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Route planning of mobile robot 
based on improved RRT star 
and TEB algorithm
Xiong Yin , Wentao Dong , Xiaoming Wang , Yongxiang Yu  & Daojin Yao *

This paper presents a fusion algorithm based on the enhanced RRT* TEB algorithm. The enhanced 
RRT* algorithm is utilized for generating an optimal global path. Firstly, proposing an adaptive 
sampling function and extending node bias to accelerate global path generation and mitigate local 
optimality. Secondly, eliminating path redundancy to minimize path length. Thirdly, imposing 
constraints on the turning angle of the path to enhance path smoothness. Conducting kinematic 
modeling of the mobile robot and optimizing the TEB algorithm to align the trajectory with the mobile 
robot’s kinematics. The integration of these two algorithms culminates in the development of a fusion 
algorithm. Simulation and experimental results demonstrate that, in contrast to the traditional 
RRT* algorithm, the enhanced RRT* algorithm achieves a 5.8% reduction in path length and a 
62.5% decrease in the number of turning points. Utilizing the fusion algorithm for path planning, the 
mobile robot generates a superior, seamlessly smooth global path, adept at circumventing obstacles. 
Furthermore, the local trajectory meticulously conforms to the kinematic constraints of the mobile 
robot.
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With the rapid advancements in robot technology, the potential for robots to supplant human roles has 
 emerged1,2. The mobile robot stands out prominently in both domestic and international arenas as one of the 
focal points in robot  research3. Its applications span across hospitals, railway stations, warehouses, and shopping 
 malls4. With robots capable of operating continuously, a foreseeable shift involves them taking over repetitive 
manual tasks from  humans5. At the core of this shift lies the essence of path planning for mobile  robots6.

Currently, a multitude of algorithms cater to mobile robot path planning. These encompass the Voronoi 
 algorithm7,  A*  algorithm8, ant colony  algorithm9, grey Wolf  algorithm10, genetic  algorithm11, RRT  algorithm12, 
particle swarm  algorithm13, ant colony  algorithm14, artificial potential field  algorithm15, neural network 
 algorithm16, deep learning  algorithm17, and more.

Path planning algorithms can be categorized into global path planning and local path planning based on 
their  characteristics18. Among global planning algorithms, the RRT* algorithm, which employs sampling for 
global path planning, is widely adopted in mobile robot applications due to its accelerated path generation rate. 
Numerous researchers have contributed enhancements to the RRT* algorithm, including the bidirectional RRT* 
 algorithm19, Informed RRT*  algorithm20, and others.

In the realm of path planning, numerous algorithms have been proposed by  scholars21,22. Tang et al. 23 intro-
duces an enhanced A* algorithm within the domain of global path planning. The method consists of two main 
steps: firstly, removing irregular waypoints with functions P (x, y) and W (x, y); secondly, smoothing the path 
using B splines. This approach significantly reduces both the path length and the number of nodes. Meanwhile, 
Mashayekhi et al.24 delve into a hybrid RRT algorithm. Their method begins by employing a bidirectional tree for 
searching, then optimizing the current node through informed sampling once the two trees are connected. This 
technique notably enhances the path quality. Moving on, Zhu et al.25 adopt a reverse labeling Dijkstra algorithm 
for global path planning. Initially, they theoretically substantiate the algorithm’s rationality and demonstrate its 
low complexity. Subsequently, they validate its effectiveness by applying it to a real road network. In the realm 
of local path planning, Zhang et al.26 present an improved ant colony algorithm. The strategy includes using the 
artificial potential field to determine force direction in the initial ship phase, improving the attraction potential 
field function, and creating pseudo-random transfer rules. These changes significantly improve the algorithm’s 
convergence. Similarly, Du et al.27 propose a dynamic artificial potential field algorithm. The strategy begins by 
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adjusting the safe distance dynamically and then improving the potential field force’s effectiveness. Ultimately, 
the algorithm is enhanced by introducing a steering force to change the drone’s direction, ensuring safer and 
more stable paths. Lastly, Kobayashi et al.28 introduce an algorithm comprising the DWA algorithm and VM. 
This composite approach furnishes the DWA algorithm with modified variable speeds and predicted obstacle 
data from VM, facilitating the generation of candidate paths.

While the mentioned algorithms have their merits, they mainly concentrate on either global or local path 
planning, frequently overlooking the robot’s kinematic and dynamic constraints. This paper addresses this limi-
tation by incorporating considerations for both global and local path planning, as well as accounting for the 
kinematics of the mobile robot. The study includes simulating the improved algorithm, comparing it with classical 
algorithms. Then implementing it on an experimental prototype to confirm its effectiveness.

In summary, propose a fusion algorithm for a mobile robot to navigate along an optimal path globally while 
obeying its kinematic constraints. This contribution differs from existing work in three key aspects:

(1) The paper introduces the mobile robot platform and its system, followed by kinematic modeling for the 
mobile robot;

(2) Enhancements to the RRT* algorithm include optimizing the sampling function. During node expansion, 
weights are increased to counteract expansion. Redundant path nodes are eliminated to shorten the path. 
Constraints are applied to turning angles for a smoother trajectory;

(3) Addressing the kinematic constraints of the mobile robot, the TEB algorithm is optimized, incorporating 
constraints such as obstacle limitations, speed restrictions and acceleration constraints;

(4) The effects of Angle threshold and path-point spacing on the performance of improved RRT* algorithm 
are discussed.

This paper is structured into six sections, with "Introduction of mobile robot" detailing the robot modeling, 
"Improved RRT* Algorithm" focusing on RRT* algorithm improvements, "Timed-elastic-band approach opti-
mization" concentrating on TEB algorithm optimization, and "Experimental" encompassing simulations and 
experiments. Finally, "Conclusion" provides the conclusion of this study.

Introduction of mobile robot
Platform hardware introduction
The mobile robot comprises a depth camera, laser radar, main control unit and robot chassis. The main control 
unit is built around a Raspberry Pi, incorporating an STM32 chip. The robot chassis is constructed with two 
servo motors, two driving wheels, and an omnidirectional wheel, as depicted in Fig. 1.

Platform system introduction
The platform system integrates the ROS operating system into Raspberry Pi, with key components encompassing 
environment awareness, data processing and path navigation. ROS, widely recognized as the most extensively 
used open-source robot software platform, greatly improves the efficiency of robot development. The laser radar 
collects environmental data, while the Raspberry Pi and STM32 chip work together to process it and plan an 
optimal, obstacle-free path. The servo motor is controlled to start tire rotation, helping the mobile robot move 
along the planned path, as illustrated in Fig. 2.

Kinematic model of the mobile robot
This paper conducts kinematic modeling for the mobile  robot29. Within the world coordinate system (xw, yw), the 
state vector s = [x, y, θ] denotes the current position and pose information of the mobile robot. This is depicted 
in Fig. 3.

Figure 1.  Mobile robot diagram.
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Figure 2.  System flow chart.

Figure 3.  Mobile robot shape and posture diagram.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8942  | https://doi.org/10.1038/s41598-024-59413-9

www.nature.com/scientificreports/

Given that the mobile robot operates on a two-wheeled differential system, each drive wheel is independently 
powered by a dedicated motor. Here, r represents the radius of the driving wheel, while wl(t) and wr(t) denote 
the angular speed of the left and right driving wheels, respectively. The linear speed of the left and right drive 
wheels is expressed as vl(t) and vr(t).

where t represents the turning time period, p is half of the wheelbase of the driving wheel. Consequently, the 
local coordinate system for the mobile robot positions the y-axis along the horizontal direction of its two driving 
wheels, with the x-axis aligned with its moving direction. The speed of the mobile robot, denoted as v(t). Speed 
of the mobile robot v(t) = (vl(t) + vr(t))/2. This leads to the conclusion that the motion of the mobile robot can 
be characterized by a nonlinear equation.

where s(t) represents the position of the mobile robot at time t, u(t) = [v(t), w(t)]T denotes the control input vector.

where l is two driving wheels wheelbase, vl(t) is the left-wheel speed, vr(t) is the right-wheel speed, vk,k is the 
angle between sk pose at moment k, the direction dk = [xk+1-xk, yk+1-yk,  0]T of the mobile robot. vk,k+1 is the angle 
between the dk direction and sk+1 posture of the mobile robot at time k + 1.When vk,k = vk,k +1, a common arc of 
constant curvature can be obtained.

According to Fig. 3b, pk is the turning radius, arc length Rk = pk∆θk. Angle ∆θk = θk+1 − θk is the angle change 
between the sk position and sk+1 position of the mobile robot. The turning radius pk is.

where meet pk ≥ pmin, pmin is the minimum turning radius.

Improved RRT* algorithm
Traditional RRT* algorithm
The Rapidly Exploring Random Tree Star (RRT*) stands as a global path planning algorithm, representing an 
enhancement over the Rapidly Exploring Random Tree (RRT)30. The core method involves several steps: first, 
randomly sampling within the space. Once a sample point is obtained, the algorithm finds the nearby node. 
Second, a new node is created between this nearby node and the sampled one. Next, collision detection is done 
on the new node. If there’s no collision, it’s added to the path. The parent node is then adjusted for the new one. 
This continues until the algorithm reaches the target point.

Adaptive sampling function
In the conventional RRT* algorithm, the initial path is formed through random sampling across the entire 
obstacle space, resulting in a considerable number of sampling nodes. To enhance the target-oriented nature of 
sampling points, an adaptive sampling function is introduced. A proposed adaptive sampling function involves 
setting a target bias probability denoted as p. Generate sampling points based on the associated probability. 
This adaptive sampling function accelerates the generation of the initial path, reduces the quantity of sampling 
points, improves sampling efficiency, and prevents the initial path from succumbing to local optima. The adap-
tive sampling function is instrumental in achieving these enhancements.

where p represents probability, xrand denotes the sampling point generated by random sampling, XGoal signifies 
target point, XGoal is sampling point.

Node bias expansion
Given the relatively lengthy trajectory of the mobile robot, it is essential to constrain the expansion direction of 
the new node, denoted as Xnew. This constraint is crucial for expediting path  planning31. In the traditional RRT* 
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algorithm, the new node Xnew is traditionally extended towards a randomly generated point, Xrand. However, 
this random expansion approach often results in an unfocused expansion of nodes, leading to prolonged path 
planning durations. To address this inefficiency, this paper introduces a node expansion bias. This bias leverages 
target points to guide and constrain the expansion of new nodes. Specifically, different weights are assigned to 
the direction of the target point and the sampling point. The weight in the direction of the goal point, XGoal, is 
denoted as g, while the weight in the Xrand direction is denoted as r. This configuration is illustrated in Fig. 4. The 
introduction of this node expansion bias aims to optimize the expansion process and enhance the efficiency of 
path planning.

Remove redundant points in the path
The path generated from the starting point to the destination point often contains numerous redundant points, 
contributing to the elongation of the  path32. Reducing redundant points decreases the time needed for the mobile 
robot to complete the task, making it essential to trim them for a collision-free optimal path. This paper employs 
the greedy algorithm for path redundancy reduction. In Fig. 5, the blue line segment represents the branch of 
the random tree, the black line segment corresponds to the initial path, the red dotted line indicates the path 
after redundancy removal, and the gray circles symbolize obstacles. To remove redundancy path: X1 → X2 → X3 
→ X4 → X5 → X6 → X7 → X8 → X9. Iterate through the path in turn. Until node X4 is encountered, connecting 
nodes X1 and X4 will collide with obstacles. Connect X1 and X3, delete node X2. Repeat the process until reaching 
node X9. The path with redundancy removed can be obtained: X1 → X3 → X4 → X8 → X9. As shown in the Fig. 5.

Path smoothing
Once redundancy is eliminated, the path may still face issues with excessively wide turning angles. The path turn-
ing angle is too large, which does not conform to the kinematics of the mobile robot. Therefore, it is necessary to 
constrain the turning angle of the path. Firstly, the coordinates of three consecutive waypoints are obtained. The 
angular deviation of two adjacent coordinates is calculated. The angle deviation threshold Ad is set. The calculated 
result is greater than the threshold. Then, the midpoint of the preceding. Following two points is used as the coor-
dinates of the intermediate points, so as to achieve path smoothing. Secondly, the angle normalization function 
is set up. It combines angles from two nearby points in the map system into the range of (−π, π) to make angle 
comparisons consistent. Obtain the coordinates of the current time and the previous time waypoint. Calculate 
the distance. If the distance obtained is greater than the threshold, a new waypoint is inserted between the two 
waypoints. The coordinate is the point coordinate of the two path points, so as to increase the path point density. 
Finally, the path smoothing function is established to obtain the coordinates of three adjacent waypoints. Then 
the angle value between two adjacent coordinates is calculated. The two angle standardization deviations are 
obtained by calculating and analyzing the angle standardization function. The calculation result is greater than 
the threshold. The middle coordinate points are substituted with the median value of the rear coordinate points. 
This process is repeated continuously to globally optimize the entire path, as shown in the Fig. 6.
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Figure 4.  New node offset expansion diagram.
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Figure 5.  Path de-redundancy diagram.
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Timed‑elastic‑band approach optimization
Basic description of algorithm
The Timed Elastic Band (TEB) algorithm is a popular method for tackling local obstacle avoidance problems 
faced by mobile  robots33. This algorithm is formally defined as a tuple comprising two sequences:

where Q represents the sequence of robot poses, and τ signifies the sequence of time intervals associated with 
each pose. The basic idea is to dynamically adjust and optimize the algorithm with respect to configuration and 
time intervals. This is achieved through a real-time weighted multi-objective optimization process.

where B* refers to the optimized Timed Elastic Band (TEB) algorithm, where fk represents the weighted sum of 
components contributing to the objective function f(B). The objective function consists of four integral elements: 
(1) A penalty function, strategically employed to guide the intermediate points toward the original path and 
circumvent obstacles. (2) Utilization of dynamics to impose restrictions on the robot’s speed and acceleration. 
(3) Adherence to nonholonomic kinematic constraints. (4) Minimization of the square of the sum of the time 
difference sequence, aiming to identify the swiftest path. The TEB algorithm introduces a constraint on the robot’s 
movement time, thereby enabling real-time control over the mobile robot’s  motion34. This additional constraint 
enhances the algorithm’s ability to govern the movement of the mobile robot in dynamic  environments35.

Algorithm optimization
The application of the TEB algorithm involves optimizing both the dynamics and kinematics of a mobile  robot36. 
The following is the optimization formula of TEB  algorithm37,38. The main aim is to guide the robot smoothly 
from start to finish along the best path, considering dynamics and kinematics. The optimization problem is 
defined as a finite dimensional parameter vector (sk) k=1,2,…,n−1.consisting of a discretized sequence of n robot 
poses… n minus one. The parameter set to be optimized is:

(8)B := (Q, τ)

(9)f (B) =
∑

k

γkfk(B)

(10)B∗ = argmin
B

f (B)
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Figure 6.  Path smoothing schematic diagram.
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where (∆Tk) k=1, 2, …, n−1 indicates strictly positive time series. Simultaneously, the optimization problem undergoes 
a transformation into a non-linear program, which involves a series of equations and inequalities.

Subject to

Among them, the initial pose s1 and the end pose sn are replaced by the current mobile robot state sc and target 
state sf. Equality constraint hk(∙)satisfies Eq. (5). rk(∙)imposes a minimum turning radius and rk(∙) = rk − pmin. o is 
the simply connected area of obstacle model in obstacle map. When there are many obstacles, o will increase the 
subscript. For example, ol, l=1,…,n. ψ is an obstacle model. δ (sk, ψ) is the distance between the pose of the mobile 
robot and the obstacle model. The minimum distance of all obstacles is constrained by inequality δmin:

where vk is the linear velocity of the robot at the pose sk. vk is defined as:

where γ(∙) ∈ [−1,1]is sign of mobile robot velocity. The result of mapping the direction vector qk = [ cosθk, sinθk, 
0] T to the distance vector dk is:

where < .,. > is the scalar computor. The angular velocity is wk = ∆θk/∆Tk and |wk|≤ wmax the conditions are satisfied. 
wmax = vmaxp−1

 min. Linear acceleration is described as:

where linear velocity and angular velocity constraints are vk(sk+1,sk,∆Tk) = [vmax − |vk|, wmax − |wk|]T, the inequality 
is ak (sk+2, sk+1, ∆Tk+1, ∆Tk) = amax − |ak|. The precise nonlinear programming is transformed into an approximate 
nonlinear square optimization problem. The optimization of the solution formula is achieved through the use 
of the approximate least squares method. The solver’s properties are harnessed to approximate the first deriva-
tive, ensuring an effective solution. The equality constraint, denoted as h, is represented by the quadratic penalty 
with a scalar weight σ:

The inequality approximates the weighted unilateral quadratic penalty:

Equation (24) can be approximated by the overall unconstrained optimization of the objective function 
∼
V(B) :

where B* is the optimal solution vector. When ownership values all approach infinity, B* coincides with the 
actual minimum value of Eq. (25). In order to solve (Eq. 12), TEB algorithm adopts Levenberg Marquardt (LM) 
method. The graph optimization framework g2o implements an efficient sparse variant of LM.
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Algorithm fusion
Combining the global and local path planning algorithms creates a hybrid algorithm. The global path planning 
involves multiple steps: firstly, employing an adaptive sampling function to generate random sampling points; 
secondly, generating a new node through node bias and adding it to the random tree; thirdly, removing redundant 
points in the initial path; fourthly, imposing constraints on the path turning angle and smoothing the path. The 
resultant global path information is then fed into the local path planning algorithm. The local path planning 
process consists of obtaining the path, applying kinematics constraints to the trajectory, verifying the trajectory, 
finally calculating the control inputs. This iterative process continues until the mobile robot reaches the target 
point, as depicted in Fig. 7.

Experimental
To evaluate the feasibility and effectiveness of the enhanced algorithm described in this paper, the Robot Operat-
ing System (ROS) serves as the operational environment. The simulation experiment takes place on a computer, 
and the prototype experiment is implemented on the mobile robot, enabling a thorough assessment.

The model is constructed using Gazebo, a sophisticated robot simulation software renowned for its high-
fidelity physical simulation capabilities. Gazebo excels in accurately and efficiently replicating the intricate opera-
tions of robots within diverse indoor and outdoor settings. As a simulator, it swiftly validates the algorithm’s 
effectiveness by creating a Gazebo model based on the experimental map. Following the construction of the 
simulation model, the next step involves employing the gmapping technique. This step is crucial for validating 
the improved RRT* algorithm’s effectiveness. To thoroughly assess its performance, the A* algorithm, Voronoi 
algorithm, RRT algorithm, RRT connect algorithm, B spline smooth RRT connect algorithm, RRT* algorithm, B 
spline smooth RRT* algorithm, and the enhanced RRT* algorithm are individually executed within this mapped 
environment. The trajectory, depicted in Fig. 8, delineates specific elements: the gray area signifies safety, while 
the black cylinder represents obstacles, and the blue border denotes obstacle expansion. The mobile robot is 
denoted by the orange dot, and the red path illustrates the route planned by the global algorithm. Corresponding 
data is presented in Table 1 and Fig. 9. Notably, the path generated by the improved RRT* algorithm, as dem-
onstrated in Fig. 8, exhibits a smoother trajectory compared to traditional algorithms. It significantly reduces 
the number of turning points, effectively enhancing the overall path quality. Further analysis, as evidenced in 
Table 1 and Fig. 9, reveals that compared to the traditional RRT* algorithm, the improved version reduces the 
path length by 5.8% and decreases the number of turning points by 62.5%. This reduction in path length enables 
the mobile robot to reach its destination more swiftly, while fewer waypoints conserve the robot’s memory usage.

The resulting trajectory aligns with expectations. As illustrated in Fig. 10, The angular velocity and linear 
velocity of various RRT* algorithms applied to mobile robots are obtained and compared. In Fig. 10, the linear 
velocity consistently remains within the range of [−0.5 m/s, 1 m/s], The angular velocity also remains within the 
range of [-1 rad/s, 1 rad/s]. Of particular note is that only the improved algorithm maintains a constant speed of 
1 m/s between [5 s, 20 s], indicating a smooth operation of the mobile robot during this time interval. Compared 
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Figure 7.  Fusion algorithm flow chart.
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with other algorithms, the angular velocity fluctuation range of the improved algorithm is the smallest in the 
period of [5 s,18 s]. These results confirm that the improved algorithm is more consistent with the kinematic 
model of the mobile robot, and can follow the planned path more effectively and move more smoothly. As can 
be seen from Fig. 11, in the environment of Fig. 8, the optimization convergence speed of the three algorithms is 
relatively close, but the Improved RRT * algorithm has the best curve, which can effectively improve the efficiency 
of path planning and reduce the time of path planning.

As can be seen from Fig. 12, the Improved RRT * is put into the map of three different environments for 
simulation experiments, and the Improved RRT * successfully generates the optimal path without colliding with 
obstacles. The results show that the Improved RRT * is relatively robust and can successfully plan paths and avoid 
obstacles in different environments. In Fig. 13, the influence of Angle deviation threshold Ad on the number of 
path turns is analyzed, and it is found that setting the Angle at about π/20 degrees generates fewer path turns and 
smoother path. In Fig. 14, the relationship between the distance between the waypoints and the path length in the 
improved RRT *algorithm is analyzed. As shown in the figure, when the distance between the waypoints reaches 
0.025 m, the impact on the distance is small, so 0.025 m is selected as the path point distance of the algorithm.

The hybrid algorithm is implemented in the mobile robot, and its effectiveness is verified through experi-
mentation in a controlled environment, as illustrated in Fig. 15. Within the constructed environment, a hybrid 
algorithm is employed for path planning, and the outcome is depicted in Fig. 16. In Fig. 16b, point a designates 
the initial position of the mobile robot, point b represents the intermediate node during the robot’s movement, 
and point c signifies the ultimate goal of the mobile robot. The purple path illustrates the global trajectory gener-
ated by the enhanced RRT* algorithm, while the red path depicts the local trajectory produced by the optimized 

(a)A* (b)Voronoi (c) RRT

(e) B spline smooth RRT 

connect

(d) RRT connect

(h) Improved RRT*(f) RRT* (g) B spline smooth RRT*

Figure 8.  Algorithm comparison diagram.

Table 1.  Comparison of algorithm performance indexes before and after improvement.

Algorithm Path length(m) Number of nodes Time to plan a path (s)

A* 20.21 291 384.93

Voronoi 27.20 461 97.09

RRT 22.53 173 70.99

RRT connect 23.11 159 61.26

B spline smooth RRT connect 21.43 963 158.07

RRT* 20.72 86 49.10

B spline smooth RRT* 22.97 749 76.1

Improved RRT* 19.52 771 52.10
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TEB algorithm. Using this algorithm for path planning guarantees a smooth trajectory that matches the robot’s 
kinematic traits. Crucially, it avoids collisions with obstacles, achieving the intended result.

Conclusion
Within this paper, introduce a fusion algorithm that synergizes the advancements of the improved RRT* algo-
rithm and the TEB algorithm. The proposed approach not only expedites the generation of an optimal global 
path but also refines the trajectory, taking into careful consideration the dynamic constraints inherent to the 
mobile robot. The global path planning algorithm commences by employing an adaptive sampling function. 
Subsequently, Afterward, nodes expand with bias, redundant points are removed from the path, and turning 
angles are constrained. Perform kinematic modeling for the mobile robot. Incorporate dynamic constraints 
specific to the mobile robot into the local path planning algorithm, effectively integrating the algorithms. This 
holistic approach empowers the algorithm to strategize the mobile robot’s path, leading to the attainment of a 
path of high quality.

In forthcoming research efforts, the emphasis transitions to utilizing a fusion algorithm for path planning 
within the framework of multiple robots. This necessitates addressing concerns such as priority assignment and 
potential conflicts in paths among the robots. The collaboration of multiple robots holds the promise of extending 
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Figure 9.  Number of turns diagram.
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Figure 10.  Simulation model velocity diagram.
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Figure 15.  Experiment environment diagram.

Figure 16.  Mobile robot experiment diagram.
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the operational radius and enhancing overall efficiency. Concurrently, there is an examination of autonomously 
assigning execution tasks and areas to mobile robots. This strategy is designed to enhance robot efficiency and 
markedly improve the quality of work. Furthermore, the research delves into investigating how mobile robots 
navigate and avoid dynamic obstacles.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.

Received: 10 July 2023; Accepted: 10 April 2024

References
 1. Xiang, D., Lin, H., Ouyang, J. & Huang, D. Combined improved A* and greedy algorithm for path planning of multi-objective 

mobile robot. Sci. Rep. 12(1), 13273 (2022).
 2. Yin, X. et al. Dynamic Path Planning of AGV Based on Kinematical Constraint A* Algorithm and Following DWA Fusion Algo-

rithms. Sensors 23(8), 4102 (2023).
 3. Zhong, X., Tian, J., Hu, H. & Peng, X. Hybrid path planning based on safe A* algorithm and adaptive window approach for mobile 

robot in large-scale dynamic environment. J. Intell. Rob. Syst. 99, 65–77 (2020).
 4. Chen, Z. et al. Patrol robot path planning in nuclear power plant using an interval multi-objective particle swarm optimization 

algorithm. Appl. Soft Comput. 116, 108192 (2022).
 5. Kashyap, A. K. & Parhi, D. R. Implementation of intelligent navigational techniques for inter-collision avoidance of multiple 

humanoid robots in complex environment. Appl. Soft Comput. 124, 109001 (2022).
 6. Gao, Y., Li, S., Wang, X., & Chen, Q. A patrol mobile robot for power transformer substations based on ROS. In 2018 Chinese 

Control and Decision Conference (CCDC). 456–460 (IEEE, 2018).
 7. Huang, S. K., Wang, W. J. & Sun, C. H. A new multirobot path planning with priority order based on the generalized Voronoi 

diagram. IEEE Access 10, 56564–56577 (2022).
 8. Li, F., Kim, Y. C., Lyu, Z. & Zhan, H. Research on path planning for robot based on improved design of non-standard environment 

map with ant colony algorithm. IEEE Access 11, 99776–99791 (2023).
 9. Zhang, W., Zhang, S., Wu, F. & Wang, Y. Path planning of UAV based on improved adaptive grey wolf optimization algorithm. 

IEEE Access 9, 89400–89411 (2023).
 10. Zheng, J., Ding, M., Sun, L. & Liu, H. Distributed stochastic algorithm based on enhanced genetic algorithm for path planning of 

multi-UAV cooperative area search. IEEE Trans. Intell. Transp. Syst. 24(8), 8290–8303 (2023).
 11. Cao, M., Zhou, X. & Ju, Y. Robot motion planning based on improved RRT algorithm and RBF neural network sliding. IEEE Access 

11, 121295–121305 (2023).
 12. Daniali, S. M., Khosravi, A., Sarhadi, P. & Tavakkoli, F. An automatic parking algorithm design using multi-objective particle 

swarm optimization. IEEE Access 11, 49611–49624 (2023).
 13. Liu, E., Tan, R. & Chen, Y. Research on global ship path planning method based on improved ant colony algorithm. J. East China 

Jiaotong University 37(6), 103–107 (2023).
 14. Goricanec, J., Milas, A., Markovic, L. & Bogdan, S. Collision-free trajectory following with augmented artificial potential field 

using UAVs. IEEE Access 11, 83492–83506 (2023).
 15. Zhang, Z., Wang, S., Chen, J. & Han, Y. A bionic dynamic path planning algorithm of the micro UAV based on the fusion of deep 

neural network optimization/filtering and hawk-eye vision. IEEE Trans. Syst. Man Cybern. Systems. 53(6), 3728–3740 (2023).
 16. Yao, P., Wu, K. & Lou, Y. Path planning for multiple unmanned surface vehicles using Glasius bio-inspired neural network with 

Hungarian algorithm. IEEE Syst. J. 17(3), 3906–3917 (2022).
 17. Kumaar, A. N. & Kochuvila, S. Mobile service robot path planning using deep reinforcement learning. IEEE Access 11, 100083–

100096 (2023).
 18. Zhang, R., Chai, R., Chai, S. & Tsourdos, A. Design and practical implementation of a high efficiency two-layer trajectory planning 

method for AGV. IEEE Trans. Indus. Electron. 71(2), 1811–1822 (2023).
 19. Dai, J., Zhang, Y. & Deng, H. Novel potential guided bidirectional RRT* with direct connection strategy for path planning of 

redundant robot manipulators in joint space. IEEE Trans. Indus. Electron. 71(3), 2737–2747 (2023).
 20. Mashayekhi, R., Idris, M. Y. I., Anisi, M. H., Ahmedy, I. & Ali, I. Informed RRT*-connect: An asymptotically optimal single-query 

path planning method. IEEE Access 8, 19842–19852 (2020).
 21. Liu, C., He, W., Cai, X., Xie, Z. et al. Laser slam-based autonomous navigation for fire patrol robots. In 2023 IEEE 2nd International 

Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). 742–746. (IEEE, 2023).
 22. Wang, B., Ju, D., Li, Q. et al. SS-RRT*: A safe and smoothing path planner for mobile robot in static environment. In 2022 China 

Automation Congress (CAC ). 3677–3682. (IEEE, 2022).
 23. Tang, G. et al. Geometric A-star algorithm: An improved A-star algorithm for AGV path planning in a port environment. IEEE 

Access 9, 59196–59210 (2021).
 24. Mashayekhi, R. et al. Hybrid RRT: A semi-dual-tree RRT-based motion planner. IEEE Access 8, 18658–18668 (2020).
 25. Zhu, D. D. & Sun, J. Q. A new algorithm based on Dijkstra for vehicle path planning considering intersection attribute. IEEE Access 

9, 19761–19775 (2021).
 26. Du, Y., Zhang, X. & Nie, Z. A real-time collision avoidance strategy in dynamic airspace based on dynamic artificial potential field 

algorithm. IEEE Access 7, 169469–169479 (2019).
 27. Kobayashi, M. & Motoi, N. Local path planning: Dynamic window approach with virtual manipulators considering dynamic 

obstacles. IEEE Access 10, 17018–17029 (2022).
 28. Nakamura, T., Kobayashi, M. & Motoi, N. Path planning for mobile robot considering turnabouts on narrow road by deep 

Q-network. IEEE Access 11, 19111–19121 (2023).
 29. Lan, W. et al. Improved RRT algorithms to solve path planning of multi-glider in time-varying ocean currents. IEEE Access 9, 

158098–158115 (2021).
 30. Wang, B. et al. CAF-RRT*: A 2D path planning algorithm based on circular arc fillet method. IEEE Access 10, 127168–127181 

(2022).
 31. Chen, L. et al. A fast and efficient double-tree RRT $^* $-like sampling-based planner applying on mobile robotic systems. IEEE/

ASME Trans. Mechatron. 23(6), 2568–2578 (2018).
 32. Rösmann, C., Feiten, W., Wösch, T. et al. Trajectory modification considering dynamic constraints of autonomous robots. In 

ROBOTIK 2012; 7th German Conference on Robotics. 1–6. (VDE, 2012).
 33. Rösmann, C., Feiten, W., Wösch, T. et al. Efficient trajectory optimization using a sparse model. In 2013 European Conference on 

Mobile Robots. 138–143 (IEEE, 2013).



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8942  | https://doi.org/10.1038/s41598-024-59413-9

www.nature.com/scientificreports/

 34. Rösmann, C., Hoffmann, F., & Bertram, T. Kinodynamic trajectory optimization and control for car-like robots. In 2017 IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS). 5681–5686. (IEEE, 2017).

 35. Rösmann, C., Hoffmann, F., & Bertram, T. Planning of multiple robot trajectories in distinctive topologies. In 2015 European 
Conference on Mobile Robots (ECMR). 1–6. (IEEE, 2015).

 36. Shi, K., Wu, P., & Liu, M. Research on path planning method of forging handling robot based on combined strategy. In 2021 IEEE 
International Conference on Power Electronics, Computer Applications (ICPECA). 292–295. (IEEE, 2021).

 37. Sui, F. et al. ACO+ PSO+ A*: A bi-layer hybrid algorithm for multi-task path planning of an AUV. Comput. Ind. Eng. 175, 108905 
(2023).

 38. Liu, E., Tan, R. & Chen, Y. Path planning of intelligent line patrol Robot based on improved human ant colony. J. East China Jiaotong 
Univ. 37(06),103–107 (2019).

Acknowledgements
This work was supported in part by the National Natural Science Foundation of China under Grant: 52365003, 
52165069, 52367015; Jiangxi Provincial Natural Science Foundation under Grants: 20232BAB214045, 
20224BAB214051, 20224BAB204051, 20232BAB214064; Training Plan for Academic and Technical Leaders of 
Major Disciplines in Jiangxi Province under Grants:20232BCJ23027; Key R & D plan of Jiangxi Province under 
Grant: 20212BBE51010; Jiangxi Graduate Student Innovation Special Fund Project: YC2023-S468.

Author contributions
All authors contributed to the study conception and design. Xiong Yin wrote the manuscript and did the research. 
Technical support was provided by Wentao Dong, Xiaoming Wang, Yongxiang Yu. Valuable comments on manu-
script revisions were put forward by Daojin Yao. All authors read and approved the final manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Route planning of mobile robot based on improved RRT star and TEB algorithm
	Introduction of mobile robot
	Platform hardware introduction
	Platform system introduction
	Kinematic model of the mobile robot

	Improved RRT* algorithm
	Traditional RRT* algorithm
	Adaptive sampling function
	Node bias expansion
	Remove redundant points in the path
	Path smoothing

	Timed-elastic-band approach optimization
	Basic description of algorithm
	Algorithm optimization
	Algorithm fusion

	Experimental
	Conclusion
	References
	Acknowledgements


