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Practical application of quantum 
neural network to materials 
informatics
Hirotoshi Hirai 

Quantum neural network (QNN) models have received increasing attention owing to their strong 
expressibility and resistance to overfitting. It is particularly useful when the size of the training 
data is small, making it a good fit for materials informatics (MI) problems. However, there are only 
a few examples of the application of QNN to multivariate regression models, and little is known 
about how these models are constructed. This study aims to construct a QNN model to predict the 
melting points of metal oxides as an example of a multivariate regression task for the MI problem. 
Different architectures (encoding methods and entangler arrangements) are explored to create an 
effective QNN model. Shallow-depth ansatzs could achieve sufficient expressibility using sufficiently 
entangled circuits. The “linear” entangler was adequate for providing the necessary entanglement. 
The expressibility of the QNN model could be further improved by increasing the circuit width. The 
generalization performance could also be improved, outperforming the classical NN model. No 
overfitting was observed in the QNN models with a well-designed encoder. These findings suggest 
that QNN can be a useful tool for MI.

The application of machine learning (ML) to the development of materials is becoming increasingly important1,2. 
Materials informatics (MI) is a field of information science used to develop materials3–5. It involves constructing a 
predictive model of physical properties from a limited amount of data obtained from experiments or simulations 
and then screening materials with the desired performance from a large group of materials. The challenge with MI 
is that the data are often limited and prone to noise owing to errors in the experimental data, making it difficult to 
construct a model with a good generalization performance (prediction performance for unknown materials)1,6.

Recently, a quantum neural network (QNN)7, also referred to as quantum circuit learning8, has been devel-
oped as an ML algorithm for quantum computers9. It is a quantum-classical hybrid algorithm based on the vari-
ational quantum algorithm10, which has been developed to work with noisy intermediate-scale quantum (NISQ) 
devices11. A QNN model is built by minimizing the discrepancy between the output of the quantum circuit and 
labeled data by adjusting the circuit parameters to their optimal values. The advantage of QNN is that it can use 
high-dimensional quantum states as trial functions that are hard to generate on a classical computer8. Another 
advantage of a QNN is that the unitarity of quantum circuits serves as regularization to prevent overfitting8. In 
a classical neural network (NN) model, a regularization term is incorporated into the cost function to constrain 
the norm of the learning parameters and to reduce the model’s expressibility to prevent overfitting12. In contrast, 
the norm of parameters is automatically limited to one due to unitarity in a QNN model, i.e., the regularization 
function is inherently provided. QNNs have also been reported to afford predictive models with excellent gen-
eralization performance even when only a small amount of training data is available13. It has also been reported 
that the smaller the data size of the problem, the greater the advantage of the generalization performance of 
QNNs over classical NNs14.

These characteristics of QNNs may be particularly useful in MI. The atomic configuration can be used to 
predict the properties of materials because the Hamiltonian can be determined from the atomic configuration 
and the Schrödinger equation can be solved (in principle) using the Hamiltonian to obtain the properties of the 
material. ML models can be used instead of solving the Schrödinger equation because solving the many-body 
Schrödinger equation is extremely difficult15. Such concepts have been considered in the MI16 and QSAR (Quan-
titative Structure-Affinity Relationship)17 fields. The construction of an ML model that bypasses the Schrödinger 
equation is expected to be naturally aided by a QNN model with quantum architectures.

In this study, we attempted to construct a successful QNN model to predict the melting points of metal 
oxides. Calculating thermodynamic properties such as melting points is difficult with first-principles calculations 
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because of the high computational cost and lack of accuracy18,19. Therefore, it is important to develop a practical 
melting point prediction model to identify functional materials20–22. However, because QNNs are an emerging 
field, there is still a lack of understanding of how to construct effective QNN models. We considered various 
architectures (ansatz and encoding methods) to create an effective QNN model for the practical task of predict-
ing melting points.

Methods
Data set
This study addresses the issue of predicting the melting points of metal oxides. The melting point data for metal 
oxides listed in23 were expanded to 70 metal oxides by adding data from other references24–26. Each material was 
identified in the Materials Project database27, and the following five explanatory variables were obtained (some 
variables were calculated from structural data in the database in27).

•	 formation_energy_per_atom: Formation energy per atom
•	 band_gap: Band gap energy
•	 density: Mass density
•	 cati_anio_ratio: Ratio of the number of cations and anions
•	 dist_from_o: Minimum distance from the oxygen atom to cation

The constructed dataset is available in the Supplementary Information. These explanatory variables were normal-
ized to have a mean of 0 and a variance of 1 for the training data and further scaled to have a maximum value 
of 1 and a minimum value of -1. The objective variable (melting point temperature in °C) was divided by 3500 
and scaled such that the maximum value was approximately 1 (the highest melting point of metal oxides treated 
in this study was 3390 °C).

The k-fold cross-validation method28 was used to evaluate the accuracy of the constructed regression models. 
In this study, the 70 dataset entries were divided into five groups; one group was used as the test data, while the 
other groups were used as the training data. This procedure was performed for all five combinations, and the 
average accuracy of the five models was used as the final accuracy. The root mean square error (RMSE) was 
used as a measure of accuracy. It should be noted that if you want to build a model with uniform predictive 
performance over any temperature range, it is better to use a metric such as relative error. However, in some 
cases, you may want to reduce the absolute error of the model, such as when searching for materials with high 
thermal durability. In this study, assuming such a case, we used RMSE as an indicator.

QNN models
The QNN model is composed of three components: an encoder that transforms explanatory variables into a 
quantum state, an ansatz which is a quantum circuit with learning parameters, and a decoder that converts the 
quantum state into an output value. Each component is described in detail in the following sections. In this study, 
QNN models were implemented using Pytket29, a Python module for quantum computing, and quantum circuit 
calculations were performed using state vector calculations with the Qulacs30 backend, a quantum computing 
emulator. The mean squared error (MSE) between the labeled data and model predictions was used as a cost 
function. The Powell method31 was used to optimize the learning parameters.

Encoder
In this study, Ry rotation gates32 were used as encoders. We used two different methods to transform each scaled 
explanatory variable x into the rotation angle θ : θ = πx and θ = arctan(x)+ π/2 . The arctangent allows the 
scaled explanatory variable to be uniquely converted to a rotation angle even if the value is outside the scale 
range (-1,1) when the scaler is used for the test data. We constructed a 5-qubit QNN model with each explana-
tory variable encoded in one qubit and a 10-qubit QNN model with each explanatory variable encoded in two 
qubits, as shown in Fig. 1a,b, respectively.

In the 10-qubit model, two different encoding methods were tested: one with redundant imputation of the 
explanatory variable x and the other with imputation as x and x2 , as indicated by the parentheses in Fig. 1b.

Ansatz
In this study, as the ansatz part of the QNN, we examined ansatzs with the quantum circuits shown in Fig. 2 as 
the depth 1-block.

In these ansatzs, an entangler (a group of 2-qubit operations) was placed after the Ry rotation gate. Although 
Fig. 2 shows CNOT (CX) gates as 2-qubit gates, and we also examine the case using controlled-Z (CZ) gates. 
circular2 (c) and circular4 (d) contain 2-qubit operations up to the second and fourth nearest-neighbor qubits, 
respectively. Each Ry gate has an independent learning parameter θ . Because there are five (10) Ry gates in the 
depth 1-block of the 5-qubit (10-qubit) model, the number of parameters for the QNN model with depth d is 5d 
(10d). In this study, d values of 1 to 7 were considered.

Decoder
The QNN decoder takes the expectation value of an observable quantum state generated by the encoder-ansatz 
quantum circuit as the output of the regression model. For the 5-qubit QNN models, the expectation value of σ 4

z  
(the Z-axis projection of the lower-end qubit) was used as the decoder (note that the number on the label begins 
with zero). For the 10-qubit QNN models, the expected value of σ 4

z + σ 9
z  was used.
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Circuit analysis
The higher the expressibility of the ansatz, the better the regression accuracy. Therefore, the quantitative evalua-
tion of the expressibility of an ansatz plays an important role in the construction of a QNN model. In this study, 
Kullback-Leibler (KL) divergence33 and entanglement entropy34 were used as ansatz evaluation tools. In the KL 
divergence metric, the KL divergence between the fidelity distribution of quantum states obtained from an ansatz 
with random parameters and the fidelity distribution for Haar measures is used to quantify expressibility33,

To obtain the fidelity distribution PCansatz
(F) , we sampled a random set of parameters 100,000 times. An analytical 

solution for PHaar(F) is known, and PHaar(F) = (N − 1)(1− F)N−2 (N is the dimension of the Hilbert space, 
and for an n-qubit system N = 2n)33. In the entanglement entropy, we use the following equation as the index 
to quantify the entanglement strength of the ansatz,

Here, n is the number of qubits, and S(ρi(Cansatz)) = −Tr[ρi log ρi] is the entanglement entropy calculated 
using the ith qubit as a subsystem (the entanglement entropy between the ith qubit and other qubits). The above 
equation means the average of the entanglement entropy of each qubit. 〈S(ρi(Cansatz))〉 is the statistical average 

(1)KL(PCansatz
(F)||PHaar(F)) =

∫ 1

0
PCansatz

(F) log(PCansatz
(F)/PHaar(F))dF.

(2)
n∑
i

〈S(ρi(Cansatz))〉/n.

Figure 1.   The Ry encoders used in this study: (a) 5-qubit model and (b) 10-qubit model. The Ry gate acts on 
each qubit initialized to |0� . The scaled explanatory variables xi (or x2

i
 ) are converted to the rotation angles θi 

according to θ = arctan(x)+ π/2 or θ = πx.

Figure 2.   The depth 1-block of each ansatz used in this study. These circuits consist of Ry rotating gates and 
entanglers (groups of 2-qubit operations).
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of the entanglement entropy of the ith qubit for a set of random ansatz parameters (we sampled 100,000 sets of 
parameters).

Classical NN models
A conventional neural network (NN) model was constructed for comparison. To vary the number of learning 
parameters in the NN regression model, models 5-5-1(36), 5-3-1(22), 5-2-1(15), 5-1(6) were prepared, where 
the numbers indicate the number of neurons in the fully connected layers, “-” indicates “between layers”, and the 
numbers in parentheses represent the number of training parameters (weight and bias parameters). A sigmoid 
function was used as the activation function. PyTorch35 is used to construct and train the NN model. The Adam 
optimizer36, an extended version of the stochastic gradient descent, was used with a learning rate of 0.02 over 
10,000 epochs. L2 regularization was applied to prevent overfitting. The weight parameter for L2 regularization 
(a hyperparameter set by the user) was used to minimize the RMSE for the test data (average of five groups). 
We tested the parameters of 10−n with n = 2, 3, 4, and 5, and found that n = 4 gave the best performance for all 
models.

Results and discussions
Encoder
First, we present the results of the analysis of the effects of different methods on transforming the explanatory 
variable x into the rotation angle θ during Ry(θ ) encoding. The RMSE of the QNN models with Ry(πx ) and 
Ry(arctan(x)+π/2) are shown in Fig. 3.

Here, the number of qubits was fixed at five, and the entangler was fixed in a linear arrangement (Fig. 2a). The 
number of parameters in the model increased with the depth of the ansatz. For comparison, Fig. 3 also shows 
the results for the classical NNs with and without regularization as “NN reg.” and “NN”, respectively. It can be 
confirmed that NN models without regularization induce overfitting. That is, the RMSE of the test data increases 
as the number of parameters increases. When Ry(πx ) was used as the encoder, QNN models with a small number 
of parameters (shallow ansatzs) exhibited significantly poorer regression performance. The reasons for this are 
as follows. Here, the explanatory variable x(-1,1) is converted into a rotation angle θ(-π,π ), which results in a 
round trip around the Bloch sphere, and the Z-axis projection after encoding is not unique. In extreme cases, 
x = −1 and x = 1 are encoded in the same quantum state. As the number of parameters increases (the ansatz 
is deepened), the RMSE becomes smaller for the training data. This is thought to be because the data are fully 
trained by brute force with a large number of parameters. However, for the test data, overfitting was observed 
for the models with deep ansatzs. However, in the QNN model using Ry(arctan(x)+π/2) as the encoder, the 
RMSE was small, even for a model with a small number of parameters (shallow ansatzs). It can also be confirmed 
that overfitting does not occur even in models with a large number of parameters (deep ansatzs). In this case, 
the RMSE values for the test and training data showed approximately the same dependence on the number of 
parameters as the classical NN with regularization, confirming that the automatic regularization function of the 
QNN was effective. In the following discussion, Ry(arctan(x)+π/2) was used as the encoder.

Ansatz
Next, we analyzed the impact of ansatz differences on the regression performance of the QNN. The differences 
between the CX and CZ gates is shown in Fig. 4, where the number of qubits is fixed to five and the entangler is 
fixed to the “linear” arrangement.

From the comparison of the ansatzs with the CX and CZ gates, the QNN models with CZ have lower express-
ibility. Because the observation axis is set to the Z axis ( σz is used for the decoder), the phase inversion by the 

Figure 3.   The RMSE for the QNN models with Ry(πx ) and Ry(arctan(x)+ π/2 ) encoders. The number of 
qubits is fixed to five and the entangler is fixed to the linear arrangement. The classical NN results with and 
without regularization are also shown.
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CZ gate does not directly change the projection of the Z axis (the Pauli gate based on the basis axis does not 
change the state, except for the phase). As a result, QNN models with CZ gates are considered to have lower 
expressibility, particularly when the number of parameters is small. In the following discussion, only CX gates 
were used as entanglers.

Figure 5 shows the impact of different entangler structures (Fig. 2) on QNN performance.
The QNN models with ansatz “linear”, “circular”, and “circular2” show similar performances, while the QNN 

model with ansatz “circular4” performs significantly worse for a small number of parameters (shallower depths). 
To investigate the factors contributing to these results, the KL divergences and entanglement entropies of these 
ansatzs were examined, as shown in Fig. 6a,b, respectively.

These figures also show the results for the “full” arrangement shown in Fig. 7a.
These results indicate a correlation between KL divergence and entanglement entropy, with a larger entan-

glement entropy indicating a smaller KL divergence. Therefore, an ansatz with larger entanglement has greater 
expressibility. It can be expected that the entanglement becomes stronger as the number of CXs increases, such 
as “linear”, “circular” and “circular2”, but it is noticeably weaker for the “full” and “circular4” entanglers. This 
can be understood based on the following facts: It is known that a “full” entangler has a reduced circuit and 
is equivalent to an inverse “linear” entangler37 (Fig. 7a). This implies that entanglement cannot be enhanced 
by blindly including a large number of CXs, provided that a simple equivalent circuit (reduced circuit) exists. 
However, it is difficult to determine whether a circuit has a reduced equivalent circuit. Therefore, we optimized 
each entangler using the circuit optimization function in tket29 and explored a reduced equivalent circuit. The 
results are summarized in Fig. 7. There is a significantly reduced equivalent circuit for “circular4”. In the reduced 
“circular4” entangler, each qubit has only a CX gate with the bottom qubit, so the entanglement is weak, as 
can also be seen from the entanglement entropy. In contrast, “circular2” is not significantly simplified, and the 
entanglement is not notably weak.

Figure 4.   The difference between the CX and CZ gates for QNN regression model performance. The number of 
qubits is fixed to five and the entangler is fixed to the linear arrangement.

Figure 5.   The impact of different entangler structures on QNN performance.
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Figure 6 show the KL divergence and the entanglement entropy for the “linear CZ” entangler, and indicate 
that the QNN model with this entangler has less expressibility. These results indicate that KL divergence and 
entanglement entropy may be able to screen out ansatz with poor expressibility.

In this study, there were no large differences in QNN performance among ansatzs with entanglement greater 
than the “linear” entangler, and therefore, the “linear” entangler was found to provide sufficient entanglement 
for the QNN model for this problem. This implies that a model with satisfactory performance can be constructed 
using only 2-qubit operations between neighboring qubits, suggesting that it may be feasible to operate the QNN 
model on superconducting quantum computers, which are widely used today, in the near future.

Circuit width
The effect of the number of qubits (circuit width) on the performance of the QNN model is illustrated in Fig. 8.

Here, the entangler is fixed to the “linear” arrangement. When comparing the RMSE for the training data, 
the model with twice the number of qubits (w2) had a smaller error than the original model, indicating that its 
expressibility was improved by increasing the basis dimension. The generalization performance (accuracy for 
the test data) was also improved by increasing the circuit width and outperformed the classical NN model. The 
generalization gaps (the differences between a model’s performance on training data and its performance on 
test data) were 195.231 °C for the classical NN model (5-5-1, 36 parameters) with regularization, and 143.755 
°C for 5-qubits QNN model with linear CX (depth = 7, 35 parameters), and 179.328 °C, 154.255 °C for 10-qubits 
QNN models (depth=3, 30 parameters) with explanatory variables (x-x) and (x-x2 ), respectively. Comparing 
the model with redundant inputs of the explanatory variable (x-x) and the model with redundant inputs (x-x2 ), 
the latter appears to perform slightly better. This is because it prevents basis duplication and efficiently handles 
a large number of basis functions.

Figure 6.   The KL divergence (a) and the entanglement entropy (b) for each ansatz.
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Conclusion
In this study, we constructed QNN models to predict the melting point of metal oxides by exploring various 
architectures (encoding methods and entangler arrangements). The explanatory variables should be uniquely 
converted into rotation angles to obtain good QNN models and avoid overfitting. It was also found that even 
shallow-depth ansatzs could achieve sufficient expressibility for the present task using sufficiently entangled 
circuits. It is insufficient to place a large number of CX gates without consideration; it is necessary to set up an 
entangler that produces entangles in real terms. In this case, KL divergence and entanglement entropy proved 
to be good indicators. The “linear” entangler was adequate for providing the necessary entanglement for the 
QNN model for this particular problem. This result indicates that a model with satisfactory performance can 
be created using only 2-qubit operations between adjacent qubits. The expressibility of a QNN model can be 

Figure 7.   Each entangler and its equivalent reduced circuit.

Figure 8.   The effect of the number of qubits (circuit width) on the performance of the QNN model.
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improved by increasing the circuit width (number of qubits). This also improved the generalization performance, 
outperforming the classical NN model. Most importantly, no overfitting was observed in QNN models with 
well-designed encoders. A QNN can achieve high generalization performance without hyperparameter tuning 
and is considered an excellent tool for regression tasks.

Data availability
The data that support the findings of this study are available from the corresponding author, H. H., upon rea-
sonable request.
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