysis results of the hub genes and metabolism-related pathways; (f) 
differential immune-related pathways between ITP patient and control; (g) the correlation analysis results of the 
hub genes and immune-related pathways. ITP Immune thrombocytopenia.
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(Fig. 4e,f). Functional pathway enrichment analysis using the GSVA algorithm revealed that 22 KEGG signaling 
pathways and 13 metabolism-related pathways significantly varied between the C1 and C2 subtypes (Fig. 4g,h).

Validation of hub genes
This study examined the expression levels of five ITP pathogenesis-related hub genes (CYP7A1, NR1H4, CYP8B1, 
CYP1A2, and ADH4). The expression levels of these genes were upregulated in the ITP group (Fig. 5a–e). qRT-
PCR analysis of clinical samples revealed that compared with those in the healthy control group, the expression 
levels of CYP8B1 and CYP7A1 were significantly upregulated in the ITP group (Fig. 6a,b),however, the ADH4, 
CYP1A2, and NR1H4 genes were not differentially expressed (Fig. 6c–e). Additionally, the expression levels of 
CYP7A1 were positively correlated with those of CYP8B1 (Fig. 5f). Additionally, the diagnostic potential of the 
five ITP-related hub genes was examined using the ROC curves. The area under the curve values of CYP8B1 
and CYP7A1 were 0.869 (95% confidence interval (CI): 0.756–0.981) and 0.885 (95% CI: 0.728–0.981), respec-
tively. ROC curve verification revealed that the specificity and sensitivity of CYP8B1 and CYP7A1 were high for 
diagnosing ITP (Fig. 6f).

Discussion
ITP is an autoimmune disease, which is mainly characterized by humoral and cellular immune-mediated platelet 
destruction and impaired platelet  production26. However, the pathogenesis and etiology of ITP remain not fully 
understood and the “gold standard” diagnostic criteria are lacking. Previous metabolomics studies have found 
differences in metabolic characteristics between the healthy and ITP  patients13 and provided novel insights into 
the pathogenic mechanisms of ITP involving gut microbiota, cytokine, and fatty metabolism. These findings can 

Figure 4.  (a) and (b) Molecular subtype analysis in ITP; (c) PCA analysis; (d) the expression of hub genes in 
molecular subtypes; (e) and (f) the relative percent of immune cells infiltration between the two subtypes; (g) 
the heat-map of KEGG pathway between the C1 and C2 subgroups; (h) the heat-map of metabolism-related 
pathway between the C1 and C2 subgroups. ITP Immune thrombocytopenia, PCA principal component 
analysis, KEGG Kyoto Encyclopedia of Genes and Genome.
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Figure 5.  (a–e) ADH4, CYP1A2, CYP8B1, NR1H4, and CYP7A1 expression between ITP patient and control; 
(f) the correlation of CYP8B1 and CYP7A1 expression. ITP Immune thrombocytopenia.

Figure 6.  (a–e) the verifited CYP8B1, CYP7A1, ADH4, CYP1A2, and NR1H4 expression between ITP patient 
and control; (f) ROC analysis of the CYP7A1 and CYP8B1. ITP Immune thrombocytopenia, ROC receiving 
operating characteristic.
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improve differential diagnosis and support treatment decisions for patients with  ITP27. But the profiles of genes 
related to ITP metabolism remains uncertain. This study performed bioinformatics analysis to identify the DEGs 
and five metabolism-related central genes associated with ITP. The CYP7A1 and CYP8B1 expression levels were 
validated in patients with ITP. The dysregulation of CYP7A1 and CYP8B1 is involved in the pathogenesis of ITP. 
Thus, CYP7A1 and CYP8B1 are potential diagnostic biomarkers for ITP. However, three other biomarkers could 
not be validated in the clinical samples. This can be attributed to the differences in sample size, the characteristics 
of patients, or the heterogeneity of public expression datasets.

CYP7A1 encodes cholesterol 7α-hydroxylase, which is the key enzyme of bile acid synthesis and initiates the 
classical pathway of bile acid  synthesis28,29. In the study, CYP7A1 was negatively correlated with T cell co-stim-
ulation and APC co-stimulation. ssGSEA revealed that CYP7A1 was negatively correlated with central memory 
CD4 + T cell, central memory CD8 T cell, and effector memory CD8 + T cell abundances. The interaction of B7 
family molecules on the APC surface with CD28 family molecules on the T cell surface provides the second 
signal, which is known as the co-stimulation  signal30. T cell activation, proliferation, and differentiation are 
dependent on the interaction between T cell co-stimulation molecules and their receptors on the APC  surface31.

mTOR may act to integrate costimulatory signals, which in turn direct the outcome of T cell differentiation 
and  activation32. The mTOR signaling pathway determines T cell fate, including the differentiation of naive 
cells into effector T cells or T regulatory (Treg) cells and the development of CD8 + memory T  cells33–37. In ITP, 
bone marrow CD8 + T cells, which are reported to be platelet-specific, are activated, impairing the apoptosis of 
megakaryocytes and suppressing platelet  production38. Sirolimus is a mammalian target of rapamycin (mTOR) 
inhibitor that has been demonstrated to inhibit lymphocyte activity and that demonstrated efficacy as a second-
line agent for refractory/relapsed  ITP39. This indicates that mTOR signaling pathway is involved in the patho-
genesis of ITP. In this study, CYP7A1 expression in patients with ITP was higher than that in healthy subjects. 
Consistently, the expression of CYP7A1 was upregulated in the peripheral blood samples of patients with ITP. 
Therefore, it was speculated that CYP7A1 mediates the pathogenesis of ITP through the mTOR pathway.

CYP8B1 encodes sterol 12α-hydroxylase, which is necessary for the synthesis of cholic  acid40. In the study, 
CYP8B1 expression was positively correlated with CD56 bright NK and NKT cell abundances. CD56 bright NK 
cells represent distinct human NK cell subsets with differing physiological  roles41. NKT cells share the proper-
ties of both T and NK  cells42–44. ElRashedi et al. examined NK cells in pediatric patients with ITP and reported 
that childhood ITP is associated with the upregulation of cytotoxic T lymphocytes and the downregulation of 
peripheral blood NK cells although the reasons for these observations are  unclear45. The activation of the MAPK 
pathway, especially ERK activation, promotes NK cell proliferation and  development46. In this study, CYP8B1 
expression in patients with ITP was higher than that in healthy subjects. Consistently, CYP8B1 expression was 
upregulated in the peripheral blood samples of patients with ITP. Thus, it was speculated that CYP8B1 medi-
ates the pathogenesis of ITP through the MAPK pathway by affecting the development and proliferation of NK 
cells. Moreover, ROC curve verification demonstrated that CYP7A1 and CYP8B1 exhibited high specificity and 
sensitivity for predicting ITP.

ADH4 encodes an alternative alcohol dehydrogenase, which plays an important role in metabolizing various 
substrates, including ethanol and  retinol47. In this study, ADH4 expression was negatively correlated with type II 
IFN response. IFN-γ is a cytokine mainly produced by activated NK cells, cytotoxic T cells and Th1  cells48, which 
plays a critical role in cellular  immunity49. Study showed that interferon-γ is significant higher concentrations in 
ITP patients than that in healthy  controls50. Activation of MAPK signaling pathway involves in T-cell and NK 
cell activation and proliferation  proliferation46. In this study, ADH4 expression in patients with ITP was higher 
than that in healthy controls, but it wasn’t validated in the peripheral blood samples from ITP patients. ADH4 
may play a protective role in the progression of ITP. Thus, it was speculated that ADH4 mediates the pathogenesis 
of ITP via the MAPK pathway.

CYP1A2 belongs to CYP450  superfamily51. The human CYP450 enzyme superfamily catalyzes the oxidative 
metabolism of various drugs, xenobiotics, and other endogenous  substances52. In this study, CYP1A2 expres-
sion was positively correlated with the metabolism of xenobiotics by cytochrome P450. One study from Canada 
reported that CYP1A2 plays a role in the production of reactive oxygen species (ROS)53. ROS are products of 
oxidative  metabolism54. Study revealed that the levels of ROS in chronic ITP were upregulated when compared 
with those in healthy  volunteers55. In this study, CYP1A2 expression in patients with ITP was higher than that in 
healthy controls, but it wasn’t validated in the peripheral blood samples from ITP patients.Thus, it was speculated 
that CYP1A2 mediates the pathogenesis of ITP via promoting the generation of ROS.

NR1H4 (also called FXR) encodes ligand-activated transcription  factors56. Immune cell infiltration analysis 
revealed that NR1H4 expression was positively correlated with Treg cell abundance. Treg cells inhibit T cell-
mediated immunity and are involved in immunological  tolerance57. Treg cell deficiency has been associated with 
the pathogenesis of  ITP58. Treg differentiative activity is mediated by the PIK3/AKT signaling  pathway59 and Treg 
is tightly controlled by mTORC1  activation60. NR1H4 might reduce cholesterol biosynthesis by inhibiting the 
PI3K/AKT/mTOR signaling  pathway61 and cholesterol is essential for lymphocyte  activation62. This demonstrated 
that PI3K/Akt/mTOR signaling pathway plays an important role in Treg differentiation and activity. In this study, 
NRIH4 expression in patients with ITP was higher than that in healthy controls, but it wasn’t validated in the 
peripheral blood samples from ITP patients. Thus, it was speculated that NR1H4 mediates the pathogenesis of 
ITP via PI3K/Akt/mTOR signaling pathway.

ITP is a highly heterogeneous disease. Previous studies have demonstrated that the clinical manifestation, 
clinical consequences, and treatment responses of ITP markedly  vary63. The hemorrhagic symptoms vary from 
an asymptomatic state to a life-threatening hemorrhage. Some patients fail to respond to glucocorticoid (GC) 
therapy. ITP has not been previously classified based on the expression levels of metabolism-related genes. This 
study suggested that metabolism-related genes are involved in the pathogenesis of ITP and ITP was classified 
into two molecular subtypes based on the expression of the five ITP-related biomarkers.
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Atorvastatin lowers cholesterol through inhibiting the HMG-CoA reductase of the mevalonate pathway for 
cholesterol biosynthesis. It has been reported that atorvastatin may have a potential therapeutic effect in treating 
 ITP64 and this showed that cholesterol biosynthesis was increased in ITP patients. Cholesterol is a precursor of 
steroid hormones, oxysterols, and bile  acids65. Steroid hormones are classified into the following five groups: 
GCs, mineralocorticoids, androgens, estrogens, and  progestogens66. In the study, CYP8B1 was significantly 
upregulated in the C2 subtype, involving in the conversion of cholesterol to cholic acid. Pathway analysis revealed 
that steroid hormone biosynthesis in the C2 subtype was upregulated when compared with that in the C1 sub-
type. Meanwhile, the citric acid cycle in the C1 subtype was upregulated when compared with that in the C2 
subtype. However, GCs exert contrasting effects on macrophages depending on the level and time of exposure. 
The upregulation of GC exerts anti-inflammatory and immunosuppressive effects, while the downregulation 
of GC facilitates macrophage polarization into pro-inflammatory  phenotypes66. The citric acid cycle, a key cel-
lular metabolic pathway, provides energy for cellular  metabolism67. The metabolites of the citric acid cycle are 
involved in the regulation of immune  responses68. Remodeling of the citric acid cycle is a metabolic adaptation 
associated with inflammatory macrophage  activation69. The proportion of anti-inflammatory macrophages is 
downregulated in the mouse ITP model, as well as in patients with  ITP70,71. The results suggest that the different 
levels of inflammation between the two subtypes. Thus, it was speculated that the response of patients with the 
C1 subtype to anti-inflammation treatment may be higher than that of patients with the C2 subtype.

CIBERSORT analysis revealed that the infiltration levels of immune cell types significantly varied between 
the two subgroups. The abundances of B cells memory and mast cells were significantly upregulated in the C1 
and C2 subtypes, respectively. Memory B cells are reported to be resistant to  rituximab72. The mast cells can 
produce IL-1773. The treatment of ITP associated with IL-17-mediated macrophages is  challenging74. Thus, it 
was speculated that different molecular subtypes exhibit different responses to the same therapy.

Conclusions
ADH4, CYP7A1, CYP1A2, CYP8B1, and NR1H4 are involved in pathogenesis of ITP. Additionally, CYP8B1 and 
CYP7A1 were identified as potential novel diagnostic biomarkers for ITP. The molecular subtypes may allow us 
to explore and understand the heterogeneity of ITP.
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All data in this study are available by contacting corresponding authors.
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