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DON6D: a decoupled one‑stage 
network for 6D pose estimation
Zheng Wang 1, Hangyao Tu 1*, Yutong Qian 2 & Yanwei Zhao 3

The six-dimensional (6D) pose object estimation is a key task in robotic manipulation and grasping 
scenes. Many existing two-stage solutions with a slow inference speed require extra refinement to 
handle the challenges of variations in lighting, sensor noise, object occlusion, and truncation. To 
address these challenges, this work proposes a decoupled one-stage network (DON6D) model for 6D 
pose estimation that improves inference speed on the premise of maintaining accuracy. Particularly, 
since the RGB images are aligned with the RGB-D images, the proposed DON6D first uses a two-
dimensional detection network to locate the interested objects in RGB-D images. Then, a module of 
feature extraction and fusion is used to extract color and geometric features fully. Further, dual data 
augmentation is performed to enhance the generalization ability of the proposed model. Finally, the 
features are fused, and an attention residual encoder–decoder, which can improve the pose estimation 
performance to obtain an accurate 6D pose, is introduced. The proposed DON6D model is evaluated 
on the LINEMOD and YCB-Video datasets. The results demonstrate that the proposed DON6D is 
superior to several state-of-the-art methods regarding the ADD(-S) and ADD(-S) AUC metrics.
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In recent years, with the development of the robotic industry, related industrial applications have been widely 
deployed. The six-dimensional (6D) object pose estimation is one of the important tasks in the field of robotics, 
and it can be used in a variety of important scenarios, such as robotic grasping1,2 and autonomous driving3.

The 6D pose estimation is challenging to tackle due to variations in lighting, sensor noise, occlusion of scenes, 
and truncation of objects. The 6D pose estimation methods of a target object provide a robot with abundant 
information on the two-dimensional (2D)-three-dimensional (3D) spatial interactions4. However, the 6D posture, 
which includes the translation transformation of three degrees of freedom and the rotation transformation of 
three degrees of freedom, is often considered a coordinate transformation obtained from the object coordinate 
system to a camera coordinate system.

The existing works5,7 leverage the advantage of two-stage methods of a pose refinement module that is added 
at the end of the model to obtain more precise pose prediction results. The pose refinement module usually 
applies Perspective-n-Point (PnP) or Iterative Closest Point (ICP) to transform the pose matrix from the camera 
coordinate system to the object coordinate system. However, this module is very time-consuming, and these 
methods are typically trained using a surrogate target8 and adopt a 2D error loss function, which results in 
a relationship between the errors and the pose prediction accuracy that is not a one-to-one relationship13. 
Therefore, the result does not reflect the true object of the pose estimation. However, some studies13–15 applied 
a one-stage method and removed the pose refinement module, replacing it with a learnable network module, 
which increased the learnability of the network. Nevertheless, Cheng et al.15 proposed a method of intra- and 
inter-modality fusion for 6D pose estimation. However, this method is poorly interpretable due to the complex 
fusion and coupled pose estimation. The learnable module used to solve the final pose matrix in the work of Hu 
et al.13 is coarse, resulting in a lack of accuracy. At the same time, too many parameters can be easily produced 
when integrating pixel-wise features at various scales16, which can decrease the inference speed. In conclusion, 
the one-stage methods can compensate for some of the shortcomings of the two-stage methods, but they still 
suffer from poor interpretability and unbalanced accuracy and speed gains.

In view of the aforementioned, this work proposes a decoupled one-stage method (DON6D) network model 
for 6D pose estimation to overcome the existing problems related to low accuracy, interpretability, and speed. 
The flowchart of the proposed model is shown in Fig. 1, where it can be seen that it uses an attention residual 
encoder–decoder (ARED) to accelerate the object pose prediction using fully fused features as input data. Due 
to the inconsistency in the prediction process of the rotation and translation matrices, a decoupled approach is 
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used in the proposed model to allocate computational resources, which enhances the network`s interpretability. 
Lacking diversity in training data can result in model overfitting in training, so the proposed model adopts a 
dual data augmentation (DDA) strategy to address this problem. In contrast to the other approaches based on 
rendering backgrounds and composing objects, the DDA is a low-cost but effective method. The feature fusion 
block is fast, and an attention encoder (AE) is added to compensate for the possibility of the loss of accuracy. The 
attention mechanism of the encoder enables the network to attend to regions of interest efficiently to reduce the 
number of model parameters. This is an effective strategy to improve the inference speed, together with a residual 
decoder (RD), which follows the attention mechanism. The RD is differentiable and trainable, which replaces 
the refinement modules5,7; it is an effective module that considers both speed and precision.

The proposed method is evaluated on two datasets, the LINEMOD and YCB-Video datasets. The experimental 
results demonstrate that the proposed method can outperform the state-of-the-art (SOTA) methods for most 
types of objects.

To summarize, the main contributions of this paper are as follows:

An effective dual data augmentation (DDA) strategy that overcomes the lack of diversity in training data 
in the feature extraction module is proposed. This strategy does not introduce additional rendering and 
synthesis costs;
The AE that can make the network focus on key feature regions is presented;
The RD is proposed to replace the traditional refinement module, which improves the speed of network 
inference and ensures accuracy.

Related work
Pose estimation using two‑stage methods
Some previous works have used two-stage methods, which add a pose refinement module at the model end. 
These methods usually first extract 2D features from an image and use the PnP19 or ICP17 module at the end. The 
PoseCNN17 allows the decoupling of 6D pose estimation for small or symmetric objects, and it has been the first 
and most influential 6D pose estimation network that applies the ICP to the pose prediction. However, it is slow 
due to pose refinement. A segmentation-driven method18 can easily lose the correct 3D bounding box when an 
object is obscured, which can affect the calculation accuracy of the PnP. The PVNet7 predicts the direction of 
each pixel to each key point and allows uncertainty-driven PnP to measure the 6D pose. The segmentation-driven 
method18 and PVNet7 also perform segmentation and voting for each correspondence to increase robustness. In 
addition, to compensate for the low speed of some two-stage approaches, a number of algorithms6,11 use only RGB 
images as input data. In5,8, the authors exploited special pose refinements that are differentiable and trainable.
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Figure 1.   Flowchart of the proposed DON6D model. The DON6D model contains the object localization 
module, feature extraction and fusion module with a dual data augmentation function, ARED with an attention 
mechanism, feature-key point vector pipe, and box residual pipe.
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Pose estimation using one‑stage methods
One-stage methods represent end-to-end architectures and are usually faster than the two-stage methods. The 
G2L-Net14 extracts features from point clouds and then segments the point cloud to narrow the solution search 
space. At the same time, it uses the point-wise embedding vector features and rotation residual estimator to 
accelerate the inferencing process while improving estimation accuracy. The methods proposed in15,20,21 use a 
semantic segmentation network to narrow the solution search space. In general, a semantic segmentation head is 
slower in locating than an object detection head14,22. The single-stage approach13 integrates the RANSAC-based 
PnP algorithm into the network to construct an end-to-end network. That is a one-stage method to improve 
estimation accuracy and speed. Most current methods16,23 provide innovative concepts for one-stage networks. 
The CloudAEE23 exploits only point clouds for training to reduce the overhead of synthesizing color images. In16, 
it has been shown that using a multiscale pixel-wise feature fusion module instead of refinement is effective in 
improving the accuracy of object recognition.

Proposed method
Overview
In this section, the proposed DON6D network is described in detail, and its framework is shown in Fig. 2. The 
proposed framework first detects the object location based on the RGB-D input data. Then, the detected color 
information and point cloud information, obtained from a depth image, are fed to different feature extractors. 
More specifically, a Pyramid network is used to extract color features from an RGB image that has undergone 
patch augmentation, and an improved PointNet24 is employed to extract geometric features from point clouds 
that have undergone minor 3D deformations22. While extracting the geometric features, object translation is 
performed, and after that, these features are concatenated in the channel dimension. Finally, the ARED is applied 
to obtain the final 6D pose.

Object localization
According to the previous work5,25, learning the 6D pose of objects to be approximated from RGB-D images 
directly is challenging. Therefore, first, it is necessary to limit the 3D search space maximally to extract color and 
geometric features individually while preserving the intrinsic structure of data sources. Unlike the semantic seg-
mentation algorithms used in5,16,25, the proposed method requires only the bounding box of an object and, thus, 
can locate the object faster than the existing methods. In this work, a fast 2D object detector called the 6D-2DH 
(i.e., the 2D detection head for 6D pose estimation) is used to locate an object`s position in RGB-D images.

The network structure of the 6D-2DH contains three main sections: the backbone section, the neck section, 
and the detection head section, as shown in Fig. 3. Inspired by the work of Li et al.26, the 6D-2DH extends its 
design in the neck section by introducing certain improvements to the backbone and detection head sections. 
In summary, this section focuses on designing a simple object detection network using a re-parameters spatial 
pyramid pooling – Fast (RP-SPPF).

Figure 2.   DON6D framework. For the given RGB image and depth image, the proposed DON6D adopts the 
6D-2DH to locate the object as input. Then, the RGB image patch and the point cloud patch of the object are fed 
to the color pipe and the geometry pipe to extract data features, respectively. The term "seg" in the figure refers 
to the segmentation procedure of the object and background point clouds. In the geometry pipe, the translation 
matrix of the object is outputted at last. After fusing the features, the DON6D applies the ARED to estimate the 
rotation matrix.
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Spatial pyramidal pooling (SPP) was first proposed by He et al.27, and it can convert feature maps of arbitrary 
size into feature vectors of a fixed size. The SPP mainly solves the problem of image distortion caused by 
performing the cropping and scaling operations on image regions, as well as the problem of repeated extraction 
of relevant features from images by convolutional neural networks. By adopting the SPP operation, the candidate 
frame generation of the model becomes much faster, and the computational cost can be reduced. Based on the 
SPP, Glenn28 proposed a faster spatial pyramidal pooling (SPPF) model. In general, the prediction accuracy of 
this model can be improved by increasing the number of parameters, but at the same time, the increase in the 
number of parameters can reduce the model inference speed. Li26 and other researchers used the ReLu function 
to replace the activation function in the SPPF to improve the inference speed, but this still did not bring any 
substantial changes to the spatial pyramid pooling structure.

The idea of parametrization has resolved the conflict between the number of parameters and the inference 
speed to a certain extent. First proposed by Ding et al.29, the main idea of re-parameters is that the model training 
structure corresponds to a set of training parameters, and then another inference structure is used in the inference 
phase, and the training parameters are equivalently converted to inference parameters. This allows the model to 
use a large overhead during training while using a small overhead during the inference phase. As the convolution 
is linear (i.e., the convolution possesses additivity), by combining the idea of re-parameters with the SPPF model 
structure, the RP-SPPF model is designed and applied to the 6D-2DH model, as shown in Fig. 4.

The 40 × 40 × 192 feature map is fed to the RP-SPPF module and processed by a re-param block structure 
and three identical max-pooling layers to extract important information from the features. Further, the three 
resulting feature maps are merged in the channel dimension, as shown in Fig. 4. Finally, the stitched features are 
processed by a convolutional block CBL. As this image dataset contains a large number of duplicates, redundant 
blocks of background pixels are implemented in addition to the edge information and color information on 
the target object. Therefore, after extracting the important features using the max-pooling layer, they are not 
combined with the original input feature map.

Feature extraction and fusion
The RGB images contain visual information about low-textured objects, high occlusion, and various lighting 
situations; meanwhile, the depth images offer additional geometric information. During feature extraction and 
fusion, the main challenge is how to extract relevant color and geometric features and fuse them. The physi-
cal significance and distribution information of these features exist in separate spaces5, 10, despite the fact that 
they have comparable storage formats. In addition, experiments have shown that the training data of the same 
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Figure 3.   6D-2DH structure.
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object are highly similar, which can significantly affect the model performance on the validation and test sets. 
To enhance the generalization ability, performing data augmentation on training data is necessary; this will be 
verified in the subsequent ablation experiments. To this end, this study proposes a feature extraction-fusion 
mechanism with the DDA function. In addition, two pipes, namely the color pipe and geometry pipe, are used 
to extract color and geometric features, respectively.

Color pipe
In general, occlusion problems can make the 3D object pose estimation in realistic scenarios challenging, which 
can further make the ground truth of objects difficult to predict because their visual features are hidden. This 
study uses a data augmentation method named patch augmentation, which was proposed in6,8, to simulate trun-
cation after acquiring an RGB image Irgb of the target object recognized by the 6D-2DH. Unlike in6,8, this study 
dynamically intercepts a fixed-length patch image from Irgb. A patch image is defined as follows:

where w and h are the width and height of Irgb, respectively; μx,y is the mean; σx,y is the variance; ϕ represents a 
random set of x,y drawn from a normal distribution; x,y are the coordinates of the upper left corner of a patch 
image in Irgb; s is the size of a patch image.

Classical image recognition methods30, 31 are adequate but not sufficient in color feature extraction. Therefore, 
this study applies the approach introduced in9 to extract the RGB features. In contrast to9, the Pyramid Net (as 
shown in Fig. 5) uses simpler VGG31 frameworks and convolutional upsampling blocks to accommodate for the 
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high similarity and poor resolution, reducing the number of model parameters while increasing the inference 
speed.

Geometry pipe
The coordinates of the object center point, as well as the length and breadth of the enclosing box, are included 
in the output of the 2D object detector, the 6D-2DH. Since depth images are aligned with the RGB images, the 
6D-2DH result can be used directly on depth images, which can reduce the search space.

The method proposed in22, which transforms depth images into point clouds, is applied in this study. However, 
to improve the model’s generalization ability and lessen the correlation of point features collected from compara-
ble views, data augmentation is still required. Common transformation methods (e.g., translation, rotation, and 
scaling) cannot change the object shape in point clouds. In detail, the permutation invariance of point clouds32 
does not allow them to become fundamentally different from the original data after simple data augmentation, 
which hinders the model enhancement effect of simple data augmentation methods.

To solve the aforementioned problem, this study proposes using minor 3D deformation, which is based on 
the 3D deformation22. Therefore, instead of allocating individual points to the nearest 3D box surface, minor 
3D deformation is used to directly rotate and extend the total point cloud in small increments. Given the initial 
points P, the points generated after data augmentation Paug can be calculated as follows:

where Rrandom and Trandom denote the rotation and translation matrices generated from random numbers within 
a certain range, respectively; ɑ is the zoom scale.

To acquire the predicted centroid coordinates and the extracted geometric features, the data obtained after 
point segmentation are transferred into the subsequent pointNet network24. Then, a max pooling layer is used 
to generate the geometric features. The translation of points is easier to estimate than the rotation of points 
because the centroid’s displacement distance T substitutes the translation value of the entire object. The idea 
of a translational and rotational decoupling prediction is adopted, which consumes more resources to predict 
rotation R but a simpler network structure to predict translation T.

Feature fusion
After the color and geometric features are obtained, they need to be fused. Motivated by the results presented 
in5, this study adopt a fusion approach of concatenating feature in the channel dimension directly, as presented 
in Fig. 2. In contrast to5, in this study, max pooling is used instead of average pooling to generate global features 
because it can better depicts the notable parts of a feature map.

ARED structure
This study aims to design an encoder–decoder structure capable of coding and decoding fused information to 
compute the object’s rotation matrix, which is necessary for 6D pose estimation.

Although the transformer structure employed in21,33 is innovative in this domain, it has a large number of 
parameters, which is an unavoidable disadvantage for 6D pose estimation methods that must meet real-time 
detection requirements. However, a large number of parameters can entail a higher memory overhead and a 
longer training time.

This study employs the ARED structure, presented in Fig. 6, to solve the aforementioned difficulty. As shown 
in Fig. 6, this structure contains an encoder with an attention mechanism34 and a decoder with a residual 
structure. After fusion, the proposed network framework can fully learn features while spending as little time 
as possible to infer an object’s 6D pose.

AE Structure
Recent 6D pose estimation networks23,25,35,36 include an essential component, namely the self-attentive 
mechanism36, which not only improves the network’s learning of focus characteristics but also replaces com-
plicated modular stacking structures. It has been demonstrated that the self-attentive mechanism is very stable 
and effective. This framework plays a vital role in subsequent model training, which requires long-term reliance 
on its outcomes.

The AE adopts a channel attention module34 and a spatial attention module34 (CASA), followed by MLPs24,37 
to meet the encoder’s demands. The CASA in the AE structure is used to process one-dimensional features. The 
feature encoding is finished after processing the CASA result by a series of MLPs. It should be noted that the 
model is trained for the downstream task of 6D pose estimation and does not employ any specific loss terms to 
train the CASA.

As shown in Fig. 6, an input feature map Гfusion has a shape of RC×N , where N is the number of features and 
C is the number of channels for each dimensional feature before the main network. consisting of the attention 
encoder and residual decoder, starts. In this work, channel attention feature map Гchannel and spatial attention 
feature map Гspatial are defined as follows:

where Attentionchannel(·) is the block of the channel attention module, and Attentionspatial(·) is the block of the 
spatial attention module.

(2)Paug =
(

Rrandom ×
(

(P − P)× α + Trandom

)T
)T

,

(3)
{

Ŵchannel = Ŵfusion × Attentionchannel(Ŵfusion)

Ŵspatial = Ŵchannel × Attentionspatial(Ŵchannel)
,
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Some of the subsequent blocks of the MLPs play an important role in learning the feature matrix. To obtain 
the final encoding result, the feature map after the max-pooling operation is concatenated with the results of 
the successive MLPs.

RD structure
Different from previous classic 6D pose estimation models5,7,12,17, which require an additional refinement mod-
ule, recent studies16,38–40 have used a variety of fast approaches instead of the refinement module to increase the 
model’s inference speed and meet the real-time requirements.

However, excluding the pose refinement operation unavoidably results in a certain accuracy loss. To address 
this problem, this study proposes the RD structure that has a small weight, is simple to comprehend, and has a 
high accuracy.

The RD employs feature-key point vectors and key point boxes to constrain the model jointly. Rotation 
matrices9,16 and quaternions5,7 are the most common constraints for network convergence. However, for sym-
metric objects, several rotation labels can correspond to the same appearance25, having a minimal influence on 
translation and contributing to mistakes in rotation estimates. In contrast, quaternions have downsides. The 
unit-norm limitation applies to quaternions, limiting the network`s output range12. Feature-key point vectors 
(FPVs) V ∈ R

N×3×n , where N is the number of features, and n is the number of key points, estimate the rota-
tion matrix by using vectors from each feature point to the key points7,41. The FPV analyzes how symmetrical 
objects affect the evaluation result. Similarly, the key points box (KPB),B ∈ R

3×n , evaluates the rotation of an 
object based on the change of key points.

The FPV performs a series of convolutions, normalization, and non-linear function Convs(·) to evaluate 
vector nV; it computes V using the aggregated feature Гagg as follows:

The KPB contains the box prediction (BP) pipe and box residual (BR) pipe, which both include Convs(·) 
and a max pooling layer Pooling(·). The KPB result denotes the 3D coordinates of the n key points instead of a 
rotation matrix. The final rotation matrix R ∈ R

3×3 is calculated based on the key points’ positions using the 
Kabsch algorithm. The calculation process of the KPB is as follows:

where ⊕ is the matrix adding operation; Bbox and Bresidual are the results of the BP and BR pipes, respectively.
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Loss function
This section defines the loss function employed in the proposed model. The loss function LT measures the 
Euclidean distance between the label’s centroid coordinates and the prediction’s centroid coordinates, and it is 
defined as follows:

where C̃x,y,z denotes the centroid coordinates of the label; Cx,y,z represents the centroid coordinates of the predic-
tion; T̃ is the translation value of the label; Mseg is the mean of points after point segmentation.

The point vector Ṽ  from the feature point to the key point is used as a label. In addition, to constrain the 
rotation estimation of objects, particularly symmetric objects, Lvec encourages V to be as accurate as possible. 
The loss function Lvec of FPV is expressed as follows:

The essence of the KPB is to use the positions of key points to obtain the rotation matrix. The loss functions 
Lbox and Lresidual punish the errors in the positions of the predicted key points, and they are defined as follows:

where B̃ denotes the key points’ coordinates for the label.
Finally, the total loss function Ltotal is defined as follows:

where the Lseg represents the loss of point segmentation24, and the λi (i = 1, 2, 3, 4, 5) denotes the weight of the 
corresponding loss.

Experiments
The experiments were conducted to demonstrate the proposed method’s performance in tackling the challenges 
that arise in two challenging datasets, namely, the LINEMOD4 and YCB-Video42 datasets, which were selected 
to evaluate the performance of the proposed method. The evaluation metrics included the ADD, the ADD-S, 
and the ADD(-S) AUC, which are all described below.

Implementation details
The PyTorch was used to implement the proposed framework. All experiments related to model training were 
performed on a desktop pc with an Intel 2.40 GHz CPU and two NVIDIA 3090 GPUs, using a depth image of 
640 × 480 and an RGB image of the same size; also, the 6D-2DH was used as a detector. As for the model test 
experiments, a device with an Intel 2.40 GHz CPU and an NVIDIA 3090 GPU was applied.

First, the 6D-2DH framework with the pretrained model25 was used to locate the object of interest. Then, 
the corresponding depth map was converted into point cloud data. The Pyramid Net was used to fine-tune the 
VGG. Some max-pooling layers were removed. When the fusion feature entered the attention block, the chan-
nel was unchanged, and the kernel size was set to seven. In this experiment, the units were standardized to mm. 
The Adam optimizer was employed to optimize the proposed network model. The initial learning rate was set 
to 0.001, and the learning rate decayed by 0.25 every 75 epochs. The maximum epoch number was set to 300. 
The weights λi (i = 1, 2, 3, 4, 5) were set as follows: λ1 = 10, λ2 = 0.1, λ3 = 10, λ4 = 0.01, and λ5 = 0.01. The ɑ value in 
Eq. (2) was set to 0.9; the values of N and n were set to 1000 and eight, respectively.

Datasets
The LINEMOD4 is a classical dataset that has been widely used for 6D object pose estimation. Some SOTA 
methods5 6 7 11 16 39 have used this dataset to construct the training and test sets, so these methods could be 
compared with the proposed method. Further, a Kinect camera was used to capture images, including RGB and 
depth images; the images were automatically aligned. This dataset contained 13 low-textured objects of different 
types, each of which included annotated 6D poses and object masks. The cluttered scenes, texture-less objects, 
and lighting variations changes denoted the main challenges in this dataset. This study employed 15% of each 
item sequence for model training, and the remainder was used to test the trained model.

The YCB-Video42 is another standard benchmark dataset, which contains 21 YCB objects of different shapes 
and textures. This dataset contained 92 RGB-D videos, each with a subset of the objects placed in the scene. It is 
challenging due to varying lighting conditions, image noise, and occlusions. In the experiment, we divided the 
training set and test set according to previous work17.

In order to train the point clouds with the process seg that appears in Fig. 2, we apply an automatic way43 to 
label.

Evaluation metrics
The ADD metric defined by Eq. (10) 44 was used as an evaluation metric for non-symmetric objects.

(6)

{

C̃x,y,z = T̃ −Mseg

LT=
∥

∥Cx,y,z − C̃x,y,z

∥

∥

2

,

(7)Lvec =
∥

∥V − Ṽ
∥

∥

2

(8)

{

Lbox =
∥

∥Bbox − B̃
∥

∥

2

Lresidual =
∥

∥Bresidual − B̃
∥

∥

2

,

(9)Ltotal = �1 × Lseg + �2 × LT + �3 × Lvec + �4 × Lbox + �5 × Lresidual ,
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In Eq. (10), x denotes a total of m points on the object mesh P; R is the ground truth rotation; t is the ground 
truth translation; R̂ is the estimated rotation; t̂  is the estimated translation.

For symmetric objects, such as eggbox and glue, the ADD-S metric44 defined by Eq. (11) was adopted, and 
the average distance was calculated using the shortest distance to evaluate the model`s performance.

The mean distance between two converted point sets was used as a threshold. In the evaluation process on the 
LINEMOD dataset, the threshold was set to 10% of the 3D object model diameter. The ADD(-S) metric, which 
used ADD-S for symmetrical objects and ADD for non-symmetrical objects, was adopted to compute the model’s 
performance. In the evaluations on the YCB-Video dataset, this study followed the suggestions provided in17 
and adopted the ADD(-S) AUC metric, which combined AUC for ADD metric used in non-symmetric objects 
and AUC for ADD-S metric used in symmetric objects. The ADD(-S) AUC metric denoted the area under the 
accuracy-threshold curve whose maximum threshold was set to 0.1 m.

Comparison with SOTA methods
Evaluation on the LINEMOD dataset: The proposed network was compared with seven SOTA pose estimation 
algorithms. Based on the results in Table 1, the best mean score of the proposed method achieved in the com-
parison tests was 98.6%. The best scores of the other methods were as follows: PVNet7 (86.3%), CDPN6 (89.9%), 
HybridPose11 (94.5%), DenseFusion5 (94.3%), CloudAAE23 (95.5%), Crt-6d5 (93.5%) , CloudAAE23 (86.8%) 
without refinement, and Gao16 (94.6%). The proposed DON6D method performed best on 10 of the 13 objects 
from the LINEMOD dataset. Moreover, the proposed DON6D method outperformed the second-best method 
(i.e., the CloudAAE method), by 3.1%. Particularly, for the egg box object, the DON6D method achieved a 
performance of 100%, the same as Gao16. Since the most classical two-stage 6D pose estimation network, the 
PVNet7, used only RGB images as input data, while the proposed method combined the RGB images and depth 
images, the DON6D had a lower speed, as shown in Table 2, but improved the mean score by 12.3% compared to 
the PVNet. As presented in Table 2, there were differences in the speed between the proposed DON6D method 
and the SOTA algorithms. The DON6D with 41 FPS employed an attention residual encoder–decoder to increase 
speed and maintain accuracy. The results indicated that the proposed algorithm was faster than most SOTA 
algorithms5,16 23 but slightly slower than the PVNet7.

The proposed DON6D was also tested for the average distance thresholds of less than 0.01 m. This allowed 
for assessing how well the proposed model could perform in high-precision posture estimation tasks. As shown 
in Fig. 7, on the LINEMOD, the accuracy for different objects varied with the threshold. However, the curves for 
all types of objects were positively correlated with the mean distance threshold, with no significant anomalous 
parts. For all target items, except for the duck object, the accuracy exceeded 80% at a threshold of 0.007 m; at a 

(10)ADD=
1

m
×

∑

x∈P

∥

∥

∥
(Rx + t)− (R̂x + t̂)

∥

∥

∥

(11)ADD−S=
1

m
×
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x1∈P

min
x2∈P

∥

∥

∥
(R · x1 + t)− (R̂ · x2 + t̂)

∥

∥

∥

Table 1.   The 6D pose estimation results on the LINEMOD dataset; the ADD(-S) metric was used to compute 
the performance of objects; objects with “*” indicate symmetry objects; numbers written in bold denote the 
best results obtained in the comparison tests; methods indicated by italic letters did not include subsequent 
refinement.

[18]Objects

Two-stage methods One-stage methods

PVNet CDPN HybridPose DenseFusion CloudAAE Crt-6d CloudAAE Gao DON6D
7 6 11 5 23 5 23 16 (Ours)

Ape 43.6 64.4 77.6 92.3 92.5 96.4 80.2 89 96.9

Benchvise 99.9 97.8 99.6 93.2 91.8 91.3 85.7 93.1 98.5

Camera 86.9 91.7 95.9 94.4 88.9 84.8 61 95.9 98.6

Can 95.5 95.9 93.6 93.1 96.4 97.1 93.1 93.2 98.5

Cat 79.3 83.8 93.5 96.5 97.5 98.0 94.4 95 99.7

Driller 96.4 96.2 97.2 87 99 94.7 98.2 94.2 99.4

Duck 52.6 66.8 87 92.3 92.7 86.8 62.6 90.3 94.8

Egg Box* 99.2 99.7 99.6 99.8 99.8 100 99.8 100 100

Glue* 95.7 99.6 98.7 100 99 100 94.1 100 98.6

Holepuncher 81.9 85.8 92.5 92.1 93.7 92.1 84.4 92.2 98.8

Iron 98.9 97.9 98.1 97 95.9 90.1 89.5 96.5 98.5

Lamp 99.9 97.9 96.9 95.3 96.6 97.3 91.6 95.1 99.9

Phone 92.4 90.8 98.3 92.8 97.4 88 93.5 94.8 99.1

Average 86.3 89.9 94.5 94.3 95.5 93.5 86.8 94.6 98.6
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threshold of roughly 0.072 m, the duck attained an accuracy of 80%. In addition, only the duck and the ape had 
an accuracy of 80% at a threshold of 0.006 m. Considering the integration of annotation and physical analysis 
on this dataset, there could be two causes for such results. The proposed model could detect and estimate the 
weakly textured, weakly illuminated objects incorrectly because their edge parts were similar to the background 
pixels; another factor could be a large error of the camera in capturing depth information, such as an ape, which 
denoted an object for which even small changes in the depth level might not be fully captured due to occlusion, 
shooting angle, or hardware. For example, the larger the object was (e.g., a desk lamp, iron, and vise), the smaller 
the average threshold required for maintaining an accurate estimation was. When the threshold was less than 
0.004, the accuracy of all objects decreased sharply.

In Fig. 8, the estimation results for different types of objects obtained using different threshold values are 
presented.

Evaluation on the YCB-Video dataset: The results of the proposed DON6D on the YCB-Video dataset are 
presented in Fig. 9. Different from the LINEMOD dataset, each frame in the YCB-Video dataset included 
numerous objects, so there could be many occlusions and phases in the same image, posing a challenge to the 
proposed model. In addition, the prediction difficulty was further increased due to the inconsistency of the 
training and test datasets. Further, from Table 3 the proposed DON6D was compared with the SOTA algorithms7 
16 17 39 regarding different metrics. In terms of the ADD(-S) AUC metric, the DON6D achieved the best result of 
88.3% among all methods. The DON6D outperformed the other algorithms on five objects. The proposed method 
performed 1.8% better than the competitive PoseCNN + ICP method17 in terms of the mean score, but it was 
more than 200 times faster than it. Particularly, the speed of the DON6D was 23 FPS, which could satisfy real-
time requirements; this demonstrates the advantage of the proposed model. Compared to the recent methods, 
the Gao16 and ROPE39 methods, the proposed method had many high-score objects. It should be noted that the 
proposed method had the best performance of 2/5 on symmetric objects, outperforming the PoseCNN + ICP17, 
PVNet7, and ROPE39 methods.

Ablation studies
The proposed DON6D was tested under different setups on the LINEMOD dataset to explore the proposed 
modules’ effects on the overall model performance. Compared to the other methods used in the comparison5 7 

Table 2.   The speed (frames per second, FPS) of different methods on the LINEMOD dataset. Methods written 
in italics did not include subsequent refinement modules.

Methods

PVNet DenseFusion DenseFusion Gao CloudAEE CloudAEE DON6D
7 5 5 16 23 23 (Ours)

FPS 42 26 34 30 22 24 41

Figure 7.   Accuracy-threshold curves for different objects from the LINEMOD dataset.
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16 23, the DON6D included three innovations. First, in the AE, the channel attention mechanism and the spatial 
attention mechanism were used to process the fused feature maps successively so that the information of interest 
about the network could be better used. Then, the RD, which included the FPV, BR, and BP, was used to improve 
the speed while maintaining accuracy. Finally, the DDA was used to further enhance the performance of the 
proposed network. The ADD(-S) metric was used to evaluate the performance of the mentioned innovations of 
the DON6D on the LINIMOD dataset, as shown in Table 4.

Conclusion
This study introduces the DON6D model, which is a decoupled one-stage network for 6D pose estimation. 
The DON6D model decouples the 6D pose estimation process into the object localization, feature extraction 
and fusion, and attention residual encoding–decoding processes. In the object localization process, a 6D-2DH 
model, which is faster and lighter than object segmentation approaches, is used to locate the object`s position. 
Then, to enhance the generalization ability of the proposed model, the DDA is applied to feature extraction and 
fusion. In addition, the AE is used to replace complex modular stacking systems. Further, due to the difficulties 
of rotation matrix prediction and the restrictions of common constraints, the RD that combines the feature-key 
point vector pipe and the box residual pipe is used. The results of the experiments on publicly available datasets 

Figure 8.   Results on the LINEMOD dataset. The green 3D bounding boxes denote the results of the proposed 
method; the red 3D bounding boxes represent the ground truth.

Figure 9.   Prediction results of the proposed method on the YCB-Video dataset. The red 3D bounding boxes 
denote the ground truth, and the other boxes represent the estimation result.
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demonstrate that the proposed DON6D can achieve an accurate real-time estimation and outperform the SOTA 
pose estimate algorithms in terms of accuracy.

In the future, on the premise of maintaining accuracy, the branching of the proposed network could be 
reduced to make the network faster.

Data availability
The data used to support the findings of this article is publicly available at https://​bop.​felk.​cvut.​cz/​datas​ets/ and 
https://​rse-​lab.​cs.​washi​ngton.​edu/​proje​cts/​posec​nn/ .
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