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Identifying influential nodes 
based on the disassortativity 
and community structure 
of complex network
Zuxi Wang 1,2,3, Ruixiang Huang 1,2,3, Dian Yang 1,2,3, Yuqiang Peng 1, Boyun Zhou 4 & 
Zhong Chen 1,2,3*

The complex networks exhibit significant heterogeneity in node connections, resulting in a few nodes 
playing critical roles in various scenarios, including decision-making, disease control, and population 
immunity. Therefore, accurately identifying these influential nodes that play crucial roles in networks 
is very important. Many methods have been proposed in different fields to solve this issue. This paper 
focuses on the different types of disassortativity existing in networks and innovatively introduces the 
concept of disassortativity of the node, namely, the inconsistency between the degree of a node and 
the degrees of its neighboring nodes, and proposes a measure of disassortativity of the node (DoN) 
by a step function. Furthermore, the paper analyzes and indicates that in many real-world network 
applications, such as online social networks, the influence of nodes within the network is often 
associated with disassortativity of the node and the community boundary structure of the network. 
Thus, the influential metric of node based on disassortativity and community structure (mDC) is 
proposed. Extensive experiments are conducted in synthetic and real networks, and the performance 
of the DoN and mDC is validated through network robustness experiments and immune experiment of 
disease infection. Experimental and analytical results demonstrate that compared to other state-of-
the-art centrality measures, the proposed methods (DoN and mDC) exhibits superior identification 
performance and efficiency, particularly in non-disassortative networks and networks with clear 
community structures. Furthermore, we find that the DoN and mDC exhibit high stability to network 
noise and inaccuracies of the network data.

The concept of complex  networks1 arises from various complex systems encountered in our daily lives, such as 
city road  networks2, social  networks3, disease transmission  networks4, power  grids5, and more. It can be said that 
complex networks are closely related to our lives. In the analysis and study of complex networks, research on 
network robustness and information dissemination has garnered significant attention from many  researchers6. 
Among them, the exploration and discovery of influential nodes within networks can control the spread of 
information in  networks7, assist road authorities in making better decisions, and quickly contain the spread of 
 diseases8. Therefore, the exploration of influential nodes holds significant practical importance in the study of 
complex networks.

The relationship between the measurement of influential nodes and the topological characteristics of the 
network is a fundamental  issue9. Classical measurement methods consider the influence of nodes based on 
the macroscopic network topology, and they can be roughly divided into three  categories10: Degree centrality 
strategies based on local network  information1,11. Centrality strategies based on global network information, 
including betweenness  centrality12,13, closeness  centrality14,15, and k-shell decomposition  strategies16. The third 
category consists of hybrid methods, which integrate both local and global information of nodes. For example, 
Yang et al.17 proposed the AOGC method using a gravity model, which combines information such as network 

OPEN

1School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, 
People’s Republic of China. 2National Key Laboratory of Multispectral Information Intelligent Processing 
Technology, Wuhan 430074, People’s Republic of China. 3Key Laboratory of Image Information Processing 
and Intelligent Control, Ministry of Education of China, Wuhan 430074, People’s Republic of China. 4School of 
Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, People’s Republic of 
China. *email: henpacked@hust.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-59071-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8453  | https://doi.org/10.1038/s41598-024-59071-x

www.nature.com/scientificreports/

location, neighborhood based topological structure and shortest path to calculate the node mass and node loose-
ness distance. Yu et al.18 in the process of identifying critical nodes in complex networks drew inspiration from 
convolutional neural networks in deep learning.

Community structure is an important attribute of network. Methods for detecting online communities include 
 Louvain19 and label  propagation20. Recently, Kamal et al.21 proposed a DSSC method to detect the community 
structure of the network by using deep learning, and the time complexity of this method is close to linear. Kamal 
et al.22 also further integrated the topological structure and attribute information of the network from the per-
spective of attribute graph clustering to enhance the clustering results, and proposed WSNMF method. However, 
classical centrality measurement methods often overlook the prevalent community structure in real networks 
when considering the influential nodes. Wen et al.23 have revealed that changes in the topology of networks can 
have important impact on the node centrality. Therefore, to uncover the impact of network community struc-
ture on the importance of network nodes, many researchers have started to investigate centrality measurement 
methods based on network community structure.  Masuda24 introduced the Mod Centrality method, which 
coarsens the network using its community structure and quantifies the contribution of various bridge nodes to 
connections using the method of eigenvector centrality. However, this method tends to assign greater weight to 
bridge nodes while overlooking the role of hub nodes within communities, where bridge nodes refer to nodes 
that have edges connecting to other communities. Gupta et al.25 proposed the Comm Centrality method, which 
utilizes the strength of the network’s community structure to weight the edges of nodes within the community 
as well as outside the community. This method is effective in identifying hub nodes and bridge nodes in the net-
work. However, it overlooks the impact of the size of the community in which a node resides on its importance. 
Tulu et al.26 introduced the Community-based Mediator method, which quantifies the influence of a node in 
the network based on the entropy of random walks between communities. It suggests that the more mixed the 
connections of a node are, the higher its centrality value in the network. Ghalmane et al.27 introduced the Com-
munity Hub-Bridge method, which weights nodes based on the size of network communities and the number of 
communities reachable within one hop. It takes into account both the community size and the impact of bridges 
between communities on node importance. However, its performance tends to decrease as the strength of the 
network community structure weakens. Subsequently, Ghalmane et al.28 extended classic centrality measures 
to modular networks, calculating the local importance of node’s classic centrality metrics within communities 
and their global importance across other communities. Recently, Magelinski et al.29 introduced the Modularity 
Vitality method. It calculates the changes in the network’s community modularity when each node is removed. 
If the removal of a node results in a significant decrease in the network’s community modularity, it indicates 
that the node is more important in the network. However, experimental results suggest that this method tends 
to favor bridge nodes in small communities while overlooking hub nodes in larger communities.

Many facts indicate that the influence of the node is not only affected by its neighboring nodes but also related 
to the community structure. In this paper, we first characterize and analyze the disassortativity property of nodes 
in the network, specifically, the presence of neighboring nodes with degrees smaller than the node itself. In blog 
network, each node in the network represents a blogger who establishes connections by following each other. 
Whether a blogger is influential in blog network often depends on whether their content is known by more fellow 
bloggers. However, bloggers with different numbers of followers often exhibit distinct social behaviors. Bloggers 
with fewer followers tend to be more proactive in following influential bloggers, whereas those with more fol-
lowers are less likely to share the content of other bloggers or follow other bloggers themselves. The underlying 
motivation behind this asymmetric following behavior is that bloggers with fewer followers hope to enhance their 
influence in the social network by sharing content from more influential bloggers, such as videos and updates. 
However, this behavior of sharing contributes to giving more attention to the blogger whose content is being 
shared, thereby increasing their influence in the blog network. This asymmetric following behavior in the social 
network is reflected in the disassortativity of nodes. On the other hand, influential bloggers across fields tend to 
have greater influence than influential bloggers within a specific field. The division of fields on the social network 
often corresponds to the network’s community structure. Therefore, both the disassortativity of nodes and the 
network’s community structure are important factors influencing the centrality measures of network nodes. Based 
on the analysis above, a measure of node disassortativity(DoN) using a step function is introduced and further 
combines information about the network’s community structure to propose the influential metric of nodes based 
on disassortativity and community structure (mDC). Finally, network robustness experiments and immune 
experiment of disease infection are used to validate the effectiveness of the proposed method (DoN and mDC).

Meanwhile, considering the practical application of the algorithms proposed (DoN and mDC), especially 
for large-scale networks, it inevitably involves issues of complexity and computational overhead. This will pose 
challenges in real-time or resource-constrained environments. On one hand, in the real world, networks are often 
dynamically evolving, and the analysis of dynamic networks is commonly conducted using network snapshots. 
In dynamic networks, the extent of changes in the network’s topology can lead to significant variations in the 
influential nodes identified by algorithms, and whether the algorithm’s time complexity can adapt to the require-
ments of network snapshot intervals is a practical consideration in applications. On the other hand, networks 
in real-life scenarios are often affected by noise and data inaccuracies, which can lead to changes in network 
topology and bias in identifying influential nodes by algorithms. Therefore, whether the algorithms proposed in 
this paper can maintain stability in identifying influential nodes under the influence of noise is also a question 
that needs to be considered.

The main contributions of this paper are as follows: 

(1) This paper focuses on the different types of disassortativity existing in networks and innovatively introduces 
the concept of disassortativity of the node, and provides the measure of Disassortativity of the Node(DoN).
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(2) Observing and discovering the significant correlation between the disassortativity of nodes and the com-
munity boundary structure on impacting the influence of nodes. Furthermore, the influential metric of 
node based on Disassortativity and network Community structure (mDC) is presented.

(3) Analyzing the performance of DoN and mDC by network robustness experiments and immune experi-
ment of disease infection. Compared with the existing state-of-the-art centrality metrics, when attacking 
the influential nodes identified by DoN and mDC, the largest connected subgraph size of network and the 
network efficiency can decrease at a faster speed. Particularly in non-disassortative networks or networks 
with clear community structures, the mDC performs better in identifying new influential nodes that cannot 
be recognized by existing centrality metrics and DoN.

(4) The time complexity of DoN is O(n2) (approaching that of degree centrality), while the time complexity of 
mDC is O(n2 + nlogn+ n) . Although the efficiency of DoN is superior to that of mDC, and DoN performs 
better in identifying influential nodes compared to most existing state-of-the-art centrality metrics, the 
performance of mDC in identifying influential nodes is even better than that of DoN and the runtime of 
mDC is not high.

The rest of this paper is organized as follows: In Methods, an introduction is provided to existing centrality 
metrics and three evaluation criteria. In Proposed Methods, the concept of disassortativity of node(DoN) and 
its measurement are proposed. Furthermore, the influential metric of nodes based on disassortativity and com-
munity structure (mDC) is proposed. And the time complexity analysis of DoN and mDC is given. In Results, 
the stability analysis of DoN and mDC is given. And the effectiveness of the proposed method (DoN and mDC) 
is validated by network robustness experiments and immune experiment of disease infection. In Discussion, 
there is a conclusion and the direction of further research in the future.

Methods
In this paper, we use G(Graph) to represent a complex network, V(Vertex) to denote the set of nodes in the com-
plex network, and E(Edge) to represent the set of edges in the complex network. The expression for a complex 
network is defined as G = (V ,E) . Let n = |V | represent the number of network nodes, and m = |E| represent 
the number of edges in the network. We represent the network structure in the form of an adjacency matrix, 
A =

[

aij
]

n×n
 , where aij ∈ Rn . If there is an edge between node i and node j, aij = 1 ; otherwise, aij = 0.

Network centrality measures
In order to identify influential nodes in complex networks, numerous researchers have proposed various cen-
trality metrics from different perspectives. Among them, node degree, betweenness centrality, and closeness 
centrality are classical centrality metrics in network analysis, and these metrics are often used as benchmarks 
for comparing centrality. Additionally, recently introduced centrality metrics related to network community 
structure are also the subjects of comparison in this paper. Next, we will introduce them individually.

Degree centrality
Degree of  node1,11 is a fundamental attribute of a node and is also the most intuitive criterion for assessing the 
importance of nodes in a network. The more edges a node has in the network, the more important it is considered 
to be in the network. Let Dc(i) represent the degree centrality metric of node i.

where di is the number of neighboring nodes of node i, and n represents the number of nodes in the network.

Betweenness centrality
In a connected complex network, there is always a shortest path from one node to another. Among all the shortest 
paths between pairs of nodes in the network, some nodes appear with particularly high frequency. Researchers 
consider such nodes as critical nodes in the network. Betweenness  Centrality12,13 was proposed.

where ljk represents the number of shortest paths from node j to node k, and ljk(i) represents the number of 
shortest paths from node j to node k that pass through node i.

Closeness centrality
Closeness  Centrality14,15 eliminates the interference of outlier values by calculating the average of the shortest 
paths from a node to all other nodes in the network. The smaller the average distance a node has to all other 
nodes in the network, the larger its closeness centrality. Closeness centrality can be understood as a measure of 
a node’s importance based on the average dissemination time of information in the network.

(1)D(i) =
di

n− 1

(2)B(i) =
∑

j,k∈V ,i �=j �=k

ljk(i)

ljk

(3)CC(i) =

n
∑

j=1,j �=i

1

dji
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where dji represents the length of the shortest path from node j to node i. When node j is not reachable from 
node i, dji = ∞ , and 1dji  is defined as 0.

Modularity vitality centrality
Magelinski et al.29 calculated each node’s influence by using the marginal effect of removing nodes on network 
modularity.

where G represents the network, Q(G) represents the calculation of the modularity metric for the network, and 
Q(G\{i}) represents the modularity metric for the network when node i is removed.

Community Hub‑Bridge centrality
Ghalmane et al.27 weighted nodes based on the size of network communities and the number of communities 
reachable within one hop.

where Ck represents the kth community in which node i is located, Card(Ck) represents the size of the community 
to which node i belongs, kintrai (Ck) represents the degree of node i within the community, and kinteri (Ck) represents 
the degree of node i between communities.

Community‑based mediator centrality
Tulu et al.26 quantified the importance of a node in the network by considering the entropy of a node within 
communities and between communities. They believed that the more diverse the connections of a node, the 
higher its centrality value.

where Hi =
[

−
∑

(

ρintra
i log

(

ρintra
i

))]

+
[

−
∑

(

ρinter
i log

(

ρinter
i

))]

 , ρintra
i  represents the ratio of node i’s degree 

within the community to node i’s degree, and ρinter
i  represents the ratio of node i’s degree between communities 

to node i’s degree. di represents the degree of node i.

Domirank centrality
Engsig et al.30 quantifies the dominance of the networks’ nodes in their respective neighborhoods, introducing 
a centrality metric, DomiRank, that integrates local and global topological information via a tunable parameter. 
From the networks’ structure and function perspective, nodes with high values of DomiRank highlight fragile 
neighborhoods whose integrity and functionality are highly dependent on those dominant nodes.

 where A ∈ RN×N is the adjacency matrix of the network and α,β , θ ∈ R
+ : limt→∞Ŵ(t) = Ŵ ∈ RN×1.

Extended degree and E‑shell hierarchy decomposition
Liu et al.31 proposed an extended degree to improve the classical degree. And E -shell hierarchy decomposi-
tion is put forward for determining nodes’ position through the network’s hierarchical structure. Then, based 
on the combination of these two components, a hybrid characteristic centrality is proposed for evaluating the 
importance of nodes.

 where the degree and 1-order neighbors of node are denoted as k(u) and φ(u) , respectively. The extended degree 
of node u denoted by kex(u) . δ ∈ [0, 1] is a weight which reflects the dependence of kex(u) on k(u).

Vertex entanglement centrality
Huang et.al32 analyzed quantum entanglement and introduced vertex entanglement (VE), an entanglement-based 
metric capable of quantifying the perturbations caused by individual vertices on spectral entropy, residing at the 
intersection of quantum information and network science.

where Cv is the number of connected components of Gv . Time τ serves as a tunable parameter in the computa-
tion of VE, which enables the study of the network response at micro, meso, and macroscales.N represents the 
number of nodes, C represents the number of network connected subgraphs, and m represents connected edges.

(4)MV(i) = Q(G)− Q(G\{i})

(5)CHB(i)i∈Ck
= Card(Ck)× kintrai (Ck)+ βNNC(i)× kinteri (Ck)

(6)CBM(i) = Hi ×
di

∑N
i=1 di

(7)
dŴ(t)

dt
= αA(θ1N×1 − Ŵ(t))− βŴ(t)

(8)kex(u) = δ × k(u)+ (1− δ)×
∑

v∈φ(u)

k(v)

(9)Eτ (v) = Sτ (Gv)− Sτ (G) ≈
2mτ

ln2(N − C)
(
Cv

Zv
−

C

Z
)+ log2

Z − v

Z
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Evaluation criteria
To assess whether the identification of influential nodes by network centrality metrics is effective, after quanti-
fying the influence of nodes in the network, we will examine the effectiveness of centrality metrics in terms of 
their impact on the network’s topological  structure6 and their influence on information dissemination in the 
 network33. The evaluation methods employed are as follows:

Largest connected subgraph size
We use the Largest Connected Subgraph Size of the network to study the impact of nodes selected based on 
various centrality metrics on the overall network connectivity. When nodes in the network fail due to attacks, 
the initial network may be fragmented into multiple subnets. It is believed that a more intact network exhibits 
greater resilience when under attack. Therefore, the ratio of the size of the largest connected subgraph within 
the network to the size of the initial network is referred to as the largest Cconnected subgraph size (LCSS)16.

where nmax represents the number of nodes in the largest connected subgraph in the network, and n represents 
the size of the network. After being attacked, a smaller size of the largest connected subgraph indicates that the 
attacked nodes play more central role in the network.

Network efficiency
We employ network efficiency to investigate the impact of nodes selected based on various centrality metrics 
on the reachability between any two nodes in the network. Network  efficiency34, denoted as NE, is a metric that 
quantifies the connectivity between nodes in a network. This metric posits that shorter shortest paths between 
nodes in the network lead to stronger network connectivity, better network performance, and is often used as a 
measure of network robustness. A higher network efficiency after network attacks indicates greater robustness.

where n represents the total number of nodes in the network, l−1
ij  represents the reciprocal of the shortest path 

from node i to node j in the network. If there is no path between these two nodes, l−1
ij  is set to 0. After being 

attacked, a smaller network efficiency indicates the increased importance of the attacked node.

The information diffusion mechanism
We use the SIR  model35 to study the effectiveness of nodes selected based on various centrality metrics in infor-
mation dissemination in the network. The specific steps are as follows: In the initial state of the network, we 
designate the top k percent of nodes obtained from various centrality metrics as immune nodes. Then, among the 
remaining nodes, we randomly select one node as the infected node, while the rest of the nodes are considered 
susceptible nodes. In the network, let S(t) represents the number of susceptible nodes, I(t) represents the number 
of infected nodes, and R(t) represents the number of recovered nodes that cannot be infected again. The state 
changes of nodes in the network can be described using differential equations.

where β represents the infection rate of network nodes, and γ represents the recovery rate of network nodes. 
Specifically, at each time step, each infected node infects its susceptible neighbors with a probability of β , and 
then recovers from the disease with a probability of γ . In the experiments, we set γ = 0 , and repeated this process 
until there were no infected nodes left. Finally, to ensure the reliability of the results, all results are the averages 
of at least 500 independent experiments.

We use the proportion of infected nodes in the network to reflect the true impact of initial immune nodes 
on information dissemination in the network. A smaller proportion of infected nodes indicates a higher influ-
ence of the initially immune nodes on information dissemination in the network, playing a more crucial role in 
containing the spread of the disease.

The proposed methods
Disassortativity of node(DoN) and its measurement
In the beginning, Newman et al.36 categorized networks into assortative networks, neutral networks, and disas-
sortative networks to distinguish the connectivity preferences of nodes in the network. Among these, assortative 
networks refer to networks where high-degree nodes tend to connect with other high-degree nodes, meaning 
that the network exhibits a degree-degree positive correlation. Neutral networks, on the other hand, are networks 
where the presence of an edge between two nodes is unrelated to their degrees. Disassortative networks indicate 
networks where high-degree nodes tend to connect with low-degree nodes, implying a degree-degree nega-
tive correlation in the network. In this section, inspired by the phenomenon in disassortative networks where 
high-degree nodes tend to connect to low-degree nodes, we refer to the presence of neighbors with degrees 
smaller than the node’s own degree as the disassortativity of node. And node disassortativity is not limited to 

(10)LCSS(G) =
nmax

n

(11)NE(G) =
1

n(n− 1)

∑

i∈V

∑

i �=j,j∈V

lij
−1

(12)







dS
dt = −βS(t)I(t)
dI
dt = βS(t)I(t)− γ I(t)
dR
dt = γ I(t)
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the assortative networks proposed by Newman, but exists in any network. Moreover, when a node has a greater 
number of neighbors with lower degrees, we refer to it as having a higher degree of disassortativity. In such cases, 
the node’s influence within the network is also greater. Just as in blog social networks, there exists an unequal 
following behavior among bloggers, This is because bloggers with a smaller number of followers are more likely to 
share content, which in turn leads to the blogger being followed by more users in the social network. Therefore, in 
social networks, the higher the disassortativity of a blogger, meaning being followed by more bloggers with fewer 
followers, the wider the reach of their work in the network, and the greater their influence as a blogger. In this 
analysis, we consider that truly important nodes in the network should have a greater influence on the network’s 
structure and functionality than their neighboring nodes. When a node’s neighboring nodes are more influen-
tial, the node itself becomes less likely to be influential.The measure of disassortativity of node(DoN) is given.

where DoNi represents the disassortativity measure for node i, Ni denotes the set of neighbor nodes of node i, Di 
represents the degree of node i, and Dj represents the degree of node j. It is worth noting that the range of DoNi 
is [0,Di] , which cannot exceed the degree of node i itself. When DoNi = 0 , it indicates that all neighboring nodes 
of node i have degrees greater than node i itself. Conversely, when DoNi = Di , it suggests that all neighboring 
nodes of node i have degrees smaller than node i itself, creating a star-like local structure within the first-order 
neighborhood. Moreover, the higher the disassortativity of node i, indicating higher influence. Conversely, a 
lower disassortativity measure suggests lower influence. We use a toy network to illustrate the properties of node 
disassortativity, as shown in Fig. 1. That is a toy network consisting of 17 nodes, with two communities, labeled 
as C1 and C2 . Community C1 comprises nodes labeled from 1 to 7, while community C2 includes nodes labeled 
from 8 to 17. The degrees and disassortativity measures of all nodes in Fig. 1 are shown in Table 1.

To study the impact of each node in the toy network on network performance, we systematically removed 
each node depicted in Fig. 1 and analyzed the changes in network efficiency. The experimental results are shown 
in Fig. 2. A lower network efficiency after removing a node indicates a greater impact of the removed node on 
network connectivity, signifying its higher influence.

From Fig. 1, we can observe that nodes with high degrees do not necessarily have high disassortativity, as 
seen in the case of nodes 11 and 16. Node 11 has a degree of 6 but a disassortativity of only 2, while node 16 
has a degree of 5 but an even lower disassortativity of 0. Additionally, when we consider both Figs. 1 and 2, we 

(13)DoNi =
∑

j∈Ni

f
(

Di − Dj

)

(14)f (Di − Dj) =

{

1 Di ≥ Dj , j ∈ Ni

0 Di < Dj , j ∈ Ni

Figure 1.  A toy network with 17 nodes and 38 edges. The network consists of two communities, respectively C1 
and C2.

Table 1.  The degrees and DoN of nodes in the toy network. In the table, ID represents the node’s label in the 
network, Com represents the community to which the node belongs, Degree represents the node’s degree, and 
DoN represents the disassortativity of node.

ID Com Degree DoN ID Com Degree DoN

1 C1 5 5 10 C2 5 3

2 C1 3 1 11 C2 6 2

3 C1 2 1 12 C2 6 5

4 C1 2 1 13 C2 7 7

5 C1 3 2 14 C2 6 2

6 C1 3 2 15 C2 6 3

7 C1 2 0 16 C2 5 0

8 C2 10 10 17 C2 6 5

9 C2 3 0
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can see that nodes with the same degree can have different disassortativity measures. Furthermore, nodes with 
higher disassortativity tend to have greater influence. For instance, nodes 11 and 12 both have a degree of 6, but 
node 11 has a disassortativity of 2, while node 12 has a disassortativity of 5. According to Fig. 2, when node 12 
is removed, the network efficiency is lower compared to when node 11 is removed. This suggests that removing 
node 12 has a greater impact on network connectivity, meaning that, for nodes with the same degree, node 12 
has a higher influence than node 11.

The influence of nodes in the network is not only related to their individual disassortativity but also to the 
presence of community structures within the network. As shown in Fig. 1, node 2 has connections to community 
C2 . However, node 2 not only has a low degree but also a low disassortativity. Nonetheless, from Fig. 2, we can 
observe that when node 2 is removed, the network efficiency is much lower compared to the removal of nodes 
with higher disassortativity, such as node 13. Node 13 has a disassortativity of 7, but the network efficiency after 
removing node 13 is 0.5549, which is higher than the network efficiency of 0.5449 after removing node 2.There-
fore, factors influencing the importance of network nodes are not only related to their individual disassortativity 
but also to the presence of community structures within the network.

Influential metric based on node disassortativity and community structure(mDC)
In the real world, many  studies37–41 have shown that most real networks exhibit a community structure, much 
like the domain-specific characteristics found in blog social networks. In blog social networks, we can observe 
that an influential blogger who spans multiple domains has a significantly higher level of influence and reach 
compared to bloggers who are influential only within a specific domain. The influence of each blogger depends 
not only on the number of their followers but also on whether they are a blogger spanning multiple domains 
and the number of regular bloggers interested in that domain. Based on the above analysis, in this section, we 
introduce an influential metric based on node disassortativity and community structure (mDC) by incorporating 
information about the network’s community structure. In large-scale complex networks, the presence of a com-
munity structure has a significant impact on information dissemination and network robustness. Communities 
within a network exhibit the following characteristics: the edges within a community are dense, while the edges 
between communities are sparse. We define the edge sets within a community and the edge sets between a com-
munity and other communities as EinCi

 and EoutCi
.

where Ci represents community i, and VCi represents the set of nodes within community i. Due to the presence 
of a community structure, we refer to nodes within a community that do not have edges connecting to other 
communities as ’internal nodes’, while nodes within a community that have edges connecting to other communi-
ties are called ’community boundary nodes’. The set of all boundary nodes within a community constitutes the 
boundary structure of that community. In particular, during the process of network information dissemination, 
the transmission of information between communities relies on the boundary structure of the communities. This 
means that information is disseminated from one community to another through the boundary nodes. When 
a community has fewer edges connecting it to other communities, the boundary nodes within that community 
play a more significant role in information dissemination. Additionally, the size of the communities connected 
also affects the importance of the boundary nodes; the larger the connected community, the wider the reach of 
information dissemination by the boundary nodes.Therefore, we consider that, in addition to node disassortativ-
ity, the community boundary structure of the network is also an important factor influencing the mDC centrality 
metric. Next, we will elaborate on how different aspects of the network’s community boundary structure impact 
the mDC centrality metric of nodes.

The community coefficient of a community
The community coefficient of a community is the ratio of the number of internal edges within a community 
to the total number of edges within that community. A higher community coefficient for a network commu-
nity indicates stronger internal edge clustering, meaning the community has relatively fewer external edges 

(15)EinCi
= {lij

∣

∣i, j ∈ VCi

}

(16)EoutCi
= {lij

∣

∣i ∈ VCi , j /∈ VCi

}

Figure 2.  Bar chart of network efficiency. The horizontal axis represents the labels of nodes in the toy network, 
the vertical axis represents the network efficiency after removing the corresponding nodes. The lower the 
network efficiency, the more important the removal node is to the network performance.
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connecting it with other communities. This also implies that the community can only exchange information with 
other communities through a limited number of external edges, emphasizing the importance of its boundary 
nodes in information dissemination. Next, we provide the formula for calculating the community coefficient of 
a network community.

where Ci represents community i, and the formulas for calculating EinCi
 and EoutCi

 are given by Eqs. (15) and (16), 
respectively, which represent the set of internal edges within community i and the set of edges connecting com-
munity i to other communities. 

∣

∣EinCi

∣

∣ and 
∣

∣EoutCi

∣

∣ represent the number of elements in sets EinCi
 and EoutCi

 , respectively.

The community boundary popularity of a node
We define the community boundary popularity of a node as the number of the node connecting to other com-
munities. The more connections a node has to other communities, and the larger the size of these connected 
communities, the higher the community boundary popularity of the node. Conversely, when a node is entirely 
within its own community, its boundary popularity is zero. In large-scale complex networks, community bound-
ary nodes are associated with the interaction of a community with other communities in the network. In the 
process of information dissemination, if a community has a larger community coefficient, it indicates that the 
boundary nodes of that community are more influential for information dissemination. Additionally, if the 
community boundary nodes are connected to larger external communities, it implies that the information dis-
semination scope and influence of these boundary nodes are greater. Furthermore, a larger size of the node’s 
own community indicates that the boundary node has a stronger ability to receive information and has a greater 
influence within its own community.

where di represents the degree of node i, Ni represents the set of neighboring nodes of node i, VCi represents 
the community to which the node belongs, dini  represents the number of neighboring nodes that belong to the 
same community as node i, douti  represents the number of neighboring nodes that do not belong to the same 
community as node i, and the relationship between di , dini  , and douti  is given by Eq. (21). Additionally, com is 
the set of other communities connected to node i, αi represents the community coefficient of node i’s belonging 
community, |Ci| represents the number of nodes in the community to which node i belongs, 

∣

∣Cj

∣

∣ represents the 
number of nodes in community j, and |Cmax| represents the number of nodes in the largest community.

The influential metric of node based on disassortativity and community structure(mDC)
Through analysis, the disassortativity of node and community boundary structure are both critical factors influ-
encing the importance of nodes in the network. The higher the disassortativity of nodes in the network, the more 
obvious the community structure and the greater the popularity of nodes’ boundaries, the higher the influence 
of nodes. When the community structure is clear, the community boundary popularity of nodes plays a major 
role, while when the community structure is unclear, the node disassortativity plays a major role. Therefore, we 
use community coefficients to weighted sum the node disassortativity and the community boundary popularity.

where αi is the community coefficient of node i, which is the attribute of network community. DoNi represents 
the node i’s disassortativity, and fc(i) represents the community boundary popularity of node i. αi measures the 
degree of contact between the community where node i is located and other communities in the network.The 
larger αi means that the community has less contact with the outside world, and the more important the nodes 
at the community boundary are, that is, the higher the weight of fc(i) in the mDC calculation formula. The 
algorithm of mDC is shown in algorithm 1. And the algorithm of DoN only needs to traverse the nodes of the 
network to obtain the degrees of neighbor nodes.

(17)αi =

∣

∣EinCi

∣

∣

∣

∣EinCi

∣

∣+
∣

∣EoutCi

∣

∣

(18)fc(i) =

{

∑

j∈com αi ×

(

1+
|Ci |+|Cj|
2|Cmax |

)

di �= dini

0 di = dini

(19)dini =
∣

∣j |j ∈ Ni , j ∈ VCi

∣

∣

(20)douti =
∣

∣j |j ∈ Ni , j /∈ VCi

∣

∣

(21)di = dini + douti

(22)mDC(i) = (1− αi)× DoNi + αi × fc(i)
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Input:
1. Network G= (V,E)
2. Selection of community detection algorithm: Louvain20, label propagation21 or DSSC22

Output: mDC centrality index of nodes
step1 utilize the community detection algorithm to divide the network into communities
step2 Calculate the community coefficient of each community by formula (17).
for each node in set V do

Calculate the disassortativity of node by formula (13)
Calculate the community boundary popularity of nodes by formula (18)
Calculate mDC of node by formula (22)

end for
return mDC

Algorithm 1.  The Proposed mDC algorithm.

Time complexity analysis of DoN and mDC
In this section, we provide an analysis of the time complexity of mDC algorithm. Understanding the time com-
plexity of the algorithm helps to assess its efficiency and scalability. The time complexity of calculating disas-
sortativity of node is O(n2) . The time complexity of community coefficient depends on the time complexity of 
community detection algorithm. In this paper, we utilize Louvain community detection algorithm. The time 
complexity of the Louvain community detection algorithm is O

(

nlogn
)

 . The time complexity of calculating the 
community boundary popularity of nodes is O(n) . Thus, the time complexity of mDC is O

(

n2 + nlogn+ n
)

 . On 
the other hand, the running time of DoN and mDC is compared with other centrality metrics, as shown in Fig. 3.

The analysis of the time complexity of the DoN and mDC centrality metrics will contribute to the applica-
tion of the algorithms. For the application of large-scale network, we believe that the analysis, calculation and 
application of any algorithm have real-time challenges and resource-constrained settings. Although the time 
complexity of mDC algorithm is O(n2 + nlogn+ n) , it is not computationally intensive. The measure of node 
disassortativity required by mDC does not need to be obtained through complicated calculation. The acquisi-
tion of community boundary structure information is related to the number of communities in the network. 
Compared with the number of nodes in the network, the number of communities will be lower than one order 
of magnitude, and the community boundary structure information does not involve complicated calculus. At 
present, the analysis of dynamic real-time network is usually through network snapshot analysis, and mDC can 
be suitable for applications whose operation time is less than the snapshot interval. If network snapshots in real 
life have strict timing requirements, we can use the faster-running DoN with a certain loss of accuracy. However, 
if timing is not a significant concern, we may consider using the mDC for better performance. The application 
scenarios of complex networks are problem-specific, and the proposed mDC can still meet the requirements of 
real-time and resource-constrained applications with relatively low demands.

In Fig. 3, the VE centrality metric cannot be computed for networks exceeding 5000 nodes due to memory 
constraints of the machine. Among them, the VE, EHCC and domirank centrality metrics are the latest proposed 
metrics. From Fig. 3, the computational efficiency of DoN is the highest (almost consistent with that of degree 

Figure 3.  The comparison of the running time of DoN and mDC with other centrality metrics. The horizontal 
axis represents the network scale, while the vertical axis represents the runtime required for computing 
centrality metrics.
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centrality(DC)). However, in the subsequent experiments, the performance of DoN is lower than that of mDC. 
For the mDC, we can find that the efficiency of mDC is higher compared to most centrality metrics. And the run-
ning time of mDC is much lower than the three centrality metrics recently proposed (VE, EHCC and domirank). 
In the subsequent experiments, the performance of the mDC in identifying influential nodes is the best.

Results
To validate the effectiveness of the proposed DoN and mDC in identifying influential nodes in different networks, 
we conducted a series of experiments. Firstly, we analyzed the properties of DoN and mDC in networks with 
varying disassortativity and different community structure strengths. Futhermore, we analyzed the stability of 
DoN and mDC centrality metrics in response to dynamic network changes. Secondly, we designed robustness 
experiments based on network topology and simulated information dissemination experiments using the SIR 
model. Finally, through these experiments, we compared the performance of the proposed DoN and mDC with 
existing centrality metrics on synthetic networks of different sizes and eight real-world networks. The detailed 
experimental analyses are presented in the following sections.

Dataset description and experimental environment
For synthetic networks, we generated networks using the LFR (Lancichinetti, Fortunato, and Radicchi) 
 algorithm42, which produces networks with community sizes following a power-law distribution and degree 
distributions also following a power-law distribution. The algorithm’s parameters included γ controlling the 
degree distribution exponent, β controlling the power-law community size distribution, and µ as a mixing 
parameter controlling the strength of community structure within the synthetic network. The range for µ was set 
between [0, 1], where smaller values of µ indicated more pronounced community structures, higher  modularity38. 
Table 2 provides the parameter values used for generating LFR networks, and Table 3 presents the topological 
characteristics of LFR synthetic networks of various sizes.

In real network datasets, we employed the following datasets: Power representing the U.S. power grid 
 network43, where each edge represents a power transmission line, and nodes represent generators, transform-
ers, or substations. Email corresponds to the email communication  network47, where nodes represent users, and 
each edge indicates at least one sent email. PGP  network48 represents an interaction network of users of the PGP 
(Pretty Good Privacy) algorithm.  Interactome_figeys49 denotes a network of human protein-protein interactions, 
with nodes representing proteins and edges representing interactions between two proteins.  Collins_yeast50 rep-
resents a protein-protein interaction network in budding yeast (Saccharomyces cerevisiae).  Webkb51 represents an 
interaction network among staff members in four computer science departments.  NS52 stands for a collaboration 
network among scientists, where scientists sharing authorship on a paper are connected.  new_zealand_collab53 is 
a network of scientific collaborations among institutions in New Zealand. Lastly, the topological characteristics 
of these actual networks are summarized in Table 3.

The comparison algorithms are implemented in Python and run on a PC with AMD Ryzen5 CPU of 2.10 GHz 
and 8 GB of RAM. The Package include python3.9.12, networkx2.8.4, numpy1.23.4, pandas1.5.1 and matplot-
lib3.5.1. And in the subsequent experiments, DC represents the degree centrality, BC represents the betweenness 
centrality, CC represents the closeness centrality, DoN stands for the node’s disassortativity proposed in this 
paper, mDC represents the node’s influence metric based on node disassortativity and community structure 
proposed in this paper, HBC represents the Community Hub-Bridge centrality, CbM represents the Community-
based Mediator centrality, MV represents the Modularity Vitality centrality, EHCC represents Extended degree 
and Eshell hierarchy decomposition centrality, VE represents Vertex Entanglement centrality and dominrank 
represents Domirank centrality.

Comparison of overlap of DoN and mDC with different disassortative networks
To investigate the properties of DoN and mDC in different disassortative networks, we selected three real net-
works with clear community structures but different assortativity  coefficients44. The networks we selected are the 
collins_yeast network(assortative network), the power network(neutral network), and the interactome_figeys 
network(disassortative network). The collins_yeast network has an assortativity coefficient of 0.61 and a com-
munity modularity of 0.79, indicating that this network is assortative. The power network has an assortativity 
coefficient of 0.004 and a community modularity of almost 0, indicating that this network is degree-uncorrelated. 

Table 2.  The parameter settings for generating LFR synthetic networks, where γ controls the degree 
distribution exponent of the synthetic network, β controls the power-law distribution of community sizes, and 
µ regulates the strength of the network’s community structure.

Number of nodes N 500, 1000, 5000

Average degree < k > 10

Maximum degree kmax 180

Mixing parameter µ 0.1, 0.8

γ 3

β 2

Minimum community size Cmin 15

Maximum community size Cmax 180
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The interactome_figeys network has an assortativity coefficient of -0.33 and a community modularity of 0.47, 
suggesting that this network is disassortative. This section further presents the overlap coefficient among the top 
3% nodes identified by different centrality metrics in the three networks, as shown in Fig. 4d–f. The formula for 
calculating the overlap coefficient is as follows Eq. (23).

where |A ∩ B| represents the number of elements in the intersection of sets A and B, and |A ∩ B| represents the 
number of elements in the union of sets A and B. In this section, A and B respectively represent the sets of the 
top 3% nodes identified by different centrality metrics.

From Fig. 4d, it can be observed that the overlap between the top 3% influential nodes identified by DoN and 
mDC is not very high. The mDC shows a high overlap coefficient DC and MV. However, there is low overlap 
coefficient between the nodes selected by mDC and those selected by BC. As indicated in Fig. 4a, in assortative 
networks, nodes tend to form rich-club phenomenon, with highly connected nodes preferentially linking to each 
other. This may be a contributing factor to the discrepancies in identifying influential nodes among different 
centrality metrics.

From Fig. 4e, we can find that the overlap coefficient between the top 3% nodes identified by mDC and 
different centrality metrics is almost close to zero, even the overlap coefficient between the influential nodes 
identified by other centrality metrics is almost close to zero. This may suggest that mDC has identified many 
influential nodes that were not identified by other centrality metrics. As indicated in Fig. 4b, in neutral networks, 
the connections between nodes are completely random. Different centrality metrics show significant differences 
in identifying influential nodes in the network.

From Fig. 4f , it reveals that in a disassortative network, such as Fig. 4c, there is a high overlap coefficient in 
the identification of influential nodes among different centrality metrics. As indicated in Fig. 4c, in disassortative 
networks, large-degree nodes tend to connect with small-degree nodes, creating a star-like structure. In such net-
works, large-degree nodes often act as hubs and connect to nodes with smaller degrees, making them easily iden-
tified as influential nodes by various centrality metrics, resulting in high overlap in different centrality metrics.

From the above analysis, it can be seen that different preferences for node connections in the network can 
produce biases in the identification of influential nodes by various centrality metrics. This is especially obvious 
for assortative networks and neutral networks, where the connections between nodes exhibit complexity. In 
these networks, nodes with high degrees are not necessarily the most influential nodes. However, DoN and mDC 
exhibits significant differences in identifying influential nodes in assortative and neutral networks compared to 
existing centrality metrics. The reason for this difference may be that DoN and mDC can identify disassortative 
subnetwork structures within assortative or neutral networks, which other centrality metrics cannot capture.

Comparison of overlap of DoN and mDC with networks of different community structure
In this section, we will investigate the properties of DoN and mDC under different community structure 
strengths. We selected two real networks with similar assortativity coefficients but different community structure 

(23)p =
|A ∩ B|

|A ∪ B|

Table 3.  The topological characteristics of different networks, where the naming convention for LFR synthetic 
networks follows the pattern LFR_N_µ , where N represents the number of nodes in the network, µ represents 
the parameter controlling the strength of community structure in the synthetic network; m indicates the 
number of edges in the network; kmax denotes the maximum degree in the network, <k> represents the 
average degree of the network, < C > signifies the average clustering coefficient of the  network43, r represents 
the degree assortativity of the  network44; M denotes the modularity size of the  network38, and the community 
detection algorithm used in this paper is the Louvain  algorithm19,45; βth represents the disease propagation 
threshold of the network under the SIR model, calculated using the  formula46 <k>

<k2><k>
.

Networks µ N m kmax <k> <C> r M βth

LFR500_0.1 0.1 500 2658 75 10.632 0.22 − 0.057 0.72 0.077

LFR500_0.8 0.8 500 2693 69 11.424 0.038 − 0.103 0.27 0.067

LFR1000_0.1 0.1 1000 2856 117 10.9 0.27 − 0.036 0.76 0.063

LFR1000_0.8 0.8 1000 5450 106 11.842 0.023 − 0.099 0.25 0.059

LFR5000_0.1 0.1 5000 28350 150 11.34 0.22 − 0.053 0.81 0.059

LFR5000_0.8 0.8 5000 28697 179 11.479 0.005 − 0.079 0.24 0.058

Email – 1133 5451 71 9.622 0.22 0.078 0.56 0.054

PGP – 10680 24316 205 4.554 0.27 0.238 0.88 0.056

Power – 4941 6594 19 2.669 0.08 0.004 0.94 0.258

interactome_figeys – 2239 6432 314 5.74 0.04 -0.330 0.47 0.018

collins_yeast – 1622 9070 127 11.18 0.55 0.610 0.79 0.03

Webkb – 348 16625 229 95.54 0.80 0.410 0.22 0.01

NS – 1461 2742 34 3.76 0.69 0.46 0.96 0.17

new_zealand_collab – 1511 4273 551 5.66 0.51 -0.33 0.46 0.01
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strengths. These two networks are the webkb network and the NS network. The webkb network has an assorta-
tivity coefficient of 0.41 and a community modularity of 0.22, indicating that the community structure in this 
network is not clear. The NS network has an assortativity coefficient of 0.46 and a community modularity of 0.96, 
indicating a more clear community structure with distinct boundaries between communities. We calculated the 
overlap coefficient among the top 3% nodes identified by each centrality metric using Eq. (23). The results are 
shown in Fig. 5.

The size of the network’s community modularity reflects the clarity of community boundaries. As evident from 
Fig. 5a, in networks where the community structure is not clear, the top 3% nodes selected by mDC exhibit high 
consistency with DoN, DC and CC but low consistency with BC and MV. And as seen in Fig. 5b, in networks with 
a clear community structure, the overlap coefficient between the top 3% nodes identified by mDC and different 
centrality metrics is almost close to zero, even the overlap coefficient between the influential nodes identified by 
other centrality metrics is almost close to zero.

From the above analysis, it suggests that DoN and mDC centrality can identify new influential nodes that 
other centrality metrics may not capture, particularly in networks with a clear community structure. This can 
be evidenced by the experimental results of subsequent robustness experiments and immune experiments of 
disease infection. And the above experimental analysis also demonstrates that the strength of network community 
structure has a significant impact on the identification of influential nodes.

Stability analysis of DoN and mDC under network noise and inaccuracies
In real-world scenarios, network data may contain errors, missing edges, or noise, which can lead to misinter-
pretations of disassortativity and community structure. Such inaccuracies may result in the misidentification of 
influential nodes, leading to unreliable conclusions and recommendations. And the existence of network noise 
and inaccuracies may lead to the following three kinds of network edge changes, respectively, (1) randomly 
deleting edges with different proportions, (2) randomly adding edges with different proportions, and (3) there 
are both random deletions of edges and random additions of edges. To investigate the impact of the above three 
types of edge changes on the performance of DoN and mDC in identifying infuential nodes, we selected three 

(a) (b) (c)

(d) (e) (f)

Figure 4.  The overlap heatmap of the top 3% nodes between the proposed methiods (DoN and mDC) and 
other centrality metrics on three networks with different assortativity coefficients. Where r represents the 
assortativity coefficient of the network. Figure (a) is the collins_yeast network, an assortative network (r = 0.61 
> 0), and Figure (d) is its overlap heatmap. Figure (b) is the power network, an neutral network (r = 0.004 ≈ 0), 
and Figure (e) is its overlap heatmap. Figure (c) is the interactome_figeys network, an disassortative network 
(r = − 0.33 < 0), and Figure (f) is its overlap heatmap. In the overlap heatmap, darker colors indicate a higher 
number of overlapping nodes among the top 3% identified by two centrality metrics, whereas lighter colors 
indicate a lower number of overlapping nodes. (a) collins_yeast r = 0.61. (b) power r = 0.004. (c) interactome_
figeys r=-0.33. (d) heatmap of collins_yeast. (e) heatmap of power. (f) heatmap of interactome_figeys.
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different types of networks and subjected them to the above three types of edge changes to observe the varia-
tions in DoN and mDC. These three networks are respectively denoted as the collins_yeast network(assortative 
network), the power network(neutral network), and the interactome_figeys network(disassortative network). 
For different dynamic changes of each network, we calculate the overlap of the top 3% influential nodes before 
and after the network changes. The experimental results are shown in Fig. 6.

From Fig. 6a to c, it can be observed that in non-disassortative networks Fig. 6a and b, the DoN and mDC 
exhibit high stability against random edge deletions. In disassortative networks Fig. 6c, the DoN and mDC are 
also highly stability against random edge deletions. Even as the proportion of edge deletions in the network 
increases, the influential nodes identified by DoN and mDC do not undergo dramatic changes. The reason for this 
may be that the topology of disassortative networks generally exhibits a star-shaped structure, where hub nodes 
in the network tend to connect with low-degree nodes, and there is a significant disparity in degrees between 
them. Therefore, even after deleting a certain number of edges, the degree of hub nodes will still be much higher 
than that of low-degree nodes. Moreover, in disassortative networks, hub nodes always are the most influential 
nodes in the network.

From Fig.6d to f, it can be observed that in disassortative networks Fig. 6f, the DoN and mDC exhibit high 
stability against random edge additions. However, in assortative networks Fig. 6d, when the network undergoes 
random edge additions to a certain extent, both the DoN and mDC experience significant changes. Nevertheless, 
comparatively, the DoN tends to be more stable. In neutral networks Fig.6e, both the DoN and mDC show high 
sensitivity to random edge additions. When the scale of random edge additions reaches 50%, nearly 50% of the 
top 3% influential nodes in the network’s DoN and mDC also undergo changes.

From Fig. 6g to i, it can be observed that in disassortative networks Fig.6i, both the DoN and mDC exhibit 
high stability against random edge additions and deletions. In assortative networks Fig.6g, the stability trends 
of the DoN and mDC against random edge additions and deletions are similar. Nevertheless, comparatively, the 
DoN tends to be slightly more stable. In neutral networks Fig.6h, the mDC shows strong sensitivity to random 
edge additions and deletions, where adding or removing just 1% of the edges can cause changes in 40% of the 
top 3% influential nodes in the network. However, as the proportion of dynamic edge changes in the network 
increases, the changes in the top 3% influential nodes of mDC are not as dramatic.

From the analysis above, it is evident that the stability of the DoN and mDC varies across different types of 
network connectivity changes. They exhibit higher stability in disassortative networks, followed by assortative 
networks. In disassortative networks, the identification of the top 3% influential nodes by DoN and mDC does 
not undergo significant changes with the dynamic edge changes in the network. The reason for this may be 
that the topology of disassortative networks generally exhibits a star-shaped structure, where hub nodes in the 
network tend to connect with low-degree nodes, and there is a significant disparity in degrees between them. 
In neutral networks, the stability of DoN and mDC is the worst. However, in reality, it is rare for networks to 
undergo 50% edge changes in a short period of time. Therefore, for small-scale changes of edges, the influential 
nodes identified by DoN and mDC may not experience drastic variations. On the other hand, the experimental 
results mentioned above can guide us in updating the DoN and mDC centrality metrics according to the actual 
requirements of different types of network connectivity (assortative, neutral, disassortative network) when the 
network’s edge relationships undergo various degrees of change.

Evaluation of DoN and mDC with network robustness experiment
The study of robustness in complex  networks6 involves analyzing a network’s ability to withstand attacks. In 
this section, to validate the effectiveness of the DoN and mDC in identifying influential nodes that significantly 
impact a network’s topology and performance, we conducted robustness experiments on networks with differ-
ent structures and compared them with existing state-of-the-art centrality metrics. We analyzed the size of the 

Figure 5.  The overlap heatmap of the top 3% nodes between the proposed methods (DoN and mDC) and other 
centrality metrics on two networks with different community structure. Where r represents the assortativity 
coefficient of the network. Figure (a) is the overlap heatmap of webkb network(assortative network) with weak 
community structure and Figure (b) is the overlap heatmap of NS network(assortative network) with clear 
community structure. In the overlap heatmap, darker colors indicate a higher number of overlapping nodes 
among the top 3% identified by two centrality metrics, whereas lighter colors indicate a lower number of 
overlapping nodes. (a) webkb r = 0.41. (b) NS r = 0.46.
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largest connected subgraph and network efficiency after subjecting the networks to attacks. A faster decline in 
the metrics indicates that the identified nodes are more influential to the network’s structure.

Figure 6.  Stability Analysis of DoN and mDC under network noise and inaccuracies. Where the horizontal 
axis(start from 0.01) represents the proportion of dynamic changes in the number of edges in the network 
to the total number of edges in the original network, while the vertical axis represents the overlap coefficient 
between the DoN and mDC centrality metrics after network dynamic changes and before the changes. 
Figure (a) is the overlap curves of mDC and DoN by method (1)  on collins_yeast network. Figure (b) is 
the overlap curves of mDC and DoN by method (1)  on power network. Figure (c) is the overlap curves of 
mDC and DoN by method (1)  on interactome_figeys network. Figure (d) is the overlap curves of mDC 
and DoN by method (2)  on collins_yeast network. Figure (e) is the overlap curves of mDC and DoN 
by method (2)  on power network. Figure (f) is the overlap curves of mDC and DoN by method (2)  on 
interactome_figeys network. Figure (g) is the overlap curves of mDC and DoN by method (3)  on collins_yeast 
network. Figure (h) is the overlap curves of mDC and DoN by method (3)  on power network. Figure (i) is 
the overlap curves of mDC and DoN by method (3)  on interactome_figeys network. The higher the curve 
in the Fig. 6, the more robust the centrality metric is to the dynamic changes of edges of network mentioned 
in this section. In other words, the centrality metric is more stable against noise and inaccuracies in the 
network. (a) overlap curves by (1) on collins_yeast. (b) overlap curves by (1) on power. (c) overlap curves by 
(1) on interactome_figeys. (d)  overlap curves by (2) on collins_yeast. (e) overlap curves by (2) on power. (f) 
overlap curves by (2) on interactome_figeys. (g) overlap curves by (3) on collins_yeast. (h) overlap curves by (3) 
on power. (i) overlap curves by (3) on interactome_figeys.
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In robustness experiments, deliberate attacks were conducted on the network. Targeted attacks were per-
formed by quantifying the influence of network nodes using existing centrality metrics and the centrality metric 
proposed in this paper. Nodes were ranked based on their centrality scores, and nodes with higher rankings 
were attacked first. The goal was to observe how the network’s performance declined at different proportions of 
important nodes being attacked. To ensure the reliability of the results, all results were based on the average of 
at least 500 independent experiments.

Robustness experiments in synthetic networks
For LFR synthetic networks, we maintained the degree distribution exponent and the community size distribu-
tion exponent constant. We varied the mixing parameter, denoted as µ , to generate synthetic networks with 
different levels of community structure strength.The topological characteristics of these synthetic networks are 
presented in Table 3. Finally, the results of the resilience experiments on synthetic networks with different com-
munity structure strengths are shown in Fig. 7.

The experimental results from Fig. 7 demonstrate that whether in networks with clear community structures 
or networks with unclear community structures, the disruption of influential nodes identified by the DoN and 
mDC metrics leads to a faster decline in both the network’s LCSS and network efficiency. Take the Fig. 7i from 
Fig. 7 as an example: when 50% of the nodes in mDC are disrupted, the LCSS in mDC has already dropped to 
nearly 0, whereas the LCSS in DoN still contains 10% of the nodes. In contrast, DC and BC still have almost 40% 
of the nodes in their maximum connected components. This indicates that the influential nodes identified by the 
mDC play a more influential role in shaping the network’s structure and performance compared to influential 
nodes identified by other existing centrality metrics. Furthermore, from the results of experiments with LFR5000 
having two different community structure strengths, it can be observed that networks with stronger commu-
nity structures reach the threshold of a LCSS dropping to 0 slightly earlier. This suggests that the identification 

Figure 7.  Robustness experiments of DoN and mDC on synthetic networks.The horizontal axis represents the 
proportion of nodes removed according to their influence. The L(p) of the ordinate represents the change of 
the network’s LCSS, and the NE(p) represents the change of network efficiency. The titles of the figures include 
“LFRnum”, where “num” signifies the number of nodes in the LFR synthetic network. µ is the parameter of LFR 
algorithm. The smaller the µ , the more clear the community structure of the network. In Fig. 7, the faster the 
curve descends, the more influential attacked nodes are to the network topology and performance. (a) LFR500 
μ = 0.1. (b) LFR500 μ = 0.1. (c) LFR500 μ = 0.8. (d) LFR500 μ = 0.8. (e) LFR1000 μ = 0.1. (f) LFR1000 μ = 0.1. 
(g) LFR1000 μ = 0.8. (h) LFR1000 μ = 0.8. (i) LFR5000 μ = 0.1. (j) LFR5000 μ = 0.1. (k) LFR5000 μ = 0.8. (l) 
LFR5000 μ = 0.8.
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performance of the mDC centrality metric is better in networks with more clear community structures than in 
networks where community structures are unclear.

From Fig. 7, it can be observed that for existing community-based centrality metrics like HBC, they tend to 
focus excessively on the size of network communities. This often results in the identification of influential nodes 
within larger communities. As a consequence, in the experiments, the nodes removed tend to be influential ones 
within large communities, while nodes within smaller communities remain intact, leading to the emergence of 
small-scale communities in the disrupted network. This phenomenon ultimately results in an unexpected increase 
in network efficiency, which was also observed in subsequent experiments with real networks. In contrast, due to 
its comprehensive consideration of network community structure information, the mDC exhibits more sTable 
and effective performance in identifying nodes crucial for network efficiency.

According to the experimental analysis above, it can be found that compared to existing centrality metrics, 
DoN and mDC can identify nodes that play a more influential role in the topology and performance of networks 
in LFR synthetic networks. Moreover, it performs better in identifying nodes in networks with clear community 
structures. On the other hand, compared to existing community-based centrality metrics, DoN-identified and 
mDC-identified influential nodes exhibit more stable effects on network efficiency changes.

Robustness experiments in real network
This section presents robustness experiments for different centrality metrics conducted on real networks. The 
modularity sizes of different real networks are shown in Table 3. Among them, webkb, PGP, collins_yeast, and NS 
belong to assortative networks, Email and Power networks are almost neutral networks, and interactome_figeys 
and new_zealand_collab networks are disassortative networks. The results of robustness experiments on these 
real networks are depicted in Fig. 8.

From Fig. 8, in the assortative networks, such as the PGP (Fig. 8k,l) with an assortativity coefficient of 0.238, 
when only 4% of the network nodes identified by mDC are attacked, the network efficiency of the PGP has already 
dropped close to 0, and the LCSS has also decreased to around 3%. In contrast, traditional centrality metrics 
like DC and BC require disrupting 10% of the network’s nodes to achieve a similar effect. And Domirank, VE 
and EHCC centrality also need disrupt 20% of nodes to reach similar effect. For neutral networks, such as the 
Email (Fig. 8a,b) and Power (Fig. 8c,d), with assortativity coefficients of 0.078 and 0.004, respectively, disrupting 
nodes identified by the DoN and mDC leads to a faster decline in the network’s LCSS and network efficiency 
when compared to other centrality metrics, under the same proportion of nodes disrupted. Additionally, even 
in the case of disassortative networks like interactome_figeys (Fig. 8m,n) and new_zealand_collab (Fig. 8o,p), 
where the entire network exhibits a star-like structure with prominent influential nodes, the presence of some 
community structure in the network makes the proposed mDC more effective in identifying influential nodes 
than existing centrality metrics.

Furthermore, we can observe that existing community-based centrality metrics such as HBC, CbM, and even 
DC tend to prioritize hub nodes and bridge nodes within large-scale communities when identifying influential 
nodes influencing network efficiency. In NS network (Fig. 8j), we can find that except DoN and mDC, other 
centrality all lead to the increase of network efficiency. This phenomenon often overlooks influential nodes 
within smaller communities. Consequently, the disruption of hub nodes within large-scale communities often 
leads to the formation of numerous small-scale network fragments, causing network efficiency to increase as 
the proportion of disrupted nodes rises. This observation aligns with the results obtained from experiments on 
synthetic networks (Fig. 7f). It also highlights the stability and effectiveness of the DoN and mDC for identifying 
nodes influential to network efficiency.

The results in Fig. 8 indicate that regardless of the network’s preference for connecting certain types of nodes, 
the proposed DoN and mDC effectively identifies influential nodes within the network. On the other hand, it is 
evident that the mDC performs well in identifying influential nodes compared to existing centrality metrics and 
DoN. This is particularly notable in non-disassortative networks and networks with clear community structures, 
where the recognition performance of the mDC centrality metric is superior.

Evaluation of DoN and mDC with susceptible-infected-removed
In this section, we further validated the performance of DoN and mDC in network disease propagation through 
SIR epidemic spreading experiments and compared them with existing state-of-the-art centrality metrics. The 
specific experimental method is as follows.

First, we immunize the top k% nodes obtained from each centrality metric, and then select a random node 
from the remaining set of nodes as initially infected node. We observe the proportion of infected nodes in the 
network after each iteration until there are no infected nodes left in the network. The smaller the proportion of 
infected nodes in the network, the higher the influence of the initially immunized nodes in promoting disease 
propagation in the network. This indicates a greater need for allocating additional resources to prevent the spread 
of disease in the context of disease control. In the experiments, we set the disease propagation probability β to 
be α times the current network’s disease propagation threshold βth , with α = 0.5 in subsequent experiments. 
Additionally, we set the node recovery rate γ = 0 in order to record the final number of infected nodes in each 
experiment. Finally, to ensure the reliability of the results, all results are derived from the average of at least 500 
independent epidemic spreading experiments.

SIR epidemic spreading experiments in synthetic networks
During SIR epidemic spreading experiments conducted on synthetic networks of different scales, the disease 
propagation probability in the networks fluctuated within a small range around the respective disease propaga-
tion thresholds. This is because a high disease propagation probability can lead to rapid disease spread within the 
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network, even if nodes identified are not high influential. Therefore, in the experiments, we set α = 0.5 . Finally, 
the results of SIR epidemic spreading experiments on synthetic networks are shown in Fig. 9, where lower curves 
indicate that the initially immunized nodes are more influential in the network.

From the experimental results in Fig. 9, it can be observed that as the proportion of initially immunized nodes 
in the network increases, the proportion of infected nodes in the network decreases. However, compared to 
immunizing influential nodes identified by existing centrality measures, immunizing influential nodes identified 
by DoN and mDC leads to an even lower proportion of infected nodes in the network.This effect is particularly 
noticeable in networks with a clear community structure, such as the synthetic network Fig. 9e. For instance, 
immunizing 5% of nodes identified by mDC in the case of a clear community-structured network Fig. 9e results 
in 40% of nodes infected, while in the case of a network with unclear community structure Fig. 9f, the propor-
tion of infected nodes is as high as 60%.

Furthermore, in the case of a clear community-structured LFR synthetic network such as Fig. 9e, immunizing 
the top 10% of nodes identified by mDC results in less than 10% of nodes being infected, and immunizing the top 
10% of nodes identified by DoN results in about 15% of nodes being infected. In contrast, immunizing the top 

Figure 8.  Robustness experiments of DoN and mDC on real networks. In Fig. 8, the horizontal axis represents 
the proportion of nodes destroyed, while the vertical axis represents the network’s performance changes. The 
L(p) of the ordinate represents the change of the network’s LCSS, and the NE(p) represents the change of 
network efficiency. Among them, webkb, PGP, collins_yeast, and NS belong to assortative networks, Email 
and Power networks are almost neutral networks, and interactome _figeys and new_zealand_collab networks 
are disassortative networks. In Fig. 8, the faster the curve descends, the more influential attacked nodes are to 
the network topology and performance. (a) Email. (b) Email. (c) power. (d) power. (e) webkb. (f) webkb. (g) 
collins_yeast. (h) collins_yeast. (i) NS. (j) NS. (k) PGP. (l) PGP. (m) interactome_figeys. (n) interactome_figeys. 
(o) new_zealand_collab. (p) new_zealand_collab.
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10% of nodes identified by BC results in nearly 20% of nodes being infected. For EHCC and VE, immunizing the 
top 30% of nodes identified by them even leads to over 55% of nodes being infected. Immunizing the top 10% of 
nodes identified by HBC leads to almost 75% of nodes being infected. This indicates that immunizing these 10% 
of nodes is ineffective in preventing the disease spread. In other words, local immunization alone cannot achieve 
the same effect as global immunization, which may lead to a scenario in real life where a significant amount of 
resources is invested without effectively preventing the disease spread, resulting in substantial economic losses 
for society. Moreover, when compared to the remaining classical centrality, immunizing 10% of nodes leads to 
a higher number of infected nodes compared to immunizing nodes identified by mDC.

From the above analysis, it can be concluded that on synthetic networks, the DoN and mDC metric proposed 
in this paper is more effective in identifying influential nodes that have a significant impact on network infor-
mation dissemination compared to existing centrality metrics. In networks of the same scale, the identification 
performance of the mDC is significantly better in networks with clear community structures compared to those 
with unclear community structures. The reason for this may lie in the fact that networks with clear community 
structures tend to have fewer edges between communities. Compared to other community-based centrality 
metrics, mDC can effectively consider boundary nodes between communities. In networks with unclear com-
munity structures, the identification performance of mDC may be somewhat lower due to unclear boundaries 
between network communities, but it still outperforms other centrality metrics.

SIR epidemic spreading experiments in real networks
In this section, we conducted the SIR epidemic spreading experiments in the real network. The experimental 
results are shown in Fig. 10. Additionally, We record the top 5 of influential nodes selected by different centrality 
metrics in power network Fig. 10b shown in Table 5 and the proportion of infected nodes in the power network 
over the first 50 time steps shown in Table 4. A lower proportion of infected nodes in the network indicates a 
more influential role played by the initially immunized nodes in containing the epidemic spread throughout 
the network.

From the results in Fig. 10, it can be observed that whether in assortative or disassortative networks, at the 
same immunization ratio, immunizing the influential nodes identified by DoN and mDC can result in a lower 
proportion of infected nodes in the network. In the assortative network PGP (Fig. 10c), immunizing the initial 

Figure 9.  SIR epidemic spreading experiments of DoN and mDC in Synthetic Networks. The horizontal axis 
represents the proportion of immunized nodes in the network, while the vertical axis represents the ratio of 
nodes infected in the final network under the influence of the SIR disease spreading model. The titles of the 
figures include “LFRnum”, where “num” signifies the number of nodes in the LFR synthetic network. µ is the 
parameter of LFR algorithm. The smaller the µ , the more clear the community structure of the network. Please 
see Table 3 for the relevant configuration of LFR network. In Fig. 9, the smaller the proportion of infected 
nodes in the network, the higher the influence of the initially immunized nodes in promoting information 
dissemination in the network. (a) LFR500 μ = 0.1. (b) LFR500 μ = 0.8. (c) LFR1000 μ = 0.1. (d) LFR1000 μ = 0.8. 
(e) LFR5000 μ = 0.1. (f) LFR5000 μ = 0.8.
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5% of nodes identified by mDC can keep the number of infected nodes in the network below 2% and the effect 
of immunizing the initial 5% of nodes identified by DoN is slightly worse. However, immunizing the top 5% of 
nodes identified by other centrality metrics would result in a higher number of infected nodes, especially the 
HBC, which leads to nearly 22% of nodes being infected. For neutral networks (Fig. 10d) and disassortative 
networks (Fig. 10f), immunizing the influential nodes identified by mDC also can result in a lower proportion 
of infected nodes than existing centrality metrics and DoN. This suggests that compared to existing centrality 
metrics, the mDC identifies influential nodes with a more central role in epidemic spreading.

In Table 4, we have listed the proportions of infected nodes in power network at each time step when these 
nodes are individually immunized as initial nodes. From Table 4, it can be observed that in the power network, 
node 3468 plays a crucial role in preventing disease spread. In Table 5, although both DC and mDC can identify 
node 3468, compared to DC, the mDC ranks node 3468 as the top node, while DC places it fourth and ranks node 
2553 as the top node. However, experiments show that node 2553 is far less effective in preventing disease spread 
compared to node 3468. Furthermore, from Tables 4 and 5, we can conclude that nodes with higher degrees in 
the network are not necessarily the most effective at controlling information dissemination within the network. 
In fact, certain nodes with relatively lower degrees can be more effective at controlling information spread, such 
as node 2594 identified by the mDC, which is not among the top 5 nodes identified by DC.

From the above analysis, we can find that in the study of epidemic spreading, discovering effective immuniza-
tion strategies to place nodes in an immune state in order to prevent the spread of diseases is a highly significant 
and meaningful research area. And identifying influential nodes in the network with powerful information 
dissemination capabilities is a crucial step in discovering effective immunization strategies. This section has 
demonstrated through SIR epidemic spreading experiments that the mDC can identify influential nodes in the 
network with powerful information dissemination capabilities. Especially in non-disassortative networks and 
networks with clear community structures, its identification performance is superior. This provides valuable 
insights for the future development of more efficient and accurate immunization strategies.

Discussion
In large-scale complex networks, identifying influential nodes by combining local and global information pre-
sents certain challenges. Firstly, this paper characterizes and analyzes the existence of disassortativity of the node 
in networks, namely the inconsistency between the degree of a node and the degrees of its neighboring nodes. 
The more neighbor nodes with smaller degrees there are, the greater the degree of disassortativity of a node. 
The paper provides a measure about the disassortativity of a node (DoN) by using the step function. Addition-
ally, through an analysis of real blog networks, it is observed that the influence of bloggers is often related to 
the disassortativity of nodes and the community boundary structure in the network. Furthermore, combining 
the disassortativity of nodes and community structure, the influential metric of node based on disassortativity 
and community structure (mDC) is proposed, which is of significance for robustness of netwirk and network 
immunization against disease.

Figure 10.  SIR epidemic spreading experiments of DoN and mDC in real networks. The horizontal axis 
represents the proportion of immunized nodes in each experiment, while the vertical axis represents the ratio 
of infected nodes in the final network under the SIR disease propagation model. Among them, webkb, PGP, 
collins_yeast, and NS belong to assortative networks, Email and Power networks are almost neutral networks, 
and interactome _figeys and new_zealand_collab networks are disassortative networks. In Fig. 10, the smaller 
the proportion of infected nodes in the network, the more influential the initially immunized nodes in 
promoting information dissemination in the network. (a) Email. (b) power. (c) PGP. (d) collins_yeast. (e) NS. (f) 
webkb. (g) interactome_figeys. (h) new_zealand_collab.
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Table 4.  Infected proportion of initial immunized nodes in the power network for the top 5 nodes identified 
by different centrality metrics (1–50 time steps). The smaller the proportion of infected nodes at time 50, 
the more influential the initially immunized node is. Node represents the node label, and the bold portion 
represents the top 5 nodes identified by mDC in power network. The top 5 influential nodes identified by other 
centrality metrics in the power network are shown in Table 5.

Node 1 2 3 4 5 10 20 30 40 50

1159 0.000202 0.000308 0.000474 0.000648 0.00085 0.003121 0.017677 0.053115 0.121688 0.22085

2312 0.000202 0.000324 0.000506 0.000708 0.001008 0.003679 0.020866 0.06342 0.135912 0.24034

3468 0.000202 0.000275 0.000393 0.000542 0.000777 0.002882 0.015471 0.047586 0.103967 0.18606

1166 0.000202 0.0003 0.000478 0.000793 0.001247 0.004408 0.023862 0.070868 0.150447 0.262635

2458 0.000202 0.000348 0.000478 0.000733 0.001004 0.00404 0.019907 0.06036 0.134394 0.236839

1308 0.000202 0.00032 0.000409 0.00053 0.000737 0.002603 0.016276 0.051451 0.110391 0.190427

1313 0.000202 0.000259 0.000348 0.00049 0.000704 0.003117 0.018353 0.053681 0.110557 0.196232

2594 0.000202 0.000385 0.000555 0.000785 0.001222 0.004444 0.017604 0.049702 0.10302 0.185639

1442 0.000202 0.000308 0.000474 0.00064 0.000838 0.003388 0.019008 0.053742 0.113131 0.205991

2605 0.000202 0.000312 0.000453 0.000615 0.000919 0.003165 0.018017 0.055041 0.122449 0.224578

2606 0.000202 0.000287 0.000409 0.000676 0.000967 0.003619 0.020919 0.06132 0.129532 0.221198

2553 0.000202 0.00038 0.000676 0.000895 0.001141 0.00459 0.024938 0.074131 0.156547 0.269358

2608 0.000202 0.000409 0.000611 0.000826 0.001044 0.00376 0.02098 0.065894 0.144829 0.253827

2607 0.000202 0.000372 0.000587 0.000814 0.00121 0.00427 0.021919 0.063222 0.13845 0.241562

2364 0.000202 0.00032 0.000518 0.000797 0.001166 0.004724 0.024687 0.069917 0.143853 0.24795

831 0.000202 0.000316 0.000474 0.00066 0.000866 0.00308 0.018519 0.061024 0.135118 0.234803

4164 0.000202 0.000332 0.000542 0.000708 0.000984 0.003805 0.020417 0.058069 0.120716 0.212212

1106 0.000202 0.000393 0.000591 0.00085 0.001214 0.004262 0.020757 0.062821 0.142259 0.247513

1243 0.000202 0.000332 0.000546 0.000769 0.001073 0.003586 0.016766 0.053216 0.116916 0.20986

2528 0.000202 0.000385 0.000575 0.000895 0.001235 0.004278 0.023311 0.064363 0.129136 0.223659

4199 0.000202 0.000328 0.000579 0.000866 0.001303 0.004392 0.023441 0.066335 0.140356 0.235228

4458 0.000202 0.000332 0.000534 0.000777 0.001146 0.004635 0.02595 0.072038 0.141554 0.243202

1131 0.000202 0.000352 0.000563 0.000866 0.001235 0.004023 0.022068 0.064586 0.131698 0.228852

2543 0.000202 0.000324 0.000571 0.000935 0.001368 0.004938 0.023862 0.065881 0.136159 0.225752

4345 0.000202 0.000308 0.000409 0.000579 0.000761 0.002825 0.015171 0.048946 0.11354 0.210917

2554 0.000202 0.000279 0.000389 0.00051 0.000716 0.002935 0.016794 0.054329 0.123546 0.231135

4219 0.000202 0.000348 0.00055 0.000866 0.001235 0.005335 0.027399 0.072504 0.136794 0.225238

4352 0.000202 0.000797 0.001833 0.003315 0.004986 0.0054070 0.021218 0.091188 0.15924 0.216397

4345 0.000203 0.0012102 0.002813 0.004906 0.00729 0.015531 0.050194 0.116833 0.174598 0.259128

615 0.0002023 0.0002712 0.0003804 0.000514 0.000737 0.003578 0.020959 0.055936 0.107638 0.201844

4458 0.0002024 0.000874 0.001704 0.002776 0.003867 0.014296 0.063205 0.15784 0.289884 0.435345

2668 0.0002023 0.000400 0.000907 0.001509 0.002348 0.009945 0.060781 0.136130 0.217409 0.353706

3468 0.000202 0.000696 0.001275 0.001765 0.002327 0.006237 0.025132 0.062270 0.115515 0.2276830

4110 0.000202 0.000502 0.000971 0.001679 0.002651 0.009710 0.042910 0.123671 0.244901 0.3726897

2382 0.0002023 0.000663 0.001149 0.001769 0.00249 0.008237 0.026513 0.063902 0.153058 0.336414

3537 0.000202 0.000279 0.000352 0.000421 0.000555 0.001125 0.005671 0.024359 0.132214 0.2117328

2553 0.0002023 0.001121 0.002198 0.003517 0.005027 0.018048 0.07355 0.148731 0.239696 0.385687

4381 0.0002023 0.00097 0.002489 0.004638 0.007047 0.015535 0.091748 0.0732321 0.158546 0.273260

Table 5.  Top 5 influential nodes selected by different centrality metrics in power network.

Method mDC DC BC CC DoN HBC CbM MV EHCC VE Domirank

1 3468 2553 4164 1308 2553 1106 4458 1166 2553 2668 2553

2 2594 4458 2543 2594 4458 1166 2617 1442 4345 4110 4458

3 1442 4345 1243 2605 4345 1178 1166 4474 4458 615 831

4 2605 3468 4219 1131 3468 1167 2608 4199 4381 3537 3468

5 4199 831 2528 2606 831 4219 1106 2607 4352 4458 2382
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In both the synthetic network and real network robustness experiments, as well as immune experiment of 
disease infection, mDC not only effectively identifies community boundary nodes but also recognizes hub nodes 
within each community. Compared to state-of-the-art centrality metrics, the mDC more effectively identifies 
influential nodes in different networks. Meanwhile, for the DoN, although its performance is inferior to mDC, 
it is still much better than most state-of-the-art centrality metrics. Existing centrality metrics based on com-
munity structure(HBC, CbM, MV) often perform well in networks with clear community structures, but their 
performance weakens or even falls below that of classical centrality metrics(DC, BC, CC) in networks with 
unclear community structures and non-disassortative networks. On the contrary, in networks with unclear com-
munity structures and non-disassortative networks, the proposed DoN and mDC still keeps high identification 
performance compared to state-of-the-art centrality metrics. sThis indicates that in non-disassortative networks, 
the DoN and mDC can effectively identify new influential nodes that existing state-of-the-art centrality metrics 
cannot recognize, specifically those hidden within the disassortativity subnetworks of non-disassortative net-
work. In terms of time complexity, the time complexity of DoN is O(n2) (approaching that of degree centrality), 
while the time complexity of mDC is O(n2 + nlogn+ n) . Although the efficiency of DoN is superior to that of 
mDC, the performance of mDC in identifying influential nodes is the best and the runtime of mDC is not high.

In the future, we will further consider: (1) We will consider non-overlapping community division for the 
division of network community structure, and further discuss how to effectively identify the influentia nodes 
in overlapping community structure; (2) The proposed DoN and mDC algorithm runs on the topology of the 
original network, and the popular network representation also has hyperbolic representation. In the future, we 
can further extend DoN and mDC algorithm to hyperbolic space of the network. (3) Our algorithm is mainly 
applied to static networks, while most real networks evolve dynamically. We will try to determine the influential 
nodes of the network snapshot at current moment through the influential nodes of the network snapshot at the 
previous moment and the network difference information between the network snapshot at current moment 
and the network snapshot at the previous moment to reduce the time complexity and repeated calculation of 
the algorithm in the dynamic network.

Data availibility
Network data that being used in this article can be downloaded freely from the publicly accessible repositories 
https:// github. c om/ Hx4869/ mDC- datas ets.
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