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Analysis of plasma metabolomes 
from 11 309 subjects in five 
population‑based cohorts
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Johan Ärnlöv 5, Olle Melander 6, Maya Landenhed Smith 7, Anne M. Evans 4, Olof Gidlöf 2, 
Robert E. Gerszten 8, Lars Lind 9, Gunnar Engström 10, Tove Fall 3 & J. Gustav Smith 1,2,11,12*

Plasma metabolomics holds potential for precision medicine, but limited information is available to 
compare the performance of such methods across multiple cohorts. We compared plasma metabolite 
profiles after an overnight fast in 11,309 participants of five population-based Swedish cohorts 
(50–80 years, 52% women). Metabolite profiles were uniformly generated at a core laboratory 
(Metabolon Inc.) with untargeted liquid chromatography mass spectrometry and a comprehensive 
reference library. Analysis of a second sample obtained one year later was conducted in a subset. 
Of 1629 detected metabolites, 1074 (66%) were detected in all cohorts while only 10% were unique 
to one cohort, most of which were xenobiotics or uncharacterized. The major classes were lipids 
(28%), xenobiotics (22%), amino acids (14%), and uncharacterized (19%). The most abundant plasma 
metabolome components were the major dietary fatty acids and amino acids, glucose, lactate and 
creatinine. Most metabolites displayed a log-normal distribution. Temporal variability was generally 
similar to clinical chemistry analytes but more pronounced for xenobiotics. Extensive metabolite-
metabolite correlations were observed but mainly restricted to within each class. Metabolites 
were broadly associated with clinical factors, particularly body mass index, sex and renal function. 
Collectively, our findings inform the conduct and interpretation of metabolite association and 
precision medicine studies.

The collection of small molecules involved in metabolic reactions throughout the human body, influenced by 
dietary intakes, medications and other environmental exposures, is referred to as the metabolome. Profiling 
of the metabolome represents a potentially powerful tool to monitor homeostatic processes and disease states 
that may serve to guide diagnosis and therapy (precision medicine) for many diseases1. Given the infeasibility 
of obtaining samples from most human tissues, plasma is often used as a singular representation of the overall 
metabolic state of human tissues. Recent studies have described plasma metabolomic profiles associated with 
cardiovascular disease, cancer and metabolic disease2,3. However, limited information is available on the distri-
butional properties of the plasma metabolome in the general population. In addition, several key analytical issues 
have been described for metabolomic data, including temporal variability, substantial metabolite collinearity, and 
association with many clinical factors that may confound associations, but the extent of these issues in plasma 
samples across multiple population-based studies have not been well described4.
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Mass spectrometry is the gold standard method for comprehensive analysis of the metabolome, with high 
sensitivity, specificity and capacity for unbiased and high-throughput discovery and quantitative assessment of 
the components of the metabolome5. Several mass spectrometric platforms are available commercially, which 
differ in metabolite coverage due to differences in instrument setup, sample preprocessing, and reference library 
used for metabolite identification. Previous work from the Consortium of Metabolomics Studies (COMETS), 
seeking to combine metabolomic data from multiple cohorts, described the challenges of combining cohorts 
generated on different platforms6.

Here, we therefore describe the profiling of 5 population-based cohorts totaling 11,309 subjects using an 
untargeted mass spectrometry platform with high metabolite coverage6. Cohorts display differences in demo-
graphic characteristics, sample collection timepoint, and storage time. We explore the detected plasma metabo-
lome components across these cohorts after an overnight fast, their distribution across cohorts, as well as the 
main analytical issues that have been described for metabolomic data. Our findings may inform the conduct 
of studies comparing plasma metabolomic profiles across different conditions and in the combined analysis of 
multiple cohorts.

Results
The human fasting plasma metabolome across cohorts
The distribution of demographic and clinical factors in the five cohorts is shown in Table 1. All cohorts included 
equal proportions of men and women, and mainly included middle-aged subjects with age range 50–80 years, 
while two cohorts were age-specific: PIVUS in which all participants were 80 years old and POEM in which all 
were 50 years old.

In total, we detected 1629 unique metabolites in at least one cohort (Supplementary Table 1), of which most 
(1074, 66%) were detected in all five cohorts (Fig. 1), while 165 (10%) were unique to only one cohort. Of the 
1074 metabolites detected in all five cohorts, 867 (81%) were found in > 50% in all cohorts. The largest metabolite 
classes consistently detected in all cohorts were lipids (464 metabolites) and amino acids (234 metabolites), while 
substantial proportions of metabolites were only classified as xenobiotics (357, 22%) or were uncharacterized 
(306, 19%).

The proportion of metabolites with missing data across different classes is shown for each cohort in Fig. 2. 
The percent missingness trend was similar across all cohorts, and was generally low except (< 10%) for unchar-
acterized and xenobiotic metabolite classes. Of the 10% of metabolites only observed in one cohort most (54%) 
were xenobiotics or uncharacterized (Supplementary Table 1). Similarly, of metabolites with > 80% missingness 
in any cohort, 76% were xenobiotics or uncharacterized. A smaller set of metabolites consistently ranked as 
having the higest spectral count (here used as surrogate for metabolite concentration) across all cohorts (Fig. 2), 
including the major dietary fatty acids (oleate, palmitate), several particularly important amino acids (glutamine, 
its derivative proline, branched-chain amino acids leucine and isoleucine), and creatinine all of which were 
present at more than 500-fold higher mass spectral count than the average metabolite and 20 000-fold higher 
than the metabolites with the lowest count. The carbohydrates glucose and lactate were also consistently amongst 
metabolites with the highest count, although with lower count in the MDCS for which samples have a 20 years 
longer storage time than the other cohorts and glucose is well known to decrease with storage time (Fig. 3)7.

We next explored metabolite distributions across cohorts and observed widespread skewness of metabolites 
in all cohorts (Fig. 4), with a skewness measure > 2 (positive skewness) observed in 37% (SCAPIS-U) to 54% 
(MDCS) of the detected metabolites. No metabolites displayed evidence of negative skewness. Log-transfor-
mation largely removed the positive skewness, with a measure > 2 remaining in between 6% (POEM) to 12% 
(SCAPIS-M). Skewness was similarly high across different metabolite classes (Supplementary Table 1).

Table 1.   Baseline characteristics of cohorts. Characteristics of participants in each of the five study cohorts: 
the Malmö Diet and Cancer Study (MDCS), the Prospective Investigation of the Vasculature in Uppsala 
Seniors (PIVUS), the Prospective investigation of Obesity, Energy and Metabolism (POEM), and the Swedish 
Cardiopulmonary Imaging Study cohorts from Malmö and Uppsala (SCAPIS-M and SCAPIS-U). Continuous 
variables are presented as mean and standard deviation, and categorical variables as count and percentage. 
BMI, body mass index. CRP, C-reactive protein. eGFR, estimated glomerular filtration rate.

MDCS PIVUS POEM SCAPIS-M SCAPIS-U

Site of collection Malmö, Sweden Uppsala, Sweden Uppsala, Sweden Malmö, Sweden Uppsala, Sweden

Years 1991–1996 2011–2014 2010–2016 2014–2018 2015–2018

Number (n) 1,083 605 502 4,133 4,986

Age (mean ± SD) 58.19 ± 5.99 80 50 57.49 ± 4.29 57.63 ± 4.39

Female sex (n, %) 529 (52) 299 (49) 249 (50) 3322(53) 2,585 (51)

BMI (mean ± SD) 26.01 ± 4.08 26.91 ± 4.52 26.47 ± 4.29 27.31 ± 4.66 27.04 ± 4.38

Current smoking n (%) 30 (2) 18 (3) 49 (10) 1,087 (17) 471 (9)

eGFR (mean ± SD) 76.17 ± 13.57 62.36 ± 14.61 96.32 ± 10.95 84.86 ± 12.32 87.27 ± 11.45

CRP (mean ± SD) 5.7 ± 3.6 3.15 ± 6.89 1.97 ± 2.86 2.41 ± 4.38 2.18 ± 4.29

Hemoglobin (mean ± SD) 142.26 ± 17.38 136.35 ± 11.29 137.55 ± 11.60 142.67 ± 12.17 141.76 ± 11.75
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Figure 1.   Number of plasma metabolites detected in each cohort. The proportion of metabolites commonly 
detected in all cohorts, in multiple cohorts, or that were unique to one cohort are indicated by coloring.

Figure 2.   Distribution of metabolite missingness across cohorts. Proportion of metabolites detected in different 
proportions of each cohort, where 0% missingness indicates detection in all cohort participants.
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Principal component analysis was performed on a core set of 867 metabolites which were commonly present 
in all five cohorts with less than 50% missingness. (Fig. 5) No evidence of systematic differences in metabolite 
profiles between cohorts was observed, and principal components explained only a small proportion of variability 
in the metabolome (≤ 6.1%). Interestingly, principal component 1 (6.1%) associated with many metabolites but 
most strongly with DMTPA (r2 = 0.79) and urate (r2 = 0.71) (Supplementary Table 2), both of which are known 
to relate strongly to renal function.

Metabolite variability over one year
A second sample was obtained from the same subjects after 1 year in SCAPIS-M, in 147 randomly selected sub-
jects to explore variability over time. Variability over time was in the same range as that observed for common 
routine clinical assays in SCAPIS-M for hemoglobin (0.03), creatinine (0.08) and CRP (0.42), with a median 

Figure 3.   High signal abundance metabolites. The 27 metabolites with mass spectral count > 1 billion units in at 
least one cohort, with median count from each cohort presented, ordered by median count across all cohorts.

Figure 4.   Presence of skewed distribution in plasma metabolites before and after log-transformation. 
Proportion of metabolites with different levels of positive and negative skewness in each cohort, where 0 
indicates absences of skewness.
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coefficient of variation ranging from 0.20 in nucleotides, 0.23 in peptides, 0.25 in amino acids, 0.29 in co-factors 
and vitamins, 0.29 in lipids, 0.31 in carbohydrates, but higher for xenobiotics (0.53) (Fig. 6). Temporal variation 
for each metabolite is presented along with between-subject variability at baseline in Supplementary Table 1. 
Importantly, between-subject variability was larger than within-subject variability for 99% of metabolites (median 
94% higher).

Figure 5.   Principal components of the plasma metabolome across cohorts. The first two components from 
principal component analysis incorporating metabolites with < 50% missingness from all cohorts, and the 
proportion of variance explained by each of the 20 first components.
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Pairwise metabolite‑metabolite correlations
We next examined the patterns of correlation between pairs of metabolites within each of the five cohorts, based 
on the 867 metabolites present in > 50% of participants from each cohort. As expected, significant metabolite cor-
relations were pervasive and the number of high-level correlations was proportional to the size of the biochemical 
class, such that the classes with most metabolites detected (lipids, amino acids, xenobiotics) displayed the largest 
numbers of correlations. Importantly, most (99%) highly correlated metabolite pairs (r > 0.5) (Supplementary 
Table 3) were restricted to metabolite pairs within the same biochemical class, with a particularly high number 
of correlations within the large lipid group (93% of all high correlations), which was consistent across all cohorts. 
Figure 7 displays the 2213 metabolites with consistently high correlation (r > 0.5) across all cohorts, from a total 
of up to 575,128 possible correlations.

Association of metabolites with clinical factors
We next explored the association with central clinical factors for the 867 metabolites present in > 50% of partici-
pants from all cohorts. We observed pervasive association of metabolites with clinical factors at a Bonferroni-
adjusted significance threshold of 8 × 10−6, with nearly half of all metabolites associated with BMI, sex and renal 
function, but also with 10–20% of metabolites for age, smoking, CRP, and hemoglobin (Fig. 8). As expected, the 
proportion of significant associations was highest in the two largest cohorts, SCAPIS-M and SCAPIS-U. Most 
significant associations were detected in at least these two cohorts (Fig. 8), and effect estimates were typically 
concordant across all cohorts as shown for the strongest associations with each trait in SCAPIS-M in Fig. 9 and 
for all metabolites in each cohort in Supplementary table 4. For smoking, the strongest association was observed 
the phenylsulfate o-cresol sulfate, which together with cotinine metabolites (which were also strongly associated 
with smoking) has been consistently associated with smoking also in previous studies8.

For age and renal function, the strongest association was with creatinine, a metabolite of muscle creatine 
which is routinely used in the clinic to estimate renal function and well known to correlate closely with age-
related declines in muscle mass9. For hemoglobin, these strongest association was with ethylenediaminetet-
raacetic acid (EDTA), an exogenous synthetic compound used in blood tubes to prevent coagulation. The finding 
that hemoglobin concentration, reflecting less tube coagulation, relates to EDTA levels is thus to be expected. 
The strongest association for BMI, (hydroxyasparagine, a derivative of the amino acid asparagine) has also been 
reported previously10.

Discussion
Our analysis of untargeted fasting plasma metabolomes of > 11,000 human subjects from five population-based 
cohort studies found striking similarities across endogenous metabolomes. The metabolites present in plasma at 
highest quantity were consistently found to be the major dietary fatty acids followed by particularly important 
amino acids. This is not surprising, considering estimations that in addition to water, which makes up almost 
two thirds of the human lean body mass, most of the remaining mass represents lipids and amino acids (each 
15%) for which large depots are present in the human body11. Depots for carbohydrates (glycogen) and trace 
substances are substantially smaller, only about 5%. The fatty acids consistently detected with the highest signal 
in fasting plasma, oleate and palmitate, are known to be the most widely distributed fatty acids in nature and in 
human foods12. Stearate and linoleate were also consistently amongst the metabolites with highest signal. The 
most strongly detected amino acids were glutamine, an important energy source derived from main dietary 
amino acid glutamate in skeletal muscle13, its derivative proline—the major component of collagen14, and the 

Figure 6.   Plasma metabolite variability over one year. Distribution of coefficients of variation for individual 
metabolites, with variation over time (based on individual mass spectral counts) in proportion to the average, 
where 0 indicates that a metabolite does not vary over time while 1 indicates that variability over time is as 
large as the mean mass spectral count. For comparison, the coefficients were 0.03 for hemoglobin (ref), 0.08 for 
creatinine (green), and 0.42 for C-reactive protein (orange).
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essential dietary branched-chain amino acids leucine and isoleucine which are important for muscle metabolism. 
The energy carriers glucose and lactate and phosphocreatine synthesis byproduct creatinine were also present 
with robust signal as expected.

Our findings have several implications for the analysis of population-based metabolomics data. A key issue 
in the analysis of metabolomic data is the level of metabolite missingness15,16. Such missingness may have dif-
ferent biological interpretations based on whether the metabolite of interest is not present (as in the case of 
drugs and exposure to toxic metals) or simply below the threshold of detection (as in the case of intracellular 
metabolites which only circulate at low levels). In the former case, minimum value interpretation, as often used 
in metabolomics studies, is not valid while in the second case minimum value interpretation would be expected 
to contribute to improve statistical power. In addition to these two situations of non-random missingness, miss-
ingness in a smaller subset of samples may be due to random data processing errors or systematic non-random 
errors such as inaccurate peak detection. Such errors are hard to recognize in the analytical stage. However, our 
findings suggest that marked missingness in the fasting plasma metabolome is largely restricted to xenobiotic 
metabolites, likely representing absence of these compounds in most subjects, which should therefore be treated 
separately in many analyses. Indeed, it is widely accepted that 20% missingness or more should be handled 

Figure 7.   Pairwise metabolite-metabolite correlations. Proportion of high-level correlations for metabolites in 
each biochemical class based on class of the corresponding highly correlated (r > 0.5) metabolites.
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separately, referred to as the “80% rule”17. A second issue is the distribution of values of metabolites, which 
impacts parametric assumptions and model specification. Our findings show that although most metabolites 
consistently display a positively skewed distribution across cohorts, a simple logarithmic transformation results 
in marked attenuation of such skewness resulting in approximate satisfaction of normality assumptions. The lack 
of metabolites with negatively skewed distribution may reflect limitations in assay sensitivity for detection of low 
values combined with the use of minimum value imputation in subjects with missing values. A third issue is the 

Figure 8.   Association of plasma metabolites with clinical factors. Number of plasma metabolites associated 
with each of seven important clinical factors in each cohort, at a significance threshold Bonferroni-corrected for 
the total number of statistical tests (p < 8 × 10−6). Colors indicate whether associations were significant across all 
cohorts (blue), in multiple cohorts (green) or unique to one cohort (red). As expected, the number of significant 
associations scales with cohort size.
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presence of abundant correlation between metabolites, potentially resulting in multicollinearity or confound-
ing. Our findings suggest that although widespread, high-level metabolite-metabolite correlations in the fasting 
plasma metabolome are mainly restricted to within chemical classes and pathways. A fourth issue is variability 
over time. We observed similar variability of metabolites to routinely used clinical chemistry analytes within the 
same individual over one year, in the fasting state, which however was more marked for xenobiotic metabolites 
again suggestive that these need to be treated separately. Furthermore, within-subject variability over one year 
was markedly lower than between-subject variability.

Finally, of larger concern, we also observed extensive associations of metabolites with clinical factors, poten-
tially resulting in confounded, false positive associations through omitted variable bias if not controlled for. 
As expected, with increased sample size the number of significant associations increased, with up to 400–500 
metabolites associating with BMI, renal function and sex.

Limitations to the current study include the use of only cohorts representing the Swedish population, with 
a predominance of middle-aged, mainly healthy participants. Nevertheless, our study represents the largest 
reported analysis of the plasma untargeted metabolome generated to our knowledge and the cohorts displayed 
differences in demographic characteristics, sample collection timepoint, fasting state, and storage time. Although 
we did not explore the impact of fasting times, it seems likely that non-standardized fasting states would pro-
vide markedly increased variation in metabolite levels. The majority of human plasma metabolomics studies 
have used fasting plasma and in-depth studies are needed to clarify how fasting versus fed status, fasting time, 
dietary patterns, and circadian cycles impact the plasma metabolome18. We also advise caution in imputation 
and analysis of certain xenobiotics/drugs such as Carbamazepine, Gabapentin, and Levetiracetam that ionize 
very well and therefore give robust signals in compliant study subjects. Minimum value imputation of signal may 
yield a skewed view of relative abundance since even non-takers are assigned the lowest level seen in someone 
who is taking the medication.

Conclusion
The current study provides information on the components of the human plasma metabolome across cohorts 
and analytical considerations which may serve to guide interpretation of metabolite association studies.

Figure 9.   Top associations with clinical parameters across cohorts. Results from each cohort for metabolites 
for each clinical parameter that displayed the strongest associations in the large SCAPIS-M cohort, adjusted for 
age and sex. Effect estimates were beta estimates per log-standard deviation of each metabolite from regression 
models.
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Material and methods
Population‑based cohorts
Plasma samples obtained from 11,309 unique participants of five population-based cohort studies underwent 
mass spectrometry-based metabolomic analysis at a core laboratory (Metabolon Inc., Morrisville, NC, USA). 
In addition, 147 subjects from one cohort (the Malmö cohort of the Swedish Cardiopulmonary Imaging Study 
[SCAPIS-M]) underwent analysis of a second sample obtained from the same subjects one year after the base-
line visit to allow analysis of temporal variability. In all cohorts, plasma was obtained by centrifugation of blood 
immediately after sampling into EDTA tubes from a peripheral antebrachial vein in all cohorts and remained 
frozen to -80° C until analysis without previous thawing. Analysis of all cohorts was approved by the Swedish 
Ethics Review Authority and all participants provided written informed consent.

MDCS
The Malmö Diet and Cancer Study (MDCS) is a population-based cohort study which includes 30,447 men 
(born between 1923 and 1945) and women (born between 1923 and 1950) from the city of Malmö in southern 
Sweden with the aim to study risk factors for cancer and cardiovascular disease19. Participants underwent baseline 
examinations between 1991 and 1996, during which anthropometric measures were obtained and a question-
naire was filled out20. From this cohort 6,103 individuals with a baseline examination between 1991 and 1994 
were randomly selected to participate in a study of cardiovascular risk factors, the MDCS Cardiovascular Cohort 
(MDC-CC), of whom 5543 underwent blood sampling under standardized overnight fasting conditions21. Clini-
cal routine assays were used to measure C-reactive protein (CRP, high-sensitive assay from Roche Diagnostics, 
Basel, Switzerland), hemoglobin content (the cyanmethemoglobin method), and renal function (creatinine with 
the Jaffé method). Data on current smoking was ascertained as self-reported from the study questionnaire. For 
the current study, a random subset of samples from the MDC-CC were selected and evaluated for representa-
tivity using the gmatch macro in SAS (SAS Institute, Cary, NC, USA)for metabolomic profiling as described 
previously (n = 1083)22.

PIVUS
The Prospective Study of the Vasculature in Uppsala Seniors (PIVUS) study was initiated in 2001 with the pri-
mary aim to investigate the predictive potential of different measurements of endothelial function and arterial 
compliance in a random sample of 1000 men and women aged 70 living in the community of Uppsala23. The 
inclusion of subjects in the study was completed in June 2004. In the spring of 2011 the 80-year reinvestigation 
of the cohort was started. This round was completed by the summer of 2014 and 605 subjects from the origi-
nal cohort attended, which were included in the present study. For all participants, anthropometric measures, 
overnight fasting plasma samples and questionnaire information on smoking was obtained. Plasma creatinine, 
hemoglobin and CRP were measured using routine clinical chemistry multianalyzers.

POEM
The population-based Prospective investigation of Obesity, Energy and Metabolism (POEM) study was con-
ducted in inhabitants of Uppsala, Sweden, aged 50 years. Between October 2010 and October 2016, 502 indi-
viduals were investigated (50% women). The primary aim was to explore the links between obesity and a wide 
range of measures of subclinical cardiovascular disease, including whole-body magnetic resonance imaging24. 
For all participants, anthropometric measures, overnight fasting plasma samples and questionnaire informa-
tion on smoking was obtained. Plasma creatinine, hemoglobin and CRP were measured using routine clinical 
chemistry multianalyzers.

SCAPIS‑M and SCAPIS‑U
The Swedish Cardiopulmonary Imaging Study (SCAPIS) is a national Swedish population-based cohort study 
which includes 30,154 randomly selected men and women aged 50–6425. The SCAPIS baseline examination was 
conducted between 2013 and 2018 in six of the largest Swedish cities: Gothenburg, Linköping, Malmö, Stock-
holm, Umeå and Uppsala. The aims of the SCAPIS study have been described previously26 and were to survey 
contemporary risk factors for cardiovascular and pulmonary disease. Metabolite profiling was undertaken in 
4,133 random participants of the Malmö cohort (SCAPIS-M) and 4,986 participants from the Uppsala cohort 
(SCAPIS-U). Participants underwent assessment of anthropometric measures, filled out a comprehensive ques-
tionnaire, and underwent extensive physical examinations including cardiothoracic and abdominal computed 
tomography angiography. For all participants, anthropometric measures, overnight fasting plasma samples and 
questionnaire information on smoking was obtained. Plasma creatinine, hemoglobin and CRP were measured 
using routine clinical chemistry multianalyzers (Roche Cobas and SYSMEX XN-10).

Metabolite profiling
Plasma samples from all cohorts underwent untargeted metabolomic analysis at a core laboratory using a well-
validated mass spectrometry platform (Discovery HD4 platform, Metabolon Inc., Morrisville, NC, USA) between 
August 2019 and January 202127,28. The platform combines four complementary sample preprocessing protocols 
and a comprehensive reference library, resulting in quantitative estimates of metabolite abundance (mass spectral 
counts) for metabolites covering a broad spectrum of chemical classes, including amino acids, carbohydrates, 
lipids, nucleotides, peptides and vitamins, but also xenobiotic substances such as pharmaceutical and food pre-
servative compounds. A detailed description of the analytical protocol, metabolite identification, and normaliza-
tion procedures is included in the Supplementary Methods. Samples were randomized across the platform run 
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with quality control samples spaced evenly among the injections. Metabolite abundance was estimated from the 
area under the curve for annotated peaks in the mass spectrogram (mass spectral counts) and was normalized 
for batch and run day in each cohort. All analyses were conducted in individual cohorts and not integrated.

Statistical analysis
First, we compared the metabolites detected across individual cohorts. Detected metabolites and their miss-
ingness were plotted across ten chemical classes: the six main classes were amino acids, carbohydrates, lipids, 
nucleotides, peptides, and cofactors/vitamins. Biochemicals derived intracellularly as intermediates in the citric 
acid cycle and oxidative phosphorylation (referred to here as ‘Energy’ metabolites). Xenobiotic chemicals as well 
as partially characterized or uncharacterized molecules were plotted as separate classes. Metabolites were ranked 
by median count in each cohort according to raw area under the curve counts, and the distribution was further 
examined based on quartiles across cohorts. The extent of skewness, as indicator of the validity of parametric 
assumptions, and effect of natural logarithm transformation was explored across metabolites in each cohort. 
Principal component analysis was performed across all cohorts, with a covariance matrix based on a core set 
of metabolites commonly present in cohorts with < 50% missingness to explore systematic differences between 
cohorts in overall metabolite variation. The plasma metabolome variance explained by individual principal 
components was derived from eigenvalues and visualized by a scree plot.

Second, we examined metabolite variability over time based on the coefficient of variation between the two 
sampling timepoints for each metabolite and chemical class. Coefficients were compared to the corresponding 
numbers for routine clinical assays, including hemoglobin, creatinine, and CRP in the SCAPIS-M cohort.

Finally, we explored the pairwise association between metabolites and of metabolites with clinical factors. The 
potential for collinearity was explored based on pairwise metabolite correlations in each cohort. Mass spectral 
metabolite counts were natural logarithm transformed and then centered to the mean and scaled to the standard 
deviation for ease of comparison in these analyses. The impact of major demographic and clinical characteristics 
were explored in general linear models, including age, sex, body mass index (BMI), renal function as estimated 
glomerular filtration rate (eGFR), inflammation as C-reactive protein (CRP), hemoglobin content (Hb) and 
current smoking. Significance thresholds were Bonferroni-adjusted for the number of tests in each analysis. 
For metabolite-metabolite correlations and association analyses with demographic factors, we used minimum 
value imputation to improve statistical power and restricted analyses to the 867 metabolites present in > 50% of 
participants from each cohort. All data management and analysis was conducted using R Studio Version 1.4.1106.

Ethical approval
This study was performed in line with the principles of the Declaration of Helsinki. The study and work within 
each of the contributing cohorts was approved by the Swedish Ethical Review Authority. All participants provided 
written informed consent.
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