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Comprehensive analysis 
of a stochastic wireless 
sensor network motivated 
by Black‑Karasinski process
Peijiang Liu 1 & Anwarud Din 2*

Wireless sensor networks (WSNs) encounter a significant challenge in ensuring network security due 
to their operational constraints. This challenge stems from the potential infiltration of malware into 
WSNs, where a single infected node can rapidly propagate worms to neighboring nodes. To address 
this issue, this research introduces a stochastic SEIRS model to characterize worm spread in WSNs. 
Initially, we established that our model possesses a globally positive solution. Subsequently, we 
determine a threshold value for our stochastic system and derive a set of sufficient conditions that 
dictate the persistence or extinction of worm spread in WSNs based on the mean behavior. Our study 
reveals that environmental randomness can impede the spread of malware in WSNs. Moreover, 
by utilizing various parameter sets, we obtain approximate solutions that showcase these precise 
findings and validate the effectiveness of the proposed SEIRS model, which surpasses existing models 
in mitigating worm transmission in WSNs.

Keywords Sensor networks, Epidemic model, Wireless sensor networks, Noise, Control technique, 
Stationary distribution

The progress of information technology has brought about an increase in alarming incidents related to wireless 
 networks1,2. This progress in the field not only created security issues and threats to the entire globe but also 
endangered human  beings3. Within a wireless network, a sensor node is a small, intelligent, and cost-effective 
 device4. WSNs are utilized for collecting periodic data in various deployments, including mission-critical sce-
narios, these networks have numerous significant applications, such as object monitoring in agriculture, military 
target tracking, disaster management, environmental and pollution monitoring, exploration of dangerous envi-
ronments, flood detection, traffic monitoring, vehicle tracking, gas monitoring, seismic sensing, water quality 
monitoring, and healthcare applications (Akyildiz, Su,  Sankarasubramaniam5–7. Nevertheless, sensor nodes are 
not only low-cost devices but also operate intelligently. However, they are subject to resource constraints, such as 
limited battery life, memory capacity, and processing  capabilities8,9. Hence, the limited resources and decentral-
ized architecture of wireless sensor networks make it highly challenging to establish wireless communication and 
ensure adequate security provisions between these networks. Wireless networks are more susceptible to threats 
compared to other networks, as they exhibit greater  vulnerability10. Despite implementing various security 
mechanisms to protect the network, software glitches and vulnerabilities are common challenges that can be 
exploited by hackers. Software vulnerabilities arise from various sources, including coding errors, design flaws, 
or insufficient security measures implemented in software applications or systems. These concerns become even 
more critical in the context of WSNs. Sensor nodes in WSNs have limited communication range and rely on 
multi-hop data  delivery11. As a result of these limitations, nodes in the networks have limited defense capabili-
ties against virus attacks, including malicious signals, worms, viruses, and  more12. Controlling the propagation 
of worms is crucial for the network’s sustainability. Therefore, the study of malicious signal transmission and 
mathematical modeling plays a crucial role in understanding and mitigating these  threats13–16.

Mathematical modeling techniques have been widely recognized as the most essential and straightforward 
tools for studying and predicting the dynamics of various epidemic  diseases17–21. It is observed that various 
random processes particularly related to the environment like humidity, rainfall, temperature, and many other 
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factors have a significant impact on the dynamic behavior of different epidemic diseases. These effects allow 
researchers to include random processes in the traditional ODE models which helps to elucidate the impact of 
environmental fluctuations. This variability can arise from variations in values of the parameters or the introduc-
tion of stochastic noises into the underlying  systems22–24. Additionally, random models offer an additional level 
of freedom and are very close to reality compared to their ODE counterparts. Numerous authors have extensively 
investigated the dynamics of various populations using perturbations in the form of Brownian motion or white 
noises, for instance, one can  see25,26 and references cited therein.

In a real-world scenario, the worms spreading across a wireless sensor network could be illustrated through 
a hypothetical situation involving a network of interconnected sensors deployed for monitoring and collecting 
data in a critical infrastructure setting, such as a smart city, industrial plant, or environmental monitoring system. 
Here’s a fictional example to help illustrate the scenario. As the worm spreads, it starts causing disruptions within 
the sensor network. It may manipulate sensor readings, leading to inaccurate data being sent to the central control 
system. This can result in misinformed decisions and potentially disrupt industrial  processes27,28.

This article represents a significant advancement in effectively demonstrating the utility of the SEIRS model, which 
can assist researchers in accurately elucidating the dynamics of malware propagation within WSNs. By incorporating 
white noise perturbations, we aim to uncover the impacts of environmental variations and parameter variability on the 
propagation process. The study elucidates the interplay of metamorphism among the network nodes, shedding light 
on the relationship. By leveraging the concepts of stochastic epidemic theory, the SEIRS model is conceptualized and 
applied to investigate the dynamics of malware. The suggested model is validated and rigorously demonstrated via 
numerous simulations, providing explicit verification of its effectiveness.

The remaining parts of the manuscript are organized as below. In Sect. "Proposed model", we extend the 
model to the stochastic epidemic model on the transmission of worms in wireless sensor networks. In Sect. 
"Qualitative analysis of positive solution", the dynamical features of the globalized positive model’ solution are 
given. In Sect. "Extinction analysis of the worm-free equilibrium", we demonstrate that the worm disease exhibits 
exponential extinction under specific conditions. In Sect. "Ergodic stationary distribution", we establish the suf-
ficient conditions necessary for the existence of an ergodic stationary distribution. The theory of the obtained 
results is qualitatively and quantitatively verified, and given their numerical simulation in Sect. "Numerical 
simulations". The analysis is completed in Sect. "Conclusion" with the concluding remarks and further research 
directions are suggested.

Proposed model
Recently Ojha et al.29 constructed a problem using the approach of a deterministic version of the wireless sensor 
networks epidemic model. Worms spreading across a wireless sensor network could be illustrated through a 
hypothetical situation involving a network of interconnected sensors deployed for monitoring and collecting data 
in a critical infrastructure setting, such as a smart city, industrial plant, or environmental monitoring system. A 
network is formulated consisting of N nodes at any time t and these nodes are distributed uniformly across the 
specified area. All of these nodes are uniformly scattered in the area L2 with average density ( ρ ) and r and hence 
the covering region for sensing is πr2 . To establish communication, it is required that one node should exist 
in this covering area. Once a node gathers some information, the same must be circulated in the neighboring 
nodes or it should be directly sent to the sink. It will be assumed that all of the network nodes are vulnerable to 
the virus assaults and can catch the worm. The dynamics of the nodes from one stage into another based on the 
worm is shown in Fig. 1. The second main assumption is that all of the nodes can mix homogeneously, that is, 
information may be circulated by a node to any other node that lies within the sensing area.

To formulate the model, we shall divide the entire nodes of the network into four compartments based on 
their worm status. These classes are: 

1. The vulnerable nodes S(t) which are exposed to the worm assaults and are currently safe.
2. The latent/exposed nodes E(t) , nodes which encountered by the worms but not infectious.
3. The infectious nodes I(t) the nodes that are infected by the worm and can spread the worm to other nodes.
4. The recovered nodes R(t) , that have been equipped with a detection tool capable of identifying and removing 

worm infection. nodes.

Every node will be able to spread the malware within the region πr2 for a given sensing area of radius r. The 
notion ρ(t) = S(t)

L×L stands for the density of per unit areal susceptibility of the nodes inside the networks. The 
size of nodes in the vicinity of the sensing node is designated and defined as S′(t) = S(t)πr2

L2
 . For convenience, let 

ζ = πr2

L2
β represent a parameter. The model is as follows:

A detailed interpretation of the model parameters is presented in Table 1.

(1)

dS(t)

dt
= −µNζS(t)I(t)+ εR(t)− (µ+ ω)S(t),

dE(t)

dt
= ζ I(t)S(t)− (a+ µ)E(t),

dI(t)

dt
= aE(t)− (γ + µ)I(t),

dR(t)

dt
= γ I(t)+ ωS(t)− (ε + µ)R(t).
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By using the techniques of differential equations, one can obtain the worm-free equilibrium (WFE):

Following the well-known procedure for calculating the threshold quantity for an ODE system, one can obtain 
the value of R0 as

Status of the phenomenon where worms are present in the WSN is called the endemic equilibrium (EE) or the 
worm-present equilibrium and is described as ¶∗ =

(

S
∗,E∗, I∗,R∗) where

System (1) has always the worm-free equilibrium point given by (2) and has a unique endemic equilibrium (3) 
whenever R0 > 1.

(2)¶0 =
(

S
0,E0, I0,R0

)

=

(

(ε + µ)N

(ε + µ+ ω)
, 0, 0,

µN

(ε + µ+ ω)

)

.

R0 =
Nζ(ε + µ)

(a+ µ)(γ + µ)(+ω + ε + µ)
.

(3)

S
∗ = 1

R0

N(ε + µ)

(ε + ω + µ)
,

E
∗ =

(

1− 1

R0

)

ζN(ε + µ)(γ + µ)

{(ω + µ+ ε)(µ+ α)+ εµγ } ,

I
∗ =

(

1− 1

R0

)

Nζ(+µ+ ε)

(+µ+ α)(µ+ ω + ε)+ εµγ
,

R
∗ = S∗ω + γψ∗

ε + µ
.

Figure 1.  The chart shows the flow of nodes in various states of the system (1).

Table 1.  Parameters of the model and their interpretation.

Symbol Symbols description

ε Denotes the re-vulnerability of the removed nodes

µ Represent the rate at which nodes lose their energy and hence assumed dead

β The rate of transmitting the worm-present information by infected nodes to susceptible nodes which develop infection therein

a Stand for the rate at which exposed nodes go to the infected class

γ The rate of removal/recovery

ω The rate at which vulnerable nodes get recovery
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Next, we have to prove the local analysis of these equilibria, that is, we will check the behavior of the solution 
in the long run when the initial data is sufficiently close to the equilibrium points. First of all, we will show the 
local analysis of the WFE.

Theorem 1 The worm-free equilibrium point given by (2) is locally asymptotically stable for R0 < 1 and unstable 
otherwise.

Proof The variational matrix at the WFE is given by

The variational matrix (4) has the eigenvalues: t1 = −(µ+ ω) , t2 = −(µ+ ε) where the remaining two eigen-
values are the roots of the quadratic equation

If R0 < 1 , then by Descartes’s rule of sign, relation (5) has no real positive or complex solution with positive real 
parts. Further, the rule ensures that both the roots are less than zero or complex with negative real parts. Thus, 
all of the eigenvalues of the variational matrix are complex with negative real parts or negative and thus the WFE 
is LAS under R0 < 1 .   �

Next, we will present the local asymptotic stability of the worm present a fixed point.

Theorem 2 The worm endemic equilibrium point given by (3) is locally asymptotically stable for R0 > 1 and 
otherwise unstable.

Proof The variational matrix at the worm’s present equilibrium is given by

The characteristic equation of matrix (6) is given by

where

and

For R0 > 1 , all of the coefficients χi for i = 1, 2, 3, 4 of (7) are positive. Further, by calculating G1 = χ1χ2 − χ3 > 0 
and G2 = χ2χ3 − χ4χ

2
1 > 0 under the same condition of R0 > 1 . Hence, by using the Routh Hurwitz criterion, 

all of the roots of (7) are negative or complex with negative real parts and hence the worm’s present fixed point 
is LAS.   �

(4)J(¶0) =









−(ω + µ) 0 − ζS0 ε

0 − (µ+ a) ζS0 0
0 a − (γ + µ) 0
ω 0 γ − (ε + µ)









,

(5)t2 + (2µ+ γ + a)t + (µ+ γ )(µ+ a)(1− R0) = 0.

(6)J(¶∗) =







−ζ I∗ − (ω + µ) 0 − ζS∗ ε

ζ I∗ − (µ+ a) ζS∗ 0
0 a − (γ + µ) 0
ω 0 γ − (ε + µ)






,

(7)t4 + χ1t
3 + χ2t

2 + χ3t + χ4 = 0,

χ1 =
(4µ+ ε + a+ ω + γ )Q1R0 + aNζ 2(ε + µ)(R0 − 1)

Q1R0
,

χ2 =
Q1(ε + µ)aζN + aNζ 2(ε + µ)(ε + ω + µ)(3µ+ ε + a+ γ + ε)(R0 − 1)(ε + ω + µ)R0Q1Q2

Q1R0
,

χ3 =
Q1Q3R0 +Q1aζN(ε + µ)(ε + 2µ+ ω)+Q4aζ

2N(ε + µ)(ε + ω + µ)(R0 − 1)

Q1R0
,

χ4 =
Q5Q1R0(ε + ω + µ)+Q6aζN(ε + µ)+Q1aζ

2N(ε + ω + µ)µ(R0 − 1)

Q1R0
,

Q1 =(εµω + ε + ω + µ)(a+ µ),

Q2 =(a+ µ)(µ+ γ )+ (ε + µ)(µ+ ω)+ (2µ+ γ + a)(a+ µ)(µ+ γ ),

Q3 =(2µ+ γ + a)

(

εω + (ε + µ)(µ+ ω)

)

+ (ε + 2µ+ ω)(a+ µ)(µ+ γ ),

Q4 =Q5 = (a+ µ)(µ+ γ )+ (ε + µ)(a+ 2µ+ γ ),

Q6 =(µ2 + µω + ωε)Q1.
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While dealing with real-world scenarios, outbreaks (whether infectious diseases or others) are subject to 
complex and random variations. Utilizing stochastic models for modeling epidemics may be a more suitable 
approach, considering the inherent unpredictability of such scenarios. The key purpose of the current work is to 
introduce the white noise of the model (1). Then the deterministic system (1) may written in the stochastically 
perturbed format as follows:

Where Zi(t) for i = 1, · · · , 4 are for the fluctuating dynamics and α1,α2,α3 and α4 are for the noise intensities. 
definitely it contains the outcomes of Zi(0) = 0 for i = 1, 2, · · · , 4 . Figure 2 represents the diagram of a system (8).

Qualitative analysis of positive solution
To investigate the dynamic behavior of the system (8), we aim to address the positivity aspects concerning the 
solution of the proposed system (8) and to prove that the solution of the considered model is unique. The inves-
tigation of positive and non-local solutions requires further analysis using Lyapunov function  techniques30,31.

Theorem  3 Subject to a non-negative initial state of the variabels, almost surely the global solution 
(S,E, I,R)(t) ∈ R

4
+ for model (8) exist whenever t ≥ 0.

Proof The coefficient(s) involved in the model (8) are continuous and Lipschitz locally, considering the initial 
values (S0,E0, I0,R0) from the space R4

+ . Consequently, one and only one solution (S(t),E(t), I(t),R(t)) (in local 
sense) exists for t belong to the interval [0, τe) , here τe represents the explosion-time. To establish the solution 
behaves like the global, it is necessary to demonstrate that τe = ∞ almost surely. Choose a very large number 
K0 ≥ 0 in such a way that (S(0),E(0), I(0),R(0)) lies in the strip 

[

1
K0

,K0

]

 . For every integer K0 ≤ K , the stop-
ping-time is defined by the following expression:

Let us define ∞ = inf ∅ , one can notice that τe ≥ τ+ , which suggests that τ+ = ∞ almost surely, demonstrating 
that τe = +∞ a.s. Assume that τ+ is ∞ , then there must be a T > 0 (real) in such a way that 0 < P

(

T > τ+
)

 and

As a result, there exists a real number K0 ≤ K1 for which

To proceed further, let us introduce a function (a C2-function) V : R4
+ → R+

(8)

dS =
[

µN− ζS(t)I(t)+ εR(t)− (ω + µ)S(t)

]

dt + α1S(t)dZ1(t),

dE =
[

ζ I(t)S(t)− (a+ µ)E(t)

]

dt + α2E(t)dZ2(t),

dI =
[

aE(t)− (µ+ γ )I(t)

]

dt + α3I(t)dZ3(t),

dR =
[

γ I(t)+ ωS(t)− (ε + µ)R(t)

]

dt + α4R(t)dZ4(t).

τK = inf
{

t ∈ [0, τe) : min(S,E, I,R)(t) ≤ K
−1 orK ≤ max{(S,E, I,R)(t)}

}

.

P{τ∞ ≤ T} > ǫ.

(9)P{T ≥ τk} > ǫ ∀ K ≥ K1.

Figure 2.  The chart shows the flow of nodes in various states of the system (8).
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where {x : x is non-negative real number} = R+ , by

By employing the Itô formula, we derive

where

We know that I(0) ≥ 0 , then

Since M is real positive and not dependent on the state and independent variables, we have

By taking integral of relation (10) within the interval [0,T ∧ τk] and taking expectations, then we can get

Setting �K = {τK ≤ T} for K ≥ K1 and by Eq. (3), P(�K) ≥ ǫ . It can be easily judged that for every ω in �K , there 
exist one solution at the point (τK,ω) that is equal to 1

K
 or K . Consequently, H((S,E, I,R)(τK)) ≥ 1

K
− 1+ logK 

or K− 1− logK . Therefore,

Utilizing relations (12) and (13), we can write

In the above 1�(ω) stand for represent the �-indicator function. By letting K → ∞ , we arrived at 
∞ > H

(

·
)

+MT = ∞ showing that τ∞ = ∞ a.s.   �

Extinction analysis of the worm‑free equilibrium
This part of the manuscript deals with the investigate of the extinction of system (8) and establish a threshold 
to determine whether the disease will die out or persist. We will introduce two auxiliary lemmas that plays an 
important role in the proof of the key assertion of the current section.

Lemma 1 Let for t ≥ 0 , the notion M = {Mt} denotes the real-valued function and it signifies the local martingale 
that vanishes at t = 0 . Then

V(S,E, I,R) = (−1+ S − lnS)+ (−1+ E− lnE)+ (−1+ I− ln I)+ (−1+ R− lnR)

+
∫ t

0
ζ I(s)ds.

dV = LVdt + (S− 1)α1dZ1(t)+ (−1+ E)α2dZ2(t)+ (−1+ I)α3dZ3(t)+ (−1+ R)α4dZ4(t),

LV = (1− 1

S
)(−ζSI+ µN− (ω + µ)S+ εR)+ (1− 1

E
)(ζ IS− (a+ µ)E)

+ (1− 1

I
)(−(µ+ γ )I+ aE)+ (1− 1

R
)(ωS+ γ I− (µ+ ε)R)

+ α2
1 + α2

2 + α2
3 + α2

4

2
+ ζ I(0)− ζ I(t),

≤ −ζ IS+ µN+ εR− (+ω + µ)S− µN

S
+ ζ I− εR

S
+ (µ+ ω)

+ ζSI− (a+ µ)E− ζSI

E
− (+a+ µ)+ aE− (+µ+ γ )I− aE

I
+ (+µ+ γ )

+ γ I+ ωS− (+µ+ ε)R− γ I

R
− ωS

R
+ (ε + µ)+ α2

1 + α2
2 + α2

3 + α2
4

2
+ ζ I(0)− ζ I(t)

≤ µN+ 4µ+ ω + a+ γ + ε + ζ I(0)+ α2
1 + α2

2 + α2
3 + α2

4

2
.

(10)LV ≤ µN+ 4µ+ ω + a+ γ + ε + ζ I(0)+ α2
1 + α2

2 + α2
3 + α2

4

2
:= M.

(11)
dV(S,E, I,R) ≤ Mdt + (S− 1)α1dZ1(t)+ (E− 1)α2dZ2(t)+ (I− 1)α3dZ3(t)+ (R− 1)α4dZ4(t).

(12)
G

[

H((S,E, I,R)(τK ∧ T))

]

≤ V(S0,E0, I0,R0)+ G

[
∫ τk∧T

0
Kdt

]

,

≤ H(S0,E0, I0,R0)+MT < ∞.

(13)H((S,E, I,R)(τK)) ≥
(

1

K
− 1+ logK

)

∧
(

K− 1− logK
)

.

(14)
H(S0,E0, I0,R0)+MT ≥ G

[

1�(ω)H

(

(S,E, I,R)(τK)

)]

≥ ǫ

[(

1

K
− 1+ logK

)

∧ (K− 1− logK)

]

.
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and also

where quadratic variants of M is denoted by the notion 〈M,M〉t.

Lemma 2 (31) Assume a solution (S,E, I,R) of model (8) subject to an initial data (S0,E0, I0,R0) ∈ R
4
+ , then

Moreover, if µ >
α21∨α22∨α23∨α24

2 , then

Define the parameter as follows:

Theorem 4 If the threshold number Rs
0 < 1 , as defined by Eq. (15), the exposed and infected worms ( E(t) and I(t) 

functions) in the system (8) will almost surely tend to zero following an exponential function.

Proof Regarding model (8), one can notice that

Integrating the above expression within the range 0 and t, we get

where

Now using the concept of Lemma 2, we get

Assume that (S,E, I,R) ∈ R
4
+ be a solution of equations (8) with positive initial values (S0,E0, I0,R0) ∈ R

4
+ . 

Define

Differentiating Eq. (20) following Itô formula, one can get

lim
t→∞

�M,M�t = ∞, a.s. ⇒ lim
t→∞

Mt

�M,M�t
= 0, a.s.,

lim
t→∞

sup
�M,M�t

t
< ∞, a.s. ⇒ lim

t→∞
Mt

t
= 0, a.s.,

lim
t→∞

S(t)

t
= 0, lim

t→∞
E(t)

t
= 0. lim

t→∞
I(t)

t
= 0, lim

→∞
R(t)

t
= 0, a.s.

lim
t→∞

∫ t
0 S(s)dZ1(s)

t
= 0, lim

t→∞

∫ t
0 E(s)dZ2(s)

t
= 0,

lim
t→∞

∫ t
0 I(s)dZ3(s)

t
= 0, lim

t→∞

∫ t
0 R(s)dZ4(s)

t
= 0, a.s.

(15)
Rs =

2aN(a+ µ)2
{

(a+ µ)2(µ+ γ + α23
2 ) ∧ a2

α22
2

} .

(16)d(E+ S+ R+ I) = [µN− µ(E+ S+ R+ I)]dt + α1SdZ1 + α2EdZ2 + α3IdZ3 + α4RdZ4.

(17)
S + E+ I+ R

t
= N+ ψ1(t),

(18)

ψ1 =
1

µ

[

1

t
(E0 + S0 + R0 + I0)−

1

t
(E+ S+ R+ I

]

+ α1
∫ t
0 S(s)dZ1

t
+ α2

∫ t
0 E(s)dZ2

t
+ α3

∫ t
0 I(s)dZ3

t
+ α4

∫ t
0 R(s)dZ4

t

]

.

(19)lim
t→∞

sup �S+ E+ I+ R� = N.

(20)B(t) = aE+ (µ+ a)I.
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Obviously,

Therefore, we have

Taking integration of the inequality (22) within the range 0 and t, employing Lemma 2 and Rs < 1 , we have

which shows that

This demonstrates the stochastic asymptotic behavior of the system and hence, the key aim of the theorem holds 
valid.   �

Ergodic stationary distribution
Ergodic stationary distribution of nodes is rooted in the study of stochastic processes, where nodes within a 
network undergo random transitions between different states. The ergodic stationary distribution provides 
insights into the long-term behavior of the network, emphasizing the idea that, over time, the system explores 
and represents all possible states with sufficient probability. Ergodicity ensures that, given enough time, the 
network dynamics explore all possible configurations of node states. In the case of the model (8), the system has 
an endemic steady state. Thus, in this part of the paper, we utilize the techniques proposed by  Khasminskii32 to 
explore that the proposed system has a stationary distribution. Let define

The diffusion matrix is

Lemma 3 Let U ∈ R
d denote an open bounded domain with Ŵ regular boundary. The domain U possesses the 

following properties: 

(21)

dlnB(t) =
{

1

B
× [aζSI− (a+ µ)(γ + µ)I− a2α2

2E
2 + (a+ µ)2α2

3 I
2

B
2

}

dt + aα2E

B
dZ2

+ (µ+ a)α3I

B
dZ3

≤ aζS

(a+ µ)
− (a+ µ)2(µ+ γ )I2

B
2

− 1

(aE+ (+a+ µ)I)2

{

(a+ µ)2
α2
3

2
I
2 + a2

α2
2

2
E
2

}

dt

+ aα2E

B
dZ2 +

(µ+ a)α3I

B
dZ3

≤ aζS

(µ+ a)
−

(µ+ a)2(γ + µ+ α23
2 )I

2 + a2
α22
2 E

2

(aE+ (µ+ a)I)2

}

dt + aα2E

B
dZ2 +

(µ+ a)α3I

B
dZ3

≤ ζSdt − (E2 + I
2)

(aE+ (µ+ a)I)2

{

(µ+ a)2(γ + µ+ α2
3

2
) ∧ a2

α2
2

2

}

dt

+ aα2E

B
dZ2 +

(µ+ a)α3I

B
dZ3.

(aE+ (µ+ a)I)2 ≤ 2[a2E+ (µ+ a)2I2) ≤ 2(µ+ a)2(E2 + I
2).

(22)
dlnB(t) ≤ ζSdt − (E2 + I

2)

(aE+ (µ+ a)I)2

{

(µ+ a)2(γ + µ+ α2
3

2
) ∧ a2

α2
2

2

}

dt

+ aα2E

B
dZ2 +

(µ+ a)α3I

B
dZ3.

(23)

lim
t→∞

sup
lnB(t)

t
≤ ζNdt − 1

2(a+ µ)2

{

(µ+ a)2(µ+ γ + α2
3

2
) ∧ a

2 α
2
2

2

}

dt

=

{

(a+ µ)2(µ+ γ + α23
2 ) ∧ a2

α22
2

}

2(µ+ a)2
(Rs − 1), a.s,

(24)lim
t→∞

E(t) = lim
t→∞

I(t) = 0.

(25)dX(t) =
d

∑

r=1

gr(t,X(t))dBr(t).

�(x) = (ϒij(x)), ϒij(x) =
d

∑

r=1

g
j
r(x)g

i
r(x).
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1. In the neighborhood of U and within its domain, the smallest eigenvalue of the matrix A(t) remains bounded 
away from zero.

2. If x belongs to the space Rd\U , the average time τ required to cover the path from x to U is not infinite. Moreo-
ver, for every compact subset K ⊂ R

n , the quantity supx∈K Exτ is finite. Additionally, if f (·) is a function 
integrable with respect to the measure “ · ”, then

Then the Markov process X(t) admits a unique ergodic stationary distribution π(·) and

where f (·) is an integrable function with respect to the measure π.

The threshold parameter in the case of the stochastic model is calculated as

Theorem 5 Assume that Rs > 1 and µ− α21∨α22∨α23∨α24
2 > 0, then for (S0,E0, I0,R0) ∈ R

4
+, system (8) has a unique 

ergodic stationary distribution π.

Proof To establish the conditions (1) and (2) of Lemma 3, we need to validate them. In order to derive condition 
(1), we consider the diffusion matrix as follows:

Irrespective of a compact subset of R4
+ , it is to be noted that ϒ is positive definite matrix, thus confirming condi-

tion (1) of Lemma 3.
Next, we derive condition (2). Consider the C2-operator V : R4

+ → R given by:

where It is prominent to mention that V is a function of the state variables which is defined for all possible values 
of the state variables. Further, this function has the property that it approaches +∞ as the state variables go to 
their limits and ||(S,E, I,R)|| → ∞.

Let us consider the initial data (S0,E0, I0,R0) from the space R4
+ , and subject this data, the function ˜V  (being 

a function of the state variables) will take the form:

 Here (S,E, I,R) ∈ ( 1n , n)× ( 1n , n)× ( 1n , n)× ( 1n , n) and n > 1 is a so larger integer,

P

{

lim
T→∞

1

T

∫ T

0
f (X(t))dt =

∫

Rd
f (x)π(dx)

}

= 1,∀x ∈ R
d ,

(26)
R
s = Na

(

µ+ a+ α22
2

)(

γ + µ+ α23
2

) .

ϒ =









α2
1S

2 0 0 0

0 α2
2E

2 0 0

0 0 α2
3 I
2 0

0 0 0 α2
4R

2









.

(27)

V(S,E, I,R) =
(

− lnS− a1 lnE− a2 ln I− a3 lnR+ ζ

∫ t

0
I(s)ds

)

− lnS+ ζ

∫ t

t
I(s)ds − lnR− lnE+ 1

1+ ρ
(E+ R+ S+ I)1+ρ

=
5

∑

i=1

V5,

(28)

˜V =
(

− lnS− a1 lnR− a2 lnE− a3 ln I+ ζ

∫ t

0
I(s)ds

)

− lnS

− lnS− lnR+ ζ

∫ t

t
I(s)ds − lnE+ 1

1+ ρ
(E+ S+ R+ I)1+ρ

− V(S0,E0, I0,R0)

:=
5

∑

i=1

Vi − V(S0,E0, I0,R0).
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w here  ρ > 1 ,  and  are  subj e c t  to  t he  condit ion(s )  µ− ρ
2 (α

2
1 ∨ α2

2 ∨ α2
3 ∨ α2

4) > 0,  and 
δ = Aβǫ

µ̂ǫ̂α̂
− (µ+ α + γ3 + v24

2 ) > 0 . Thus

and

Using the well-known formula due to Itô to the function V1 , we obtained

Let

Similarly, we can get

(29)

V1 = − lnS− a1 lnR− a2 lnE− a3 ln I+ ζ

∫ t

0
I(s)ds,

V2 = ζ

∫ t

t
I(s)ds − lnS,

V3 = − lnE,

V4 = − lnR,

V5 =
1

1+ ρ
(E+ S+ R+ I)1+ρ ,

(30)

A = sup
(S,E,I,R)∈R4

+

(

− 1

4

[

µ− ρ

2
(α2

1 ∨ α2
2 ∨ α2

3 ∨ α2
4)

]

I
ρ+1

2µ+ N+ ε + a+ B+ α2
1

2
+ α2

2

2
+ α2

3

2

)

,

(31)

B = sup
(S,E,I,R)∈R4

+

{

A(E+ S+ R+ I)ρ − 1

2

[

µ− ρ

2
(α2

1 ∨ α2
2 ∨ α2

3 ∨ α2
4)

]

× (E+ S+ R+ I)1+ρ

}

< ∞.

(32)

LV1 = −µN

S
+ ζ I− εR

S
+ (µ+ ω)+ α2

1

2
− a2ζSI

E
+ a2(µ+ a)+ a2α

2
2

2

− a3aE

I
+ a3(γ + µ)+ a3α

2
1

2
− a1γ I

R
− a1ωS

R
+ a1(ε + µ)+ a1α

2
4

2
+ ζ I− ζ I(0)

≤ −3
3

√

µN

S
× a2SI×

E
I× aa3E

I
+

(

µ+ ω + α2
1

2

)

+ a2

(

µ+ a+ α2
2

2

)

+ a3

(

γ + µ+ α2
3

2

)

+ a1

(

ε + µ+ α2
4

2

)

− εR

S
− a1γ I

R
− a1ωS

R

≤ −3 3
√

µNaa2a3 + µ+
(

ω + α2
1

2

)

+ a2

(

µ+ a+ α2
2

2

)

+ a3

(

γ + µ+ α2
3

2

)

+ a1

(

ε + µ+ α2
4

2

)

− εR

S
− a1γ I

R
− a1ωS

R

= −3µ

(

3

√

√

√

√

√

Na
(

µ+ a+ α22
2

)(

γ + µ+ α23
2

) − 1

)

+
(

ω + α2
1

2

)

+ a1

(

ε + µ+ α2
4

2

)

− εR

S
− a1γ I

R
− a1ωS

R

= −3µ(
3
√
Rs − 1)+

(

ω + α2
1

2

)

+ a1

(

ε + µ+ α2
4

2

)

− εR

S
− a1γ I

R
− a1ωS

R
.

(33)a2

(

µ+ a+ α2
2

2

)

= a3

(

γ + µ+ α2
3

2

)

= µ.

(34)LV2 = −µN

S
+ ζ I− εR

S
+ (µ+ ω)+ α2

1

2
− ζ I(t)+ ζ I(0),

(35)LV3 = − ζSI

E
+ (µ+ a)+ α2

2

2
,
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B is given in Eq. (31).
From Eqs. (32)–(37), we follows

Let 0 < ξ , and consider a closed bounded set in the form of

Over the complement of this set, that is R4
+\D , we have the following inequalities:

(36)LV4 = −γ I

R
− ωS

R
+ (ε + µ)+ α2

4

2
.

(37)

LV5 = (E+ S+ R+ I)ρ [µN− µ(E+ S+ R+ I))I] + ρ

2
(E+ S+ R+ I)−1+ρ

× (α2
1S

2 ∨ α2
2E

2 ∨ α2
3 I
2 ∨ α2

4R
2),

≤ (E+ S+ R+ I)ρ [µN− µ(E+ S+ R+ I)] + (E+ S+ R+ I)1+ρ ρ

2
(α2

1 ∨ α2
2 ∨ α2

3 ∨ α2
4),

≤ µN(E+ S+ R+ I)ρ − (E+ S+ R+ I)1+ρ

[

µ− ρ

2
(α2

1 ∨ α2
2 ∨ α2

3 ∨ α2
4)

]

,

≤ B− 1

2

[

µ− ρ

2
(α2

1 ∨ α2
2 ∨ α2

3 ∨ α2
4)

]

(E+ S+ R+ I)1+ρ ,

≤ −1

2

[

µ− ρ

2
(α2

1 ∨ α2
2 ∨ α2

3 ∨ α2
4)

]

(Sρ+1 + E
ρ+1 + I

ρ+1 + R
ρ+1)+ B.

(38)

L˜V ≤ −3µ(
3
√
Rs − 1)+

(

ω + α2
1

2

)

+ a1

(

ε + µ+ α2
4

2

)

− εR

S
− a1γ I

R
− a1ωS

R

− µN

S
+ ζ I− εR

S
+ (µ+ ω)+ α2

1

2
− ζ I(t)+ ζ I(0)

− ζSI

E
+ (µ+ a)+ α2

2

2
− γ I

R
− ωS

R
+ (ε + µ)+ α2

4

2

+ B− 1

2

[

µ− ρ

2
(α2

1 ∨ α2
2 ∨ α2

3 ∨ α2
4)

]

(Sρ+1 + E
ρ+1 + I

ρ+1 + R
ρ+1),

≤ −3µ(
3
√
Rs − 1)+

(

ω + α2
1

2

)

+ a1

(

ε + µ+ α2
4

2

)

− εR

S
− a1γ I

R
− a1ωS

R

− µN

S
+ ζ I− εR

S
+ ω − ζ I(t)+ ζ − ζSI

E

+ a− γ I

R
− ωS

R
+ B− 1

2

[

µ− ρ

2
(α2

1 ∨ α2
2 ∨ α2

3 ∨ α2
4)

]

(Sρ+1 + E
ρ+1 + I

ρ+1 + R
ρ+1)

+ α2
1

2
+ α2

2

2
+ α2

4

2
.

D =
{

(S,E, I,R) ∈ R
4
+ : 1

ξ
≥ S ≥ ξ ,

1

ξ
≥ E ≥ ξ , ξ2 ≤ I ≤ 1

ξ 2
, ξ3 ≤ R ≤ 1

ξ 3

}

.

(39)−µN

ξ
+G ≤ −1,

(40)−µN+G ≤ −1,

(41)−µN+ ξ(1+ c3)+ A ≤ −1,

(42)−γ

ξ
+G ≤ −1,

(43)− ε

ξ
+G ≤ −1,

(44)−1

4

[

µ− ρ

2
(α2

1 ∨ α2
2 ∨ α2

3 ∨ α2
4)

]

1

ξρ+1
+G ≤ −1,

(45)−1

4

[

µ− ρ

2
(α2

1 ∨ α2
2 ∨ α2

3 ∨ α2
4)

]

1

ξ 2(1+ρ)
+G ≤ −1,
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Where

We need to show that L˜V ≤ −1 for any solution Q = (S,E, I,R) ∈ R
4
+\D, and R4

+\D = [
⋃8

i=1 Di], where

Case 1. If (S,E, I,R) ∈ D1 , then by Eq. (38), we get

If we use inequality (39), we can reach to the conclusion that −1 ≥ L˜V  for all Q ∈ D1.
Further, with the help of inequalities (40), (41) and (42), and following a similar approach as that of Case 1, 

one can easily prove that −1 ≥ ˜V  for all Q ∈ D2,D3 and D4.
Case 2: If Q ∈ D5 , then by Eq.(38), we get

(46)−1

4

[

µ− ρ

2
(α2

1 ∨ α2
2 ∨ α2

3 ∨ α2
4)

]

1

ξ 3(1+ρ)
+G ≤ −1.

(47)

G = sup
(S,E,I,R)∈R4

+

{

c1ζ I −
1

4

[

µ− ρ

2
(α2

1 ∨ α2
2 ∨ α2

3 ∨ α2
4)

]

Iρ+1

]

+3µ+ ω + a+ ε + B+ α2
2

2
+ α2

1

2
+ α2

4

2

}

.

(48)

D1 =
{

(S,E, I,R) ∈ R
4
+; 0 < S < ξ

}

,

D2 =
{

(S,E, I,R) ∈ R
4
+; 0 < E < ξ

}

,

D3 =
{

(S,E, I,R) ∈ R
4
+; 0 < I < ξ 2,E ≥ ξ

}

,

D4 =
{

(S,E, I,R) ∈ R
4
+; 0 < R < ξ 3, I ≥ ξ2

}

,

D5 =
{

(S,E, I,R) ∈ R
4
+;S >

1

ξ

}

,

D6 =
{

(S,E, I,R) ∈ R
4
+;E >

1

ξ

}

,

D7 =
{

(S,E, I,R) ∈ R
4
+; I >

1

ξ 2

}

,

D8 =
{

(S,E, I,R) ∈ R
4
+;R >

1

ξ 3

}

.

(49)

L˜V ≤ −3µ(
3
√
Rs − 1)+

(

ω + α2
1

2

)

+ a1

(

ε + µ+ α2
4

2

)

− εR

S
− a1γ I

R
− a1ωS

R

− µN

S
+ ζ I− εR

S
+ ω − ζ I(t)+ ζ − ζSI

E

+ a− γ I

R
− ωS

R
+ B− 1

2

[

µ− ρ

2
(α2

1 ∨ α2
2 ∨ α2

3 ∨ α2
4)

]

(Sρ+1 + E
ρ+1 + I

ρ+1 + R
ρ+1)

+ α2
1

2
+ α2

2

2
+ α2

4

2
,

≤ −3µ(
3
√
Rs − 1)+

(

ω + α2
1

2

)

+ a1

(

ε + µ+ α2
4

2

)

− εR

S
− a1γ I

R
− a1ωS

R

+ ζ I− εR

S
+ ω − ζ I(t)+ ζ − ζSI

E

+ a− γ I

R
− ωS

R
+ B− 1

2

[

µ− ρ

2
(α2

1 ∨ α2
2 ∨ α2

3 ∨ α2
4)

]

(Sρ+1 + E
ρ+1 + I

ρ+1 + R
ρ+1)

+ α2
1

2
+ α2

2

2
+ α2

4

2
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ξ
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Here again, if we use inequality (43), we can reach to the conclusion that −1 ≥ L˜V  for all Q ∈ D5.
Moreover, with the help of inequalities (44), (45) and (46), and following a similar approach as that of Case 

2, one can easily prove that −1 ≥ ˜V  for all Q ∈ D6,D7 and D8.
In the conclusion, we have

which are sufficient in proving the condition (2) in Lemma 3 and thus, system (8) has the property of ergodicity 
and hence the theorem.   �

Numerical simulations
In the previous section, we obtained some important theoretical results based on the dynamic perspectives of 
the deterministic and stochastic models. In this part, we intend to verify these results through simulations. We 
will employ the standard higher ordered Milstein’s  method33 to discretized system (8), Milstein’s method is an 
extension of the Euler-Maruyama method, aiming to improve the accuracy of numerical solutions for SDEs. The 
associated discretization equations are given by:

where the term �t represents a positive uniform time-step and ξi , such that i = 1, · · · , 4 are the independent 
Gaussian random variables that follow the Gaussian distribution N(0, 1) for i = 1, 2, 3, 4 . The set for the time is 
tested [0, 5000], and � = 0.5.

Simulations based on sensing radius of nodes
We have seen in the analysis part of the study that the condition Rs acts as a threshold parameter for the model, 
that is, the dynamics of the solution to the model can be completely specified in terms of that parameter. Under 
the conditions of Rs < 1 , the infected nodes will approach 0 in the long run. The integral curves of the deter-
ministic system will reach WFE and the curves of the stochastic model will oscillate around the stated equilib-
rium point. Simulations further confirm that the virus will eventually leave the WSN when we keep Rs < 1 and 
analytically, it is proved in Theorem 4. Graphically, these conclusions could be confirmed from Fig. 3a–d which 
are the results of the simulations. The values of the parameters as well as the initial size of the nodes are shown 
in Table 2. The simulation was carried out by implementing the scheme (obtained by following the method 
presented in the previous section) within MATLAB (R2017a).

Figure 3 shows that by using these values of the parameters, no matter what the value of S0 , the susceptible 
nodes will reach the component S0 of susceptibles in the WFE. Similarly, in the initial course of worm spread, 
the size of the exposed and virus-infected nodes will tend to grow. After achieving the respective maximum val-
ues, the size of these nodes will exhibit a decline and finally reach zero as t → ∞ . This behavior could be easily 
noticed from Fig. 3b,c where we plotted sample solution curves of the virus-infected compartment utilizing both 

(50)
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(
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(
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(
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L˜V < −W < 0 for allQ ∈ R
4
+\D,
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the stochastic and deterministic models. Finally 3d reflects the behavior of the recovered nodes which initially 
showed an increase in the size and finally reached the respective fixed point.

The figures further elaborate that under the condition of Rs < 1 , the curves reaching non-trivial components 
of the WFE fluctuate more compared to those approaching the trivial components. The figures also suggest that 
the method converges fast to the desired equilibrium for any discretization.

Simulations regarding nodes distribution
We stated and proved Theorem 5 which ensures the existence of a worm within the network at any time t. To 
simulate both the deterministic and stochastic model for this scenario, we shall assume values of the parameters 
as well as the initial value from Table 3. By using these values of the parameters, we calculated Rs which was 
noticed greater than one. When we simulated the models several times, we observed that the curves of the deter-
ministic system approach the worm-present equilibrium. Likewise, the stochastic curves approach the EE but 
not actually as in the case of deterministic. Such curves will fluctuate in the vicinity of the deterministic curves. 
Taking into consideration both the temporal and spatial values of the variables and parameters, the dynamics of 
the curves suggest the presence of the worm in the networks, and hence a control strategy should be followed 
to reduce the spread.

Figure 4 show a drastic decrease in the size of the susceptible nodes and then reach a steady state as time 
evolves. Figure 4b,c show the dynamics of the exposed and infected nodes under the condition of Rs > 1 . The 
plots indicate that the worms initially spread almost at an exponential rate and finally approached the respective 
fixed points. Finally, we presented the dynamics of the removed nodes in Fig. 4d where the curves almost show 
a constant behavior. All of these figures show that the worms will remain in the network, resulting in a stable 

Figure 3.  The corresponding simulations of the system (8) and the deterministic system (1).
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EE. Furthermore, it has been discovered that increasing the connectedness of sensor nodes leads to enhanced 
network connectivity.

Here again, the convergence of the curves is independent of the discretization and this shows the beauty of 
the proposed scheme. All of the deterministic curves reach the desired equilibria and the associated stochastic 
curves fluctuate around the deterministic curves. Due to the high intensity of the noises, the amplitude of the 
oscillation of the stochastic curves is observed large compared to curves with small values of the noises.

Histogram of the node distribution
Next, to specifically describe the effects of each noise term on the dynamic behavior of the system (8), we assume 
that the system is influenced by only one random noise. Figure 5a–d illustrate the impact of noise strength on 
the fluctuations of each population. It can be observed that low-strength noise results in minimal population 
fluctuations, while high-strength noise causes significant oscillations and maintains populations at certain levels. 
Additionally, the histograms of the solutions and the corresponding marginal density function curves for each 
population are presented. The associated values of the parameters and initial conditions of the state variables 
about the model (8) are provided in Table 4.

The impact of noise on system (8)
This section provides the effect of intensities on the dynamics of the worm-infected nodes in connection with 
system (8). The impact of noise intensities was plotted in Fig. 6a–d where it can be deduced that if one increases 
αi , resultantly the worm-infected nodes will tend to extinct out of the network. We conducted observations on 
the impact of the radius of nodes on the dynamic behavior of the model. It was noticed that the optimization of 
the threshold value (flexibility shifts) has a significant influence on various aspects, including the enhancement 
of the lifetime of networks, elimination of the malware from the networks, and controlling the spread of the 
malware. The remaining parameters and initial values of the system (8) were obtained from Table 3 and changed 
the initial values to (S,E, I,R) = (600, 500, 500, 200).

Table 2.  Values of the parametric for simulating models (1) and (8) to explain the behavior of extinction of 
the worms within the networks.

Parameter Value Source

N 1× 103 29

a 4× 10−3 29

µ 1× 10−3 29

β 7× 10−4 Assumed

L 10 29

ω 1× 10−3 29

γ 2× 10−3 29

ε 3× 10−4 29

S(0) 990 29

E(0) 1.00 29

I(0) 9.00 29

R(0) 0.00 29

α1 0.50 Assumed

α2 0.30 Assumed

α3 0.45 Assumed

α4 0.40 Assumed
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Figure 4.  The corresponding simulations of the system (8) and the deterministic system (1).

Table 3.  The parametric values of models (1), and (8).

Parameter Value Source

N 1000 29

a 0.004 29

µ 0.020 Assumed

β 0.0007 Assumed

L 10.00 29

ω 0.001 29

γ 0.002 29

ε 0.0003 29

S(0) 990.0 29

E(0) 1.000 29

I(0) 9.000 29

R(0) 0.000 29

α1 0.300 Assumed

α2 0.200 Assumed

α3 0.400 Assumed

α4 0.450 Assumed
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Conclusion
In this study, we have examined a stochastic SEIRS model to control worm spread in WSNs. The model incor-
porates stochastic components arising from environmental variability, which are represented as Gaussian white 
noise. We derived a set of sufficient conditions that determine the persistence or extinction of worm spread in 
WSNs in terms of the mean behavior. These conditions offer valuable insights into the long-term dynamics of 
the system and contribute to enhancing our understanding of worm propagation dynamics and control strate-
gies in WSNs. At first, we mentioned that our model is globalized, positive, and feasible root by applying the the 
technique of Lyapunov function. After that, we have computed a threshold value of our stochastic system (8) 

Figure 5.  The histogram of the solution and the corresponding marginal density function curve for each sensor 
node.
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and basic reproductive value R0 of the defined deterministic system (1) without oscillation of noises. We also 
concluded, if Rs < 1 , the infection will die with sure probability, otherwise if Rs

0 > 1 , the infection lies in the 
mean of the WSNs. In the last, we have compared our obtained scheme results through simulations.

The extensive results obtained from this study provide evidence that the proposed model contributes to 
increased network lifetime and improved data efficiency in Wireless Sensor Networks. These findings have practi-
cal implications for software organizations, as they can utilize this knowledge to develop more effective antivirus 
software that can effectively restrict malware attacks in WSNs. Moreover, the investigation will assist end-users 
in recovering infected nodes and implementing antivirus software on sensor nodes with careful consideration, 
thereby strengthening the overall security framework to mitigate attacks.

Furthermore, future research directions can include the analysis of additional factors such as vaccinated 
and quarantined classes, as well as the inclusion of heterogeneous and mobile nodes. These considerations can 
enhance the model’s applicability and provide further insights into the dynamics of worm spread and mitigation 
strategies in WSNs.

Table 4.  Values of the parametric for simulating systems (1), and (8) to explain the behavior of the persistence 
of the worms within the networks.

Parameter Value Source

N 1× 102 Assumed

a 1× 10−2 Assumed

µ 2× 10−2 Assumed

β 7× 10−4 Assumed

L 1 Assumed

ω 2× 10−3 Assumed

γ 2× 10−3 Assumed

ε 1× 10−4 Assumed

S(0) 990 29

E(0) 1 29

I(0) 9 29

R(0) 0 29

α1 0.3 Assumed

α2 0.2 Assumed

α3 0.4 Assumed

α4 0.45 Assumed
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