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Impact of time‑history 
terms on reservoir dynamics 
and prediction accuracy in echo 
state networks
Yudai Ebato 1*, Sou Nobukawa 1,2,3,4, Yusuke Sakemi 4,8, Haruhiko Nishimura 5, 
Takashi Kanamaru 6,8, Nina Sviridova 7,8 & Kazuyuki Aihara 4,8

The echo state network (ESN) is an excellent machine learning model for processing time‑series 
data. This model, utilising the response of a recurrent neural network, called a reservoir, to input 
signals, achieves high training efficiency. Introducing time‑history terms into the neuron model of the 
reservoir is known to improve the time‑series prediction performance of ESN, yet the reasons for this 
improvement have not been quantitatively explained in terms of reservoir dynamics characteristics. 
Therefore, we hypothesised that the performance enhancement brought about by time‑history 
terms could be explained by delay capacity, a recently proposed metric for assessing the memory 
performance of reservoirs. To test this hypothesis, we conducted comparative experiments using 
ESN models with time‑history terms, namely leaky integrator ESNs (LI‑ESN) and chaotic echo state 
networks (ChESN). The results suggest that compared with ESNs without time‑history terms, the 
reservoir dynamics of LI‑ESN and ChESN can maintain diversity and stability while possessing higher 
delay capacity, leading to their superior performance. Explaining ESN performance through dynamical 
metrics are crucial for evaluating the numerous ESN architectures recently proposed from a general 
perspective and for the development of more sophisticated architectures, and this study contributes 
to such efforts.

Keywords Leaky integrator ESN, Echo state network, Reservoir computing, Time-series prediction, Time-
history terms

The echo state network (ESN) is a highly efficient machine learning model suitable for processing time-series 
 data1. This model has been applied in various engineering applications such as  control2, speech  recognition3, 
motion  classification4, and network traffic  prediction5 (reviewed by Tanaka et al.6 and Nakajima and  Fischer7). 
The ESN comprises three main components: external inputs, a recurrent neural network (RNN) referred to as 
a reservoir, and a readout layer responsible for extracting spatio-temporal signal responses from the reservoir 
(refer to the overview of the ESN’s network structure in Fig. 1). In the ESN framework, the connection weights 
of the reservoir are set random, whereas the readout layer undergoes a learning  process8. Despite its simplic-
ity, the non-linear responses from the high-dimensional reservoir dynamics, combined linearly by the readout 
layer, achieve high learning  efficiency9. This is particularly noteworthy when compared with other RNN-based 
machine learning models such as backpropagation through  time10.
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To enhance ESN performance, it is crucial to optimise both the structure of the  reservoir11–16 and the dynami-
cal characteristics of the neurons within  it17. In the domain of network structure, Kawai et al. studied the impact 
of small-world topology on signal transfer efficiency within the  reservoir11. Gallicchio and colleagues introduced 
a multi-layered reservoir to diversify the time scales of reservoir  dynamics12,13. Additionally, Iinuma et al. found 
that parallelisation of reservoir assembly is effective for tasks requiring multi-dimensional  inputs14. Reservoirs 
with various neuronal dynamics characteristics, including ESN and liquid state machines (LSMs), have been 
extensively studied, as shown in the  literatures18,19. In terms of intrinsic neuronal dynamics, research has high-
lighted the importance of fine-tuning the neurons’ time-history terms to optimise the time scale of neuronal 
activity. Leaky integrator ESNs (LI-ESNs) have emerged as prevalent models in this context, enabling the adjust-
ment of neuronal time constants (called as leak rate) to harmonise reservoir dynamics with the input time series’ 
time  scale20. Empirical studies have also shown that LI-ESNs outperform ESNs composed of neurons without a 
leak effect (called as fully-leaky neurons) in terms of time-series prediction  capabilities21. Furthermore, chaotic 
neurons, another class of models equipped with multiple decay factors, possess decay coefficients corresponding 
to external inputs, feedback inputs, and refractory different  periods22. Unlike leaky integrator neurons, chaotic 
neurons display spatio-temporally diverse  dynamics23. Recent findings indicate that ESNs utilising chaotic neu-
rons (chaotic echo state network [ChESN]) also outperform traditional fully-leaky ESNs in time-series predictive 
 performance24,25.

Performance improvements due to such reservoir components and the structures can be substantiated 
through an analysis of reservoir  dynamics26. The attributes of reservoir dynamics contributing to time-series 
prediction can be generally categorised into three areas: memory capacity for input  signals27,28, expressiveness 
of the output  signals17,29, and consistency between input and output signals known as echo state  property30–32. 
Concretely, the reservoir must preserve relevant information from the input time series for accurate predic-
tions; therefore, the memory capacity is  important27. Moreover, the expressiveness of the output signals relates 
to the diversity of reservoir neuronal responses to  inputs17. Since an ESN’s output is a linear combination of 
reservoir neuronal behaviours, such diversity is crucial for enhancing the model’s fitting  ability17. However, 
overly promoting such diversity can destabilise reservoir dynamics, potentially making the system sensitive to 
input perturbations or causing long-lasting influence from past inputs, thereby affecting output  consistency31. 
Therefore, maintaining an optimal balance between output expressiveness and consistency is  essential33. Given 
these considerations, it becomes clear that understanding the reservoir’s dynamical characteristics is vital for 
optimising performance in time-series prediction tasks.

Previous studies have established that intra-neuronal time-history terms contribute to the time-series predic-
tion performance of  ESNs21,24, 25. However, to the best of our knowledge, the specific impact of these time-history 
terms on reservoir dynamics—-and thus on time-series prediction performance—-remains unexplored. These 
time-history terms can slow down the time scale of reservoir dynamics, facilitating longer retention of input 
signal information, which is likely to enhance the memory capabilities of the reservoir. In this context, we hypoth-
esisze that the observed performance differences between fully-leaky ESNs and ESNs with time-history terms can 
be attributed to delay  capacity28, which serves as a linkage between the time scale and memory performance of the 
reservoir. In this article, to validate this hypothesis, we aimed to examine the performance of two ESN variants 
with time-history terms, specifically LI-ESN and ChESN, in two different time-series prediction tasks. In these 
models, time-history terms of LI-ESN and ChESN correspond to the leak rate and the decay factors, respectively. 
We also aimed to investigate the memory capabilities of these models’ reservoirs through delay capacity, and we 
gauge their dynamical diversity and stability using metrics of the covariance rank and consistency.

Results
Figure 1 shows the structure of an ESN, which is composed of an input layer, a reservoir, and a readout layer. 
In this architecture, only the weights of the readout layer are trained, which highlights the ESN’s efficiency in 
handling dynamic inputs. The input signal u(t) ∈ R is transformed by the input vector win ∈ R

Nx and then fed 
into the reservoir. In this study, Nx , representing the number of neurons, is set to 100. For clarity, all vectors 

Figure 1.  Overview of the structure of echo state network (ESN). Input signal u(t) is transformed by the input 
vector win and given to all reservoir neurons. The firing state of reservoir neurons is represented by the column 
vector x(t) . The recurrent input to the reservoir neurons is computed as Wx using the weight matrix W . The 
ESN output y(t) is computed as Eq. (2) using the readout vector wout.
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in this paper, including win , are presented as column vectors. The reservoir’s state is represented by the vector 
x(t) ∈ R

Nx , reflecting the neuron firing patterns and playing a crucial role in the network’s processing capability. 
The recurrent inputs within the reservoir are calculated using the weight matrix W ∈ R

Nx×Nx , represented by 
Wx , facilitating the network’s ability to recognise complex temporal patterns. The output y(t) ∈ R is generated 
using the readout vector wout ∈ R

2Nx+1 , as described in Eq. (2). The update equation for the reservoir of fully-
leaky ESN is given the following:

Here, f (·) is the element-wise activation function, with f (·) defined as the hyperbolic tangent function. The 
output of ESN y(t) is obtained by wout:

Here, x(t)2 represents the reservoir firing state vector, where each component is  squared34. This squared term 
was incorporated in accordance with Carroll’s  research28.

In this study, we used two types of ESNs whose reservoir neuron models have time-history terms. The first 
one is LI-ESN. Unlike the fully-leaky ESN, the update equation for the reservoir in LI-ESN has a parameter called 
the leak rate αl ∈ (0, 1] , which adjusts the neuronal time constant:

When the leak rate αl = 1 , it becomes the update equation for fully-leaky ESN. The second one used in this 
study is ChESN. The chaotic  neurons22,23 have three internal states corresponding to external inputs, feedback 
inputs, and refractory periods ξ(t), η(t), ζ (t) ∈ R

Nx and three decay coefficients ke , kf , kr ∈ [0, 1) corresponding 
to three internal states:

Here, α ∈ R is the scaling parameter for refractoriness, and θ ∈ R is the threshold. By adjusting the three decay 
coefficients of the chaotic neurons, the ChESN is capable of exhibiting a diverse type of dynamics especially 
including chaotic dynamics. It is important to note that although this model is named ‘chaotic’, the use of chaotic 
neural networks as reservoirs does not inherently mean utilising chaotic behaviour. Indeed, for optimal reservoir 
performance, it is often more effective to avoid chaotic behaviour to ensure consistent input-output relation-
ships. Furthermore, to minimise the cost of parameter optimisation in this study, the parameters ke , α , and θ of 
the ChESN were fixed. Specifically, ke = 0.01 , α = 0.9 , and θ = 0 were set. Moreover, ChESN can be simplified 
to a form similar to LI-ESN, resulting in comparable performance (refer to Supplementary Note 2 of the Sup-
plementary Materials). Here, the main hyperparameters of fully-leaky ESN are the input scaling parameter sin 
in the input layer:

and the spectral radius of the reservoir coupling weight matrix ρ(W) , adjusted to r by

Here, winit
in ∈ R

Nx is a random vector, and Winit ∈ R
Nx×Nx is a random sparse matrix with a connectivity rate of 

0.1, with elements generated from a uniform distribution in the range [−1, 1] . ρ(·) represents the largest eigen-
value. By adjusting these parameters, the reservoir dynamics was optimised for the target  task8. In addition to 
these parameters, the time-history terms (in LI-ESN, the leak rate; in ChESN, the decay coefficients) are also 
adjusted as hyperparameters.

Although previous research has shown that the incorporation of time-history terms can enhance task 
 performance21,24, 25, the precise impact of these dynamics remains unclear. To address this, we evaluated the 
performance implications of time-history terms by utilising indices of reservoir dynamics such as delay capacity, 
covariance ranks, and consistency. The experiments assessed, first, the enhancement of time-series prediction 
accuracy through the integration of time-history terms into the ESN; second, the investigation of dynamic indices 
in reservoirs exhibiting high performance; and third, the examination of the range of delay capacity attainable 
by each model.

The first experiment involves a comparison of time-series prediction performance. The time-series data used 
are depicted in Fig. 2. The tasks are to predict the z-component based on the x-component for both the Lorenz 
and Rössler  systems35,36. In the left panels of Fig. 3, which presents the results of the performance comparison, 
we display the time-series prediction performance at the optimal parameters identified through grid search. 
This figure reveals that ESNs incorporating time-history terms excel in time-series prediction tasks for both the 

(1)x(t + 1) = f (winu(t + 1)+Wx(t)).

(2)y(t) = w
T
out





x(t)
x(t)2

1



 .

(3)x(t + 1) = (1− αl)x(t)+ αl f (winu(t + 1)+Wx(t)).

(4)

x(t + 1) = f (ξ(t + 1)+ η(t + 1)+ ζ (t + 1)),

ξ(t + 1) = keξ(t)+ winu(t + 1),

η(t + 1) = kf η(t)+Wx(t),

ζ (t + 1) = krζ (t)− αx(t)+ θ .

(5)win = sinw
init
in

(6)W = r
W

init

ρ(Winit)
.
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Lorenz and Rössler systems. These observations confirm that the inclusion of time-history terms in LI-ESN and 
ChESN enhances predictive performance in time-series tasks.

In the second experiment, we assessed the characteristics of dynamics in the reservoirs with high performance 
using dynamic indices. Figure 4 illustrates the dynamic indices of the reservoirs, corresponding to the optimal 
parameters to achieve high accuracy. The figure shows that both LI-ESN and ChESN have higher delay capacities 
than the fully-leaky ESN. In addition to assessing delay capacity, we concurrently evaluated two other critical 
metrics: the covariance rank, as a measure of reservoir diversity, and consistency, as a measure of stability. These 
properties are vital for optimal reservoir  performance17,29, 31, 32. Across all models, the reservoirs that achieve 
superior performance shown in Fig. 3 consistently exhibit the highest levels of the covariance rank ( Ŵ = 201 ) 
and consistency ( � ≈ 1 ), indicating their optimal dynamical diversity and stability.

In high-performance reservoirs with time-history terms, achievement of a delay capacity higher than that of 
fully-leaky ESNs can be attributed to the presence of these time-history terms. To confirm this, we investigated 
how delay capacity is distributed in each model under conditions where the covariance rank and consistency are 
at their maximum values ( Ŵ = 201,� ≥ 0.999 ). Figure 5 features scatter plots correlating NRMSE in time-series 
prediction with delay capacity. Each data point on the scatter plots represents a sample obtained through grid 
search, including the optimal parameters shown in Fig. 3 for each respective model. In Fig. 5, red points indicate 
samples with a full-rank covariance matrix and consistency values above 0.999. The figure clearly demonstrates 
that the fully-leaky ESN is unable to achieve the delay capacities observed in the optimal reservoir configura-
tions of LI-ESN and ChESN ( DC ≈ 8 for the Lorenz task, DC ≈ 15 for the Rössler task), as presented in Fig. 3, 
while also maintaining both diversity and stability. More detailed comparison of the performance involving the 
case using the other performance metrics and delay capacity in training/validation set among fully-leaky ESN/
LI-ESN/ChESN was shown in Supplementary Note 3 of the Supplementary Materials.

Moreover, we presents the evaluation results using memory capacity, a metric more commonly used than 
delay capacity for measuring the memory of reservoirs. Figure 6 shows the memory capacity in high-performance 
reservoirs, with parameters identical to those in Fig. 3. Despite the observed performance differences in the Lor-
enz task, as illustrated in Fig. 3, memory capacity differences were not significant. In the Rössler task, although 
the time-history terms clearly contribute to performance in LI-ESN and ChESN, the fully-leaky ESN’s memory 
capacity surpasses those of both LI-ESN and ChESN. Furthermore, Fig. 7 illustrates the distribution of memory 
capacity across different models. The samples in Fig. 7 were obtained through grid search corresponding to Fig. 5. 
This figure reveals no substantial differences in the distribution of memory capacity. These observations indicate 

Figure 2.  Plot of the time-series data used for prediction task. The blue line represents the input signal, whereas 
the red line indicates the target output. The tasks predict the z-component based on the x-component for both 
the Lorenz and Rössler  systems35,36. To generate the time series, the fourth-order Runge-Kutta method, with a 
time step of 0.02, was used for the Lorenz system, whereas for the Rössler system, a time step of 0.3 was used. 
These time steps correspond to one step of the input signal and the update of the reservoir dynamics.
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that although memory capacity measures a similar aspect of reservoir dynamics as delay capacity, it does not 
account for the performance improvements associated with time-history terms.

Discussion
Our investigation was primarily aimed at understanding the impact of introducing time-history terms on reser-
voir dynamics and performance in time-series prediction tasks. Across three different experiments, we validated 
our hypothesis that the incorporation of time-history terms enhances the delay capacity of the reservoir, thereby 
improving its performance in time-series prediction. Specifically, the first experiment demonstrated that ESNs 
with time-history terms outperform those without them in the time-series prediction tasks for both the Lorenz 
and Rössler systems. The second experiment indicated that high-performing reservoirs tend to exhibit high 
delay capacities as well as dynamical diversity and stability, as reflected in their covariance ranks and consistency. 
Finally, the third experiment showed that fully-leaky ESNs are suboptimal in maintaining a high delay capac-
ity while also ensuring stability and diversity. These findings collectively provide evidence that the integration 
of time-history terms in ESNs significantly augments their capabilities in handling complex time-series tasks.

The performance differences between fully-leaky ESNs and those with time-history terms were analysed from 
the viewpoint of dynamical characteristics. LI-ESN and ChESN can achieve a broad spectrum of delay capacities, 
in addition to offering dynamical diversity and stability, as depicted in Fig. 5. Furthermore, despite using different 
neuron models, LI-ESN and ChESN reach peak performance at similar delay capacity values. These results are 
consistent with Carroll’s research, which suggests the existence of an optimal level of a reservoir’s memory to 
retain input information, dependent on factors such as the time scale of the input  signal28: this optimal memory 

(a) Lorenz task

ksatrelssöR)b(

Figure 3.  Time-series prediction performance at optimal parameters obtained through grid search. The 
performance metric is the normalised root mean square error (NRMSE) between the target output and the 
predictions. The main hyperparameters affecting the performance of the reservoir in each model, namely the 
spectral radius and input scaling, are set to values that minimise the average NRMSE across 10 trials with 
varying seed values for LI-ESN and ChESN. For LI-ESN and ChESN, the spectral radius and input scale are 
fixed at the optimal values, and the time-history term that yielded the lowest NRMSE for each seed value is 
adopted (i.e., αl in LI-ESN and kf  , kr in ChESN). For simplicity, some parameters of ChESN are fixed without 
grid search ( ke = 0 , α = 0.9 , θ = 0 ). Regarding the fully-leaky ESN, the spectral radius and input scaling were 
optimized for each seed value. Error bars represent the standard deviation across the 10 trials.
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might correlate with the time scale of the input time  series28. In our results, for the Rössler task, a greater delay 
capacity is essential, likely because its time series unfolds at a slower rate than that of the Lorenz system (see 
Fig. 2). Specifically, the Rössler task necessitates a larger value for optimal performance than the Lorenz task—
approximately 8 for Lorenz and about 15 for Rössler, as illustrated in Fig. 4. Although the fully-leaky ESN’s 
reservoir achieves the maximum covariance rank and consistency, it falls short of the optimal delay capacity 
range for both tasks. This shortfall is particularly significant in the case of the Rössler task (refer to Fig. 5). These 
findings indicate that the primary factor in the disparity of performance between fully-leaky ESN and ESN with 
time-history terms is caused by the range of delay capacity that can be realised.

We analysed why memory capacity failed to align with performance outcomes. Figures 6 and 7 reveal that 
memory capacity was inadequate in explaining the performance discrepancies in time-series prediction between 
fully-leaky ESN and ESNs with time-history terms (LI-ESN and ChESN). This limitation may stem from the 
methodology used to assess memory capacity. Unlike time-series prediction tasks, memory capacity evaluation 
employs a random time series as the input. LI-ESN and ChESN, with their time-history terms acting as low-pass 
filters, tend to fail to respond to the fast frequency components of these random series. This oversight leads to an 
underestimation of LI-ESN and ChESN’s memory performance. In the context of our specific time-series predic-
tion tasks, ignoring these fast frequency components does not lead to deterioration in performance. However, 
this underestimation becomes more noticeable as the slowing effect of the time-history terms on the reservoir 
dynamics increases, particularly in the Rössler task compared with the Lorenz task, as evidenced in Fig. 6. 
Therefore, memory capacity, as assessed in these experiments, proves unsuitable for comparing the memory 
performances of models affected differently by time-history terms.

The maximum Lyapunov exponent, an indicator of dynamical characteristics distinct from memory 
 performance37, was analysed from the perspective of its comparison with the consistency and covariance rank. 
It was initially intended to be used due to its relatively strong correlation with  performance38. However, it was 
considered unsuitable for this study for specific reasons, leading us to substitute it with the covariance rank and 

(a) Lorenz task

ksatrelssöR)b(

Figure 4.  Dynamic indices of high-performing reservoirs. This figure presents the dynamic indices of 
reservoirs with optimal performance in Fig. 3. Specifically, it illustrates the delay capacity along with metrics 
for reservoir dynamics diversity (covariance rank) and stability (consistency). Error bars represent the standard 
deviation across the 10 trials.
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consistency. The maximum Lyapunov exponent measures the sensitivity of dynamics to perturbations. Gener-
ally, dynamics is considered chaotic when the maximum Lyapunov exponent is greater than 0 and stable when 
it is negative. It is known that the maximum Lyapunov exponent near 0 (the edge of  stability38) somewhat cor-
responds to high reservoir performance. In our time-series predictions, the performance was maximised when 
the maximum Lyapunov exponent was near 0 (the edge of stability), as shown in Supplementary Fig. S1. This 
can be interpreted as the reservoir achieving high dynamical diversity at the edge of stability and maintaining 
consistency in input-output due to the maximum Lyapunov exponent being 0 or below. If the maximum Lya-
punov exponent is adopted as a measure of reservoir dynamics characteristics other than memory performance 
in this study, it is necessary to specify the range of the edge of stability. However, there is no justified method to 
define this range, making it arbitrary. Additionally, interpreting how the sensitivity of dynamics to perturbations 
affects performance poses some difficulty. Therefore, the covariance rank and consistency were used to indepen-
dently measure the diversity and stability of dynamics. Supplementary Fig. S1 is a scatter plot of the maximum 
Lyapunov exponent and task performance. This figure also shows samples with the maximum covariance rank 
and maximum consistency. From this figure, it is evident that the maximum consistency is achieved when the 
maximum Lyapunov exponent is 0 or below, and the maximum covariance rank occurs near 0. Thus, by using 
the covariance rank and consistency, we could independently assess the dynamical characteristics conventionally 
gauged by the maximum Lyapunov exponent, which has a strong correlation with performance.

This study has limitations. This study assessed the memory capability, diversity, and stability of reservoir 
dynamics as aspects influencing time-series prediction performance. However, even with optimal indices, a 
significant variance in time-series prediction performance persists, as illustrated in Fig. 5. This indicates that 
there are dynamical properties related to performance that were either not evaluated or not adequately evaluated 
in this study. Potential areas include non-linearity and synchronicity with the input signal. Moreover, evaluating 
the diversity of dynamics corresponding to the input time series’ time scale may prove beneficial. To enhance the 
explainability of the performance of ESNs with time-history terms, future research should focus on exploring 

(a) Lorenz task

ksatrelssöR)b(

Figure 5.  Correspondence between time-series prediction performance and delay capacity. These scatter plots 
illustrate the relationship between the normalised root mean square error (NRMSE) and delay capacity in 
time-series prediction tasks for both the Lorenz and Rössler systems. Each point on the scatter plots originates 
from grid search results, which include the optimal parameters as obtained in Fig. 3. Grid search parameters are 
shown in Table 1.
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these dynamical properties and developing more proper dynamical metrics. Furthermore, investigating whether 
the findings of this study can be applied not only to simple single-layer reservoirs but also to reservoirs of various 
structures, such as multi-reservoirs15 or self-modulated  RC16, is also a challenge. Additionally, when applying 
our findings to models with spiking neurons models in  LSM18,19, it is crucial to highlight the challenges, because 
the delay capacity used in our study may not be directly applicable in the case with spiking neurons. Therefore, 
developing alternative metrics for assessing similar characteristics is imperative. Furthermore, recently, the appli-
cation of fuzzy computing to RNN has been proposed; therefore such application to the ESNs with time-history 
terms is an important  issue39. In addition, the introduction of time-history terms complicates the optimisation 
of hyperparameters, making it important to evaluate using more efficient optimisation methods proposed in 
recent  years40, rather than the grid search used in this study. Moreover, although this study focused on evaluating 
performance in time-series prediction, exploring the effects of time-history terms in other tasks, such as time-
series  classification41, could also be beneficial. In classification tasks, for instance, the time-history effect, which 
retains rich information of previous states, could relate not only to the performance but also to the rapidity of 
recognising transitions in the classified time series.

Table 1.  Grid search parameters used in Fig. 5. In all models, both input scale and spectral radius have been 
subjected to grid search. Additionally, for LI-ESN and ChESN, the time-history terms have also been included 
in the grid search.

(a) Lorenz task

Model Input scale Spectral radius

 Fully-leaky ESN sin = 0.1, 0.3, 0.5, . . . , 1.5 ρ(W) = 0.2, 0.4, 0.6, . . . , 2.0

 LI-ESN sin = 0.1, 0.5, 0.9, 1.3, 1.7 ρ(W) = 0.5, 1.0, 1.5

 ChESN sin = 0.3, 0.6, 0.9 ρ(W) = 0.1, 0.5, 0.9

Model Leak rate

LI-ESN αl = 0.05, 0.1, 0.15, . . . , 1.0

Model Decay factor of feedback input Decay factor of refractory

ChESN kf = 0.05, 0.1, 0.15, . . . , 1.0 kr = 0.05, 0.1, 0.15, . . . , 1.0

(b) Rössler task

Model Input scale Spectral radius

Fully-leaky ESN sin = 0.1, 0.3, 0.5, . . . , 1.5 ρ(W) = 0.2, 0.4, 0.6, . . . , 2.0

LI-ESN sin = 0.1, 0.4, 0.7, 1.0, 1.3 ρ(W) = 0.6, 1.1, 1.6

ChESN sin = 0.6, 0.9, 1.2 ρ(W) = 0.1, 0.3, 0.5

Model Leak rate

LI-ESN αl = 0.05, 0.1, 0.15, . . . , 1.0

Model Decay factor of feedback input Decay factor of refractory

ChESN kf = 0.05, 0.1, 0.15, . . . , 1.0 kr = 0.05, 0.1, 0.15, . . . , 1.0

ksatrelssöR)b(ksatzneroL)a(

Figure 6.  Memory capacity of high-performing reservoirs. This figure presents the memory capacity of 
reservoirs with optimal performance in Fig. 3. Error bars represent the standard deviation across the 10 trials.
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Conclusion
In this study, we investigated whether the differences in time-series prediction performance between fully-leaky 
ESN and ESNs with time-history terms could be explained by delay capacity. Through comparative experiments 
using LI-ESN and ChESN, we discovered that the limited range of delay capacity achievable by fully-leaky ESN, 
while simultaneously maintaining the diversity and stability of reservoir dynamics, can account for this per-
formance difference. Clarifying the relationship between reservoir dynamics characteristics and performance 
is crucial for validating the appropriateness of new ESN architectures with time-history terms and for devising 
more sophisticated architectures. This research contributes to such objectives.

Material and methods
Learning method
The framework for ESN is shown in Fig. 1. In this study, the update equations for the reservoirs in the models—
specifically, fully-leaky ESN, LI-ESN, and ChESN—are presented in Eqs. (1), (3), and (4). All other elements 
of the ESN, excluding the update equations, are common across all models (such as the weights generated for 
each seed value, the method for calculating model output, and the training procedure for the readout weights).

Training is conducted according to ridge regression for the readout weight wout:

In this equation, βridge represents the regularisation term, which helps to prevent overfitting by penalising large 
weights. I(2Nx+1)×(2Nx+1) denotes the identity matrix of size (2Nx + 1)× (2Nx + 1) . In this ridge regression, the 
objective is to minimise the squared error between the target output ytarget ∈ R

Ttrain:

(7)wout = (�T�+ βridgeI(2Nx+1)×(2Nx+1))
−1�T

y
target.

(8)y
target =

[

ytarget(Tb + 1) ytarget(Tb + 2) . . . ytarget(Tb + Ttrain)
]T

,

(a) Lorenz task

ksatrelssöR)b(

Figure 7.  Correspondence between time-series prediction performance and memory capacity. These scatter 
plots illustrate the relationship between the normalised root mean square error (NRMSE) and memory capacity 
in time-series prediction tasks for both the Lorenz and Rössler systems. Each point on the scatter plot originates 
from grid search results, which include the optimal parameters as obtained in Fig. 3. Grid search parameters are 
shown in Table 1.
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and the model ouput wout with collected matrix � ∈ R
Ttrain×(2Nx+1):

which stores the state vector x(t) , the square of x(t) , and the bias term. The inclusion of x(t)2 accounts for the 
even non-linearities of the tanh activation function. Here, Tb = 2000 represents the burn-in period to eliminate 
the effects of the reservoir’s initial state, and Ttrain = 10000 is the training period used for ridge regression. Sub-
sequently, the model output is computed as described in Eq. (2).

Performance evaluation
ESN’s performance was evaluated on time-series prediction tasks generated from the Lorenz and Rössler systems. 
The Lorenz system is represented by

Here, l1 = 10 , l2 = 28 , and l3 = 8/3 . The Rössler system is described by

Here, r1 = 1 , r2 = 0.2 , r3 = 0.2 , and r4 = 5.7 . To generate the reservoir input time series, the fourth-order 
Runge-Kutta method, with a time step of 0.02, was used for the Lorenz system, whereas for the Rössler system, 
a time step of 0.3 was used.

In the Lorenz time-series prediction task, the xl signal was used as the input time series, and the target output 
was the zl signal (ytarget(t) = zl(t)) . In the Rössler time-series prediction task, the input time series was xr , and 
the target output was the zr signal (ytarget(t) = zr(t)).

The evaluation metric for time-series prediction tasks is normalised root mean squared error (NRMSE):

Here, y(t) is the output of the ESN and σ 2(ytarget) is the variance of the target signal. For the evaluation of the 
performance, other metrics were used, such as mean square error and mean absolute error. The results used by 
these metrics are shown in Supplementary Note 3 of the Supplementary Materials.

Evaluation indices
This section first describes the standard index of reservoir dynamics, memory  capacity27, and its limitation. Then, 
as the relatively novel indices, delay  capacity28,  consistency31,32, and covariance  rank17 are explained.

Memory capacity
Memory capacity is a measure of reservoir memory performance and has been used since the early stage of ESN 
 research27. This measure is given by the performance of the delay task, where the past input signal is used as the 
target output. In this task, the input signal u(t) is a random time series generated from a Gaussian distribution 
with mean 0 standard deviation 1. The target output when the delay is τ is ytarget(t) = u(t − τ) ( ≡ uτ (t) ). The 
delay task performance MCτ is given by

Here, cov(·) is the covariance and σ(·) is the standard deviation. MC is given by a sufficiently large value of τmax 
( MCτmax ≈ 0 ). MC is defined by summation of MCτ

MC is a widely used as a benchmark index but cannot assess the reservoir properties’ input signal  dependence28.

(9)� =





x(Tb + 1) x(Tb + 2) . . . x(Tb + Ttrain)

x(Tb + 1)2 x(Tb + 2)2 . . . x(Tb + Ttrain)
2

1 1 . . . 1





T

,

(10)
dxl/dt = l1(yl − xl),

dyl/dt = xl(l2 − zl)− yl ,

dzl/dt = xlyl − l3zl .

(11)
dxr/dt = −yr − r1zr ,

dyr/dt = xr + r2yr ,

dzr/dt = r3 + zr(xr − r4).

(12)NRMSE =

√

∑Ttest
t=1 (y(t)− ytarget(t))2

Ttestσ
2(ytarget)

.

(13)MCτ =
cov2(uτ , y)

σ 2(uτ )σ
2(y)

,

(14)uτ =
[

uτ (Tb + 1) uτ (Tb + 2) . . . uτ (Tb + Ttest)
]T

,

(15)y =
[

y(Tb + 1) y(Tb + 2) . . . y(Tb + Ttest)
]T

.

(16)MC =

τmax
∑

τ=1

MCτ .
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Delay capacity
Delay capacity proposed by Carroll is an input signal-independent measure of memory  performance28. To evalu-
ate delay capacity, two different sets of reservoir state collection matrices are prepared at two different times, and 
each is whitened. Let the collection matrix at the reference time be denoted as X0 ∈ R

Nx×Tdc:

Here, Tdc is the evaluation period of delay capacity. τmax represents the maximum delay time for the reservoir 
state collection matrix at the other time. X0 is centred using the mean state vector x̄ of each neuron. Next, the 
covariance matrix C ∈ R

Nx×Nx of X0 is computed by

Here, INx×Nx denotes the identity matrix of size Nx × Nx . To prevent C from becoming singular, a regularisation 
term βreg = 10−10 is added. Finally, the whitened reservoir state collection matrix X̃0 is calculated

through singular value decomposition of C = U�V
T . To assess the reservoir’s memory performance, a time-

delayed reservoir state collection matrix Xτ (t) = X0(t − τ) ∈ R
Nx×Tdc is generated, which is τ steps delayed 

from the reference time. A correspondingly whitened matrix, X̃τ , is also generated. The cross-covariance 
C(τ ) ∈ R

Nx×Nx between these two matrices is then calculated by

and the delay capacity ( DC ) is subsequently determined as follows

In this formula, | · | signifies the absolute value symbol.
Delay capacity is associated with how long the correlations in the reservoir states are maintained, linking it to 

memory performance. Unlike memory capacity, this metric allows for the measurement of memory performance 
under the conditions of task-specific input signals. Although other indices such as the norm of the  variation42 
exist for assessing the memory performance of a reservoir regardless of the input signal, in Carroll’s research 
Ref.28, the experimental results of the delay capacity seemed relatively aligned with performance compared to 
those of the memory capacity and the norm of the variation, but this point was not explicitly highlighted within 
it. Additionally, the optimal value of delay capacity is thought to correspond with the autocorrelation of the 
input time  series28.

Consistency
Consistency is a measure of generalised synchronisation between non-linear systems and  inputs43 and can be 
used as a direct evaluation metric for  stability31,32.

To obtain consistency, a replica test is performed by obtaining the output y(t) of a reference reservoir and the 
output y′(t) of the same reservoir (replica reservoir) with a different initial state. The reference reservoir’s initial 
state is the zero vector, whereas the i-th replica reservoir’s initial state xrepi (0)(i = 1, 2, . . . ,Ns) ∈ R

Nx is generated 
from a uniform distribution on [−1, 1] . In this study, the number of different initial conditions, denoted by Ns , 
is set to 10. The coefficient of determination between the reference reservoir’s output ytest ∈ R

Ttest:

and the replica reservoir’s output y′i ∈ R
Ttest at initial state xrepi  is then calculated by

This process is done for Ns initial states, and consistency � is defined by

(17)X0 =











x(Tb + τmax + 1)T − x̄
T

x(Tb + τmax + 2)T − x̄
T

...

x(Tb + τmax + Tdc)
T − x̄

T











T

,

(18)x̄
T =

[

x̄1 x̄2 . . . x̄Nx

]

.

(19)C =
X0X

T
0

Tdc
+ βregINx×Nx .

(20)X̃0 = V
T
X0�

− 1
2 .

(21)C(τ ) =
X̃0X̃

T
τ

Tdc
,

(22)DC =

∑τmax
τ=1 Trace|C(τ )|

τmax
.

(23)ytest =
[

y(Tb + 1) y(Tb + 2) . . . y(Tb + Ttest)
]T

,

(24)y
′
i =

[

y′i(Tb + 1) y′i(Tb + 2) . . . y′i(Tb + Ttest)
]T

,

(25)y′i(t) = w
T
out





x
rep
i (t)

x
rep
i (t)2

1



 .
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Here, Ci represents the correlation between the reference output and the i-th replica output.

Covariance rank
The covariance rank of the reservoir behaviour matrix Ŵ can quantify the diversity of reservoir  dynamics17. Using 
the reservoir state collection matrix � defined in Eq. (9):

To do this, we used the rank(·) function in MATLAB. This function calculates the number of singular values that 
exceed a certain threshold ǫ (ǫ ≪ 1) , which is determined with the floating-point relative accuracy.

Data availibility
The datasets generated and analysed during the current study, as well as the computer codes, are available from 
the corresponding author upon reasonable request.
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