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A machine learning approach 
for predicting radiation‑induced 
hypothyroidism in patients 
with nasopharyngeal carcinoma 
undergoing tomotherapy
Ke‑Run Quan 1,4, Wen‑Rong Lin 2,4, Jia‑Biao Hong 2, Yu‑Hao Lin 2, Kai‑Qiang Chen 2, 
Ji‑Hong Chen 2* & Pin‑Jing Cheng 3*

The purpose of this study was to establish an integrated predictive model that combines clinical 
features, DVH, radiomics, and dosiomics features to predict RIHT in patients receiving tomotherapy 
for nasopharyngeal carcinoma. Data from 219 patients with nasopharyngeal carcinoma were 
randomly divided into a training cohort (n = 175) and a test cohort (n = 44) in an 8:2 ratio. RIHT is 
defined as serum thyroid‑stimulating hormone (TSH) greater than 5.6 μU/mL, with or without a 
decrease in free thyroxine (FT4). Clinical features, 27 DVH features, 107 radiomics features and 107 
dosiomics features were extracted for each case and included in the model construction. The least 
absolute shrinkage and selection operator (LASSO) regression method was used to select the most 
relevant features. The eXtreme Gradient Boosting (XGBoost) was then employed to train separate 
models using the selected features from clinical, DVH, radiomics and dosiomics data. Finally, a 
combined model incorporating all features was developed. The models were evaluated using receiver 
operating characteristic (ROC) curves and decision curve analysis. In the test cohort, the area under 
the receiver operating characteristic curve (AUC) for the clinical, DVH, radiomics, dosiomics and 
combined models were 0.798 (95% confidence interval [CI], 0.656–0.941), 0.673 (0.512–0.834), 0.714 
(0.555–0.873), 0.698 (0.530–0.848) and 0.842 (0.724–0.960), respectively. The combined model 
exhibited higher AUC values compared to other models. The decision curve analysis demonstrated 
that the combined model had superior clinical utility within the threshold probability range of 1% to 
79% when compared to the other models. This study has successfully developed a predictive model 
that combines multiple features. The performance of the combined model is superior to that of single‑
feature models, allowing for early prediction of RIHT in patients with nasopharyngeal carcinoma after 
tomotherapy.
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Nasopharyngeal carcinoma is a malignant tumor that develops in the epithelium of the nasopharyngeal mucosa. 
It is relatively common in southern China, and its prevalence is on the  rise1,2. Radiotherapy is widely regarded 
as a more effective treatment option for nasopharyngeal carcinoma. Specifically, intensity-modulated radiation 
therapy (IMRT) has emerged as the standard technique for radiation treatment in this  case3,4. The increased 
adoption of IMRT, coupled with the systematic implementation of concurrent chemoradiotherapy, has greatly 
enhanced the treatment outcomes for nasopharyngeal carcinoma. As a result, the 5-year overall survival rate 
now stands at approximately 80%5,6.
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The main adverse reactions in patients with nasopharyngeal carcinoma after radiotherapy and chemotherapy 
include dry mouth, hearing loss, skin atrophy, and thyroid dysfunction. The radiotherapy target area includes 
the nasopharynx and the lymphatic drainage area of the neck, where the thyroid gland is partially encompassed. 
Therefore, radiotherapy can easily affect thyroid hormone levels, leading to early concealed thyroid dysfunction 
that can impact patients’ quality of life and  prognosis7. Studies have reported an incidence rate of 22–29% for 
radiotherapy-related thyroid  dysfunction8,9. Thyroid dysfunction can manifest as fatigue, cold intolerance, dry 
skin, weight gain, constipation, or it can be asymptomatic, exerting varying degrees of impact on patients’ social 
function and quality of  life10. Minimizing the occurrence of radiation-induced thyroid dysfunction has become 
a crucial consideration in the treatment strategy for nasopharyngeal carcinoma patients and remains one of the 
hot topics that need to be addressed.

Numerous studies have investigated factors associated with radiation-induced hypothyroidism (RIHT) in 
patients with nasopharyngeal carcinoma and other head and neck tumors. Tumor stage, gender, age, and baseline 
hematological parameters have been identified as demographic factors for radiation-induced  hypothyroidism11–15. 
Many studies have found a clear correlation between thyroid dose and volume, which has a significant impact on 
the incidence of RIHT. Among them, Vx (referring to the percentage of thyroid volume exposed to a dose higher 
than xGy) is a dosimetric predictive parameter commonly used in many  studies16–21. Additionally, researchers 
have developed NTCP models to predict RIHT and optimize the radiation dose for the thyroid based on risk 
 factors22–24. However, relying solely on physical dose parameters from dose-volume histograms (DVH) may only 
provide partial information about dose distribution and lack information about voxel spatial relationships. It 
is important to understand that equivalent physical dose values can arise from distinct dose distributions with 
varying spatial relationships, potentially leading to different biological effects. Furthermore, the sensitivity of the 
thyroid gland to radiotherapy differs among patients, and the factors contributing to the development of RIHT 
are varied, thus necessitating individualized analysis.

In recent years, there has been a growing application of technologies such as artificial intelligence (AI) and 
machine learning in the field of identifying radiation-induced complications. Radiomics is a novel approach used 
to extract a multitude of quantitative features from medical images, including CT scans. These images are then 
thoroughly analyzed for diagnostic and prognostic purposes. By utilizing computer algorithms and machine 
learning techniques, medical images are converted into quantifiable data, allowing for the exploration of the 
extensive feature information embedded within  them25,26. Similar to radiomics, dosiomics is a technique that 
automatically extracts quantitative features from the dose distribution matrix. Dosiomics features, compared 
to traditional DVH dose parameters, provide detailed spatial information about the three-dimensional dose 
distribution. These features effectively describe the impact of the dosage on the human body. Both radiomics 
and dosiomics have been employed to predict hematologic, lung, and esophageal toxicity. Previous research 
has strongly demonstrated that this approach greatly improves the predictive capability of the model. However, 
there is a scarcity of research reports on RIHT in patients with nasopharyngeal carcinoma. Ren has reported a 
predictive model based on dosiomics features, which exhibits superior performance compared to conventional 
dose-volume  parameters27. However, their research has focused solely on single-type feature variables. Ritlum-
lert et al. developed a combined model that incorporates clinical features, dvh and radiomics features extracted 
from pre-radiotherapy CT scans, which significantly outperforms traditional models that only use single-type 
feature to predict  RIHT28. The majority of research focuses on nasopharyngeal carcinoma patients undergoing 
IMRT or volumetric modulated arc therapy (VMAT) treatment; Nonetheless, there is limited research on RIHT 
in nasopharyngeal carcinoma patients undergoing tomotherapy.

The objective of this study was to establish an integrated predictive model that combines clinical features, 
DVH, radiomics, and dosiomics features to predict RIHT in patients receiving tomotherapy for nasopharyngeal 
carcinoma. This model serves to clinical oncologist practitioners in recognizing populations at high risk for RIHT 
development and facilitating the application of tailored interventions.

Methods
Patients
This study has been approved by the ethics committee of Fujian Cancer Hospital (ethics number: YKT2020-
011-01) and all patients provided written informed consent prior to enrollment in the study. All methods were 
performed in accordance with the Declaration of Helsinki as well as relevant guidelines and regulations. The 
study included 219 patients diagnosed with nasopharyngeal carcinoma who underwent tomotherapy at Fujian 
Cancer Hospital from January 2017 to December 2020. The following clinical information was collected: patient 
age, gender, TNM stage, and the pre-treatment thyrotropin-stimulating hormone (TSH) levels. The patients were 
randomly divided into a training set (n = 175) and a test set (n = 44) in an 8:2 ratio. There were no statistically 
significant differences in clinical characteristics between the two groups of patients.

Inclusion criteria: (1) Patients with newly diagnosed nasopharyngeal carcinoma confirmed by pathology; (2) 
Patients in need of radical radiotherapy; (3) Patients aged between 18 and 70 years; (4) Patients with normal thy-
roid function and no underlying thyroid-related diseases; (5) Patients with a PS (ECOG criteria) score of 0 to 1.

Exclusion criteria: (1) Patients who underwent previous head and neck radiotherapy or thyroid surgery; (2) 
Patients with previous malignant tumors; (3) Patients with severe cardiovascular diseases or other underlying 
conditions that may affect the standard treatment of nasopharyngeal carcinoma. (4) Patients who did not have 
a complete follow-up result for thyroid function assessment.

Thyroid function assessment
Before treatment, levels of total triiodothyronine (TT3), total thyroxine (TT4), free triiodothyronine (FT3), 
FT4, TSH, thyroglobulin antibody (TGAb), thyroid peroxidase antibody (TPOAb), and thyroglobulin (TG) are 
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measured using chemiluminescence analysis to exclude underlying thyroid-related diseases. Thyroid hormone 
levels, such as TT3, TT4, FT3, and FT4, play a critical role in the regulation of metabolism and energy levels. 
TSH is secreted by the pituitary gland to oversee the thyroid’s hormone secretion. TGAb and TPOAb are linked 
to autoimmune thyroid disorders such as Hashimoto’s and Graves’ disease. TG is a protein crucial for thyroid 
hormone synthesis. During the follow-up before, at the end of, and after radiotherapy, levels of FT4, FT3, and 
TSH are determined using chemiluminescence analysis.

Follow-up visits consist of a combination of outpatient examinations and telephone communication. Within 
the first two years after completing treatment, follow-up visits occur every three months. From 3 to 5 years after 
treatment, monthly follow-up visits are conducted. During each follow-up visit, levels of FT4, FT3, and TSH 
are checked. The last follow-up in this study took place in June 2023, and the primary evaluation indicator was 
primary hypothyroidism (HT), defined as a serum TSH level greater than 5.6 μU/mL with or without a decrease 
in FT4  levels29. The occurrence time of RIHT was defined as the time interval between the end of radiotherapy 
and the first recorded abnormal TSH level.

Image acquisition, contouring, and radiation dose calculation
Based on the 8th edition of the UICC/AJCC staging  system30, patients in stage I undergo curative radiotherapy, 
stage II patients receive combined chemotherapy and radiotherapy, and stage III–IVB patients undergo combina-
tion therapy, all of which include radiation therapy. Positioning CT scans are acquired using the Philips Brilliance 
Big Bore CT. Patients are positioned supine and immobilized using thermoplastic masks and customized foam. 
The tube voltage is set at 120 kV, X-ray tube current is 225 mA, CT scan slice thickness is 3 mm, and the scan 
resolution is 512 × 512 pixels.

In accordance with the guidelines RTOG0225 and RTOG0615, experienced radiation oncologists with over 
5 years of experience delineate GTV, CTV, and PTV target areas. The organs at risk, such as the thyroid, are sepa-
rately delineated by two junior radiation oncologists, each with a minimum of 2 years of experience, and the final 
delineation is verified by senior radiation oncologists. The prescribed radiotherapy doses were as follows: GTV: 
70–72.6 Gy/31–33 fractions, CTV1: 62–62.7 Gy/31–33 fractions, and for CTV2: 54.4–56.2 Gy/31–33 fractions. 
The dose limitation of organs at risk (OARs) listed in supplementary material Table S1.

All patients undergo intensity-modulated radiation therapy using the Accuray TomoHD helical tomotherapy 
system (Accuray Inc., Madison, Wisconsin) for treatment planning. The radiation energy used is 6 MV, the 
dose rate is 850 MU/min, and the dose calculation algorithm employed is the convolution/superposition (C/S) 
algorithm within the tumor treatment planning system. The voxel spatial resolution for dose calculation is 
0.273 × 0.273 × 0.3  cm3. The primary objective of the treatment plan is to deliver sufficient and consistent dose 
to the planning target volume (PTV) while minimizing radiation exposure to OARs.

Radiomics and dosiomics features extraction
Feature extraction is the process of calculating a large number of specific parameters from a region of interest 
(ROI). This study utilizes the Pyradiomics open-source package, which is based on the Python 3.7 platform, to 
extract radiomic and dosiomics features. The extracted radiomic features are categorized into three groups: first-
order statistical features, shape features, and texture features. First-order statistical features indicate changes in 
symmetry, uniformity, and local intensity distribution within the measured ROI region. Shape features provide 
quantitative descriptions of the three-dimensional size and morphological information of the ROI region. Texture 
features reflect the spatial arrangement of grayscale values within the ROI region. For detailed descriptions of 
each feature type, please refer to the official Pyradiomics  documentation31. A total of 107 radiomic features and 
107 dosiomics features were extracted from each patient, respectively.

Features selection and model building of radiomics and dosiomics
The Kolmogorov–Smirnov test is utilized to assess the normality of feature distribution. When the computed 
p-value of the test statistic is below the predefined significance threshold (typically 0.05), the null hypothesis is 
rejected, signifying a departure from normal distribution. In contrast, if the p-value exceeds the significance level, 
the null hypothesis is upheld, indicating conformity to a normal distribution. Then, we applied the Student’s t-test 
to analyze features that follow a normal distribution, and the Mann–Whitney U test to analyze features that do not 
follow a normal distribution. The null hypothesis for the Student’s t-test states no significant difference between 
the means of the two groups compared for a specific feature, while the null hypothesis for the Mann–Whitney U 
test asserts no significant difference between the distributions of the two groups compared for a particular feature. 
When the p-value from the Student’s t-test or Mann–Whitney U test exceeds 0.05 for two sets of features, there 
is no significant distinction between them, hence one feature ought to be randomly removed. Additionally, we 
used the Spearman rank correlation coefficient to measure the correlation between highly correlation features. 
If the correlation coefficient between any two features exceeded 0.9, we retained only one of the features. To 
preserve the descriptive ability of the features, we implemented a greedy recursive feature elimination strategy, 
eliminating the feature with the highest correlation in each iteration. Lastly, we employed the Least Absolute 
Shrinkage and Selection Operator (LASSO) regression model to construct features in the dataset. By adjusting 
the regularization weight lambda, the LASSO regression model sets all regression coefficients to zero, resulting 
in many coefficients of irrelevant features becoming zero. To determine the optimal lambda value that minimizes 
the standardized error and achieves the lowest cross-validation error, we performed tenfold cross-validation. 
The remaining non-zero coefficient features were combined with radiomics features for the regression model. 
By linearly combining the remaining features and their model coefficient weights, we obtained a radiomics score 
for each patient. We implemented the LASSO regression model using the Python scikit-learn library. After Lasso 
feature screening, we input the final features into the XGBoost machine learning models and so forth for risk 
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model construction. The fundamental concept of the XGBoost model is to integrate numerous weak classifiers 
(decision trees) to form a robust classifier. Each decision tree is trained on the residuals of the preceding tree, 
progressively diminishing the residuals by iteratively optimizing the loss function. Simultaneously, the model 
mitigates the risk of overfitting by managing the trees’ complexity and implementing regularization terms. In 
this study, the XGBoost is fed with diverse feature types as input, and it produces the probability value of RIHT 
occurrence as output. Here, we adopt fivefold cross-verification to obtain the final rad signature.

Clinical and DVH model building
The study incorporates age, gender, T stage (1, 2, 3, 4), N stage (0, 1, 2), TNM stage (1, 2, 3, 4), and the pre-
treatment TSH value as clinically relevant features. The DVH features consist of the max dose  (Dmax), the min 
dose  (Dmin), the mean dose  (Dmean), i cubic centimeter of the maximum dose  (Dicc, with i ranging from 1 to 10 
at an interval of 1), and percentage of volume that has received at least j Gy radiation  (VjGy with j ranging from 
5 to 65 at an interval of 5), resulting in a total of 23 thyroid volume features. The construction process of clinical 
signatures closely resembles that of rad signatures. Initially, baseline statistics (the p-value from the Student’s 
t-test or Mann–Whitney U test) were used to select the features for constructing the clinical characteristics. 
Furthermore, the same machine learning model was utilized in the construction process of clinical and DVH sig-
natures. To ensure fairness in comparison, fivefold cross-validation and a fixed experimental queue were adopted.

Combined model
According to Fig. 1, the clinical features, DVH parameters, radiomics features, and dosiomics features were 
integrated as inputs to the composite model. Additionally, valuable features were selected using Student’s t-test 
or Mann–Whitney U test and LASSO regression, and then inputted into the XGBoost machine learning model 
for thyroid toxicity prediction. Similarly, fivefold cross-validation and a fixed experimental queue were adopted.

Statistical analysis
In order to assess the diagnostic performance, we conducted tests in an experimental cohort. In order to examine 
the equivalence of patient attributes between different cohorts, we employed independent t-tests to analyze nor-
mally distributed data and utilized the Mann–Whitney U test to represent non-normally distributed data using 
medians (interquartile ranges). For categorical variables, we used the Chi-square test for analysis. Additionally, 
we evaluated the predictive performance of the three models using receiver operating characteristic (ROC) 
curves, where we calculated the area under the ROC curve (AUC), as well as the trade-off between sensitivity and 
specificity at the maximum Youden index. Furthermore, we evaluated the performance of these three models in 
the training and testing cohorts and assessed the clinical utility of the radiomics-clinical model using decision 
curve analysis (DCA).

Figure 1.  The workflow of the combined model construction.
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Statistical analyses were performed using SPSS (version 21.0; IBM Corp.) and the “One-key AI” platform 
(https:// www. medai. icu), which is based on Pytorch 1.8.0. Statistical significance was defined as a two-sided 
p-value ≤ 0.05.

Results
Patient characteristics
The baseline characteristics of patients in the training and test cohorts are presented in Table 1. The median 
follow-up duration of all patients was 28 months (range 3–63 months). The average age of the patients in the 
training cohort was 46.59 ± 13.08 years, including 125 males (71.4%) and 50 females (28.6%). The average age 
of the patients in the test cohort was 46.68 ± 13.61 years, including 35 males (79.5%) and 9 females (20.5%). 
Among them, those in the training cohort and the test cohort had no significant differences in clinical baseline 
characteristics (sex, age, T stage, N stage, clinical stage, etc.).

Clinical model
The features utilized to develop the clinical model were determined based on the p-value (≤ 0.05) of the char-
acteristics within the training cohort. Only baseline age and pre-treatment TSH met this criterion. These two 
characteristics were also used in constructing the Clinical Signature.

The clinical model demonstrated an AUC of 0.963 (95% CI 0.939–0.987) with balanced sensitivity and speci-
ficity of 0.884 and 0.913, respectively, in the training cohort. In the test cohort, the AUC was 0.798 (95% CI 
0.656–0.940), and the sensitivity and specificity were 0.722 and 0.808, respectively (Table 3).

DVH model
Consistent with the clinical model, the DVH model employed a similar approach to filter features. Dmax, D1cc, 
V60, and volume were selected as meaningful features for constructing the DVH model.

The DVH model demonstrated an AUC of 0.988 (95% CI 0.978–0.999) with balanced sensitivity and speci-
ficity of 0.942 and 0.951, respectively, in the training cohort. In the test cohort, the AUC was 0.673 (95% CI 
0.512–0.834), and the sensitivity and specificity were 0.722 and 0.615, respectively (Table 3).

Radiomics model
After the selection process, a total of 4 features with non-zero coefficient values were retained. These four features 
are: shape voxel volume, shape maximum 3D diameter, shape minor axis length and gray level run length matrix 
run variance. The radiomics signature was constructed based on the coefficient values of the selected features.

The selected features were utilized to construct the radiomics model. In the training cohort, the model dem-
onstrated an AUC of 0.997 (95% CI 0.993–1.000), with balanced sensitivity and specificity of 0.943 and 0.990, 

Table 1.  Baseline characteristics of patients in the training and test cohorts.

Characteristic Training cohort (n = 175) Test cohort (n = 44) P

Age, years 46.59 ± 13.08 46.68 ± 13.61 0.859

Pre-treatment TSH, µIU/L 1.70 ± 0.96 1.69 ± 0.94 0.975

Gender 0.278

 Male 125 (71.4%) 35 (79.5%)

 Female 50 (28.6%) 9 (20.5%)

T stage (UICC/AJCC 7th edition) 0.787

  T1 39 (22.3%) 12 (27.3%)

  T2 29 (16.6%) 6 (13.6%)

  T3 62 (35.4%) 17 (38.6%)

  T4 45 (25.7%) 9 (20.5%)

N stage (UICC/AJCC 7th edition) 0.147

  N0 21 (12.0%) 9 (20.5%)

  N1 75 (42.8%) 22 (50.0%)

  N2 47 (26.9%) 10 (22.7%)

  N3 32 (18.3%) 3 (6.8%)

Clinical TNM stages (UICC/AJCC 7th edition) 0.235

 I 8 (4.6%) 5 (11.4%)

 II 36 (20.5%) 9 (20.5%)

 III 63 (36.0%) 18 (40.8%)

 IV 68 (38.9%) 12 (27.3%)

Outcome 0.912

 Hypothyroidism 70 (40.0%) 18 (40.9%)

 Euthyroid 105 (60.0%) 26 (59.1%)

https://www.medai.icu
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respectively. In the test cohort, the AUC was 0.714 (95% CI 0.545–0.873), and the sensitivity and specificity were 
0.556 and 0.769, respectively (Table 3).

Dosiomics model
Consistent with the radiomics model, the dosiomics model employed a similar approach to filter features. Simi-
larly, four features were selected to establish the dosiomics model. These four features are: firstorder maximum, 
firstorder 90th percentile, gray level co-occurrence matrix maximal correlation coefficient and shape voxel 
volume.

The selected features were utilized to construct the radiomics model. In the training cohort, the model dem-
onstrated an AUC of 0.993 (95% CI 0.986–1.000), with balanced sensitivity and specificity of 0.971 and 0.952, 

Figure 2.  The histogram of the coefficients of the selected features. GLRLM gray-level run length matrix, 
NGTDM neighborhood gray-tone difference matrix.

Table 2.  Feature importance of the combined model.

Features Weights

Clinical_age 0.22654682

DVH_Dmax 0.16664952

Clinical_TSH 0.16540626

DVH_volume 0.12443488

Radiomics_original_ngtdm_Contrast 0.11686287

Dosiomics_original_firstorder_90Percentile 0.113821395

Radiomics_original_glrlm_ShortRunEmphasis 0.0862782

Table 3.  Predictive performance of five models in the training cohort and test cohort.

Model Dataset Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Precision Recall F1 Threshold

DVH
Train 0.948 0.988 0.978–0.999 0.942 0.951 0.929 0.961 0.929 0.942 0.935

0.463
Test 0.659 0.673 0.512–0.834 0.722 0.615 0.565 0.762 0.565 0.722 0.634

Dosiomics
Train 0.960 0.993 0.986–1.000 0.971 0.952 0.932 0.980 0.932 0.971 0.951

0.420
Test 0.591 0.689 0.530–0.848 0.556 0.615 0.500 0.667 0.500 0.556 0.526

Radiomics
Train 0.971 0.997 0.993–1.000 0.943 0.990 0.985 0.963 0.985 0.943 0.964

0.513
Test 0.682 0.714 0.555–0.873 0.556 0.769 0.625 0.714 0.625 0.556 0.503

Clinical
Train 0.901 0.963 0.939–0.987 0.884 0.913 0.871 0.922 0.871 0.884 0.878

0.418
Test 0.773 0.798 0.656–0.941 0.722 0.808 0.722 0.828 0.722 0.722 0.808

Combined
Train 0.994 1.000 0.999–1.000 1.000 0.990 0.986 1.000 0.986 1.000 0.993

0.428
Test 0.682 0.842 0.724–0.960 0.778 0.615 0.583 0.800 0.583 0.778 0.667
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respectively. In the test cohort, the AUC was 0.698 (95% CI 0.530–0.848), and the sensitivity and specificity were 
0.556 and 0.615, respectively (Table 3).

Combined model
Age, pre-treatment TSH , thyroid volume, Dmax, radiomics original gray level run length matrix short run 
emphasis, radiomics original neighbouring gray tone difference matrix contrast, and dosiomics original firstorder 
90th percentile were selected as the most valuable features in the combination model, and their feature coefficient 
histograms and feature importance are shown in the Fig. 2 and Table 2.

In the training cohort, the establishment model exhibited an area under the curve (AUC) value of 1.000 (95% 
CI 0.999–1.000), with equally balanced sensitivity (1.000) and specificity (0.990). The test cohort yielded an AUC 
of 0.842 (95% CI 0.724–0.960), with a sensitivity of 0.778 and a specificity of 0.615 (Table 3). Waterfall chart 
reflects the predict score of the training cohort and test cohort in the prediction of RIHT (Fig. 3).

The calibration curve illustrated that the RIHT predicted by the combined model closely matched the actual 
results in both datasets. Additionally, the decision curve analysis (DCA) demonstrated improvement in the 
combined model for both datasets (Fig. 4). This finding indicated that within a threshold probability range of 
1% to 79%, the combined model outperformed the other models in terms of benefits (Fig. 5).

Figure 3.  Waterfall chart reflects the performance of the training cohort (A) and test cohort (B) in the 
prediction of RIHT.

Figure 4.  ROC curves of the radiomics model, dosiomics model, DVH model, clinical model and combined 
model in the training cohort (A) and test cohort (B). ROC receiver operating characteristic.
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Discussion
In this study, we developed a novel combination model that incorporates clinical parameters, DVH param-
eters, radiomics features, and dosiomics features to predict RIHT in patients with nasopharyngeal carcinoma 
undergoing radiotherapy. The results demonstrated that the combination model achieved AUC values of 1.000 
and 0.842 in the training and testing groups, respectively. Compared to single feature models, the combination 
model displayed better discriminative ability and goodness of fit, indicating better diagnostic performance. Age, 
pre-treatment TSH, thyroid volume, Dmax, radiomics original gray level run length matrix short run emphasis, 
radiomics original neighbouring gray tone difference matrix contrast, and dosiomics original firstorder 90th 
percentile can serve as reliable predictive features for RIHT in patients with nasopharyngeal carcinoma under-
going tomotherapy.

RIHT is a frequent complication in radiotherapy for nasopharyngeal carcinoma due to the close proximity 
or overlap of the radiation target area with the nearby thyroid gland, often accompanied by cervical lymph node 
metastasis at initial diagnosis. Consequently, the thyroid gland unavoidably receives radiation during treatment. 
According to Zhai et al.’s report, the incidence of RIHT in nasopharyngeal carcinoma patients within 3 and 5 years 
after radiotherapy was 39.4% and 49.1%, respectively. For this study, we included a cohort of 219 patients, and the 
overall incidence of RIHT during the follow-up period was 40.2%, consistent with the findings of Zhai et al.32.

In previous studies on the prediction of RIHT for nasopharyngeal carcinoma, age has been considered a 
major clinical risk factor. Zhai et al. found that age independently affected RIHT after IMRT, with younger 
patients being more prone to developing  hypothyroidism32. Similarly, Wu et al. also found in their study that 
age was one of the factors influencing the occurrence of hypothyroidism, suggesting that the thyroid gland’s 
sensitivity to radiation decreases with  age13. Furthermore, studies have shown that female patients have a higher 
risk of developing RIHT. Hancock et al. observed an increased risk of hypothyroidism occurrence in  females33. 
However, Diaz et al. and Wu et al. stated that gender does not play a role in the development of hypothyroidism. 
They suggested that this may be due to the smaller thyroid volume in females compared to males, and the gen-
der effect could be confounded by differences in thyroid  volume13,14. In this study, age and pre-treatment TSH 
were identified as important predictive factors for RIHT. However, it is not a routine practice to perform serum 
thyroid hormone testing in nasopharyngeal carcinoma patients before and after radiotherapy during follow-up. 
Therefore, it is recommended to conduct baseline thyroid function testing before starting radiotherapy and 
regularly monitor it to detect potential temporary functional impairments and the risk of eventually developing 
permanent hypothyroidism early on.

In the treatment of patients with nasopharyngeal carcinoma, the neck is typically exposed to radiation doses 
ranging from 50–70 Gy. However, the exact threshold dose of radiation that causes direct damage to the thyroid 
remains uncertain. Recent studies suggest that the dose of radiation received by the thyroid gland is a crucial 
factor in the development of RIHT. Nonetheless, the findings of different studies are inconsistent. Akgun et al. 
reported a significant correlation between thyroid volume, V30 (the proportion of the volume receiving a dose 
of 30 Gy or higher), average thyroid dose, and the occurrence of  RIHT19. Stella et al. recommend specific targets 
for radiation therapy planning, including D50% < 50 Gy, V50 < 50%, and average dose < 54.58 Gy, in order to 
reduce the risk of  RIHT11. However, some researchers argue that the toxic effects of different radiation doses 
on the thyroid are still unclear. They propose using dose-volume histogram (DVH) curves as a reference for 
thyroid constraints, rather than relying solely on a specific point on the DVH curve. Huang et al. conducted a 
retrospective analysis of 345 patients with nasopharyngeal carcinoma treated with intensity-modulated radia-
tion therapy (IMRT) and found that patients in Group (V25 ≤ 60%, V35 ≤ 55%, V45 ≤ 45%) had a significantly 
lower incidence of RIHT (13.2% vs. 25.8%) and were independently associated with decreased risk of developing 

Figure 5.  DCA of the radiomics model, dosiomics model, DVH model, clinical model and combined model in 
the test cohort.
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radiation-induced  hypothyroidism12. Ren et al. argue that traditional dose-volume factors represent discrete 
points on the DVH curve and provide insufficient information regarding dose distribution, including intensity, 
shape, size, and distribution of different  doses27. Their study demonstrated that dose-volume models were supe-
rior to DVH models in predicting RIHT in nasopharyngeal carcinoma (AUC value: 0.70 vs. 0.61). Ritlumlert 
et al. developed a combined model that incorporates clinical features, dvh and radiomics features extracted from 
pre-radiotherapy CT scans, which significantly outperforms traditional models that only use single-type feature 
to predict RIHT (AUC value: 0.81)28.

Compared to previous studies, this study added more types of features to predict RIHT in nasopharyngeal 
carcinoma patients undergoing tomotherapy. The results revealed that the combined model outperformed sin-
gle—feature models, exhibiting the highest AUC value, and the lower and upper limits of the 95% CI were higher 
than other models. The combined model exhibits the higher sensitivity, effectively mitigating the likelihood of 
overlooking detections in RIHT. In addition, the clinical model also performed well, achieving an AUC value of 
0.798. Analysis of Table 2 highlights that age and TSH clinical features carry substantial weight in the combina-
tion model, constituting about 39% of all features. This suggests that clinical model attributes possess greater 
predictive significance for RIHT compared to DVH, radiomics and dosiomics features, yielding favorable predic-
tive outcomes. Furthermore, our study indicate that the dosiomics model surpasses DVH models, consistent with 
the observations by Ren et al.27. Dosiomics offers comprehensive insights into dose distribution size, shape, and 
pattern, enhancing predictive accuracy beyond discrete DVH features. Additionally, our study demonstrates the 
superior performance of radiomics models over dosiomics models in prediction RIHT, underscoring the valuable 
predictive potential of deep features extracted from CT images. To conclude, the combined model estimates the 
likelihood of RIHT by amalgamating characteristics from CT images, dose-volume attributes from 3D dose maps, 
point dose parameters from DVH curves, along with patient age and pre-treatment TSH levels. This integrated 
approach aids in predicting RIHT occurrence prior to tomotherapy in nasopharyngeal cancer patients, thereby 
assisting clinicians in identifying high-risk individuals for targeted interventions to enhance patient quality of life.

Our study has some limitations. Firstly, the model is only applicable to nasopharyngeal carcinoma patients 
receiving tomotherapy, and further research is needed for other radiation techniques such as IMRT, VMAT, and 
three dimensional conformal radiotherapy (3D-CRT). Secondly, this study only included 219 cases, which has a 
relatively small sample size and lacks validation from external centers. Thirdly, we did not adopt more advanced 
techniques such as deep learning methods. In future research, we will increase the sample size and diversity, 
introduce data from external centers for further validation, and incorporate deep learning methods to improve 
the predictive performance of the model.

Conclusion
This study established a combined predictive model based on clinical features, DVH parameters, radiomics 
and dosiomics features to predict the likelihood of RIHT in nasopharyngeal carcinoma patients undergoing 
radiotherapy. The model also has the potential to assist in identifying potential RIHT patients and implement-
ing preventative measures.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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