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MiRNAs from the Dlk1‑Dio3 
locus and miR‑224/452 cluster 
contribute to glioblastoma tumor 
heterogeneity
Christopher M. Smith 1,2, Daniel Catchpoole 3,4 & Gyorgy Hutvagner 1*

Glioblastoma is one of the most common and aggressive brain tumors and has seen few improvements 
in patient outcomes. Inter‑tumor heterogeneity between tumors of different patients as well as intra‑
tumor heterogeneity of cells within the same tumor challenge the development of effective drugs. 
MiRNAs play an essential role throughout the developing brain and regulate many key genes involved 
in oncogenesis, yet their role in driving many of the processes underlying tumor heterogeneity 
remains unclear. In this study, we highlight miRNAs from the Dlk1‑Dio3 and miR‑224/452 clusters 
which may be expressed cell autonomously and have expression that is associated with cell state 
genes in glioblastoma, most prominently in neural progenitor‑like and mesenchymal‑like states 
respectively. These findings implicate these miRNA clusters as potential regulators of glioblastoma 
intra‑tumoral heterogeneity and may serve as valuable biomarkers for cell state identification.

Glioblastoma is one of the most common and aggressive brain tumors and has seen few improvements in patient 
 outcomes1. Inter-tumor heterogeneity between tumors of different patients as well as intra-tumor heterogene-
ity of cells within the same tumor challenge the development of effective  drugs2. In glioblastoma, inter-tumor 
heterogeneity has been well characterized through large scale studies integrating gene expression data from The 
Cancer Genome Atlas (TCGA), initially identifying at least four key subtypes of glioblastoma named proneural 
(TCGA-PN), neural (TCGA-NE), classical (TCGA-CL), and mesenchymal (TCGA-MS), later revised to exclude 
the neural  subtype3,4. More recently, intra-tumor heterogeneity in glioblastoma was characterized using single 
cell RNA-seq, which has provided a unified model for glioblastoma  heterogeneity5. In this model they described 
four main cancer subpopulations, referred to as cell states, resembling cell types that exist during normal brain 
development. This included astrocyte-like (AC), neural-progenitor-like (NPC), oligodendrocyte-progenitor-like 
(OPC), and mesenchymal-like (MES) cell states. Furthermore, they highlighted that tumors were often comprised 
of multiple cell states, although not necessarily containing all states at once, and that the presence and relative 
frequencies of each cell state directly influenced TCGA subtype classifications at the population level.

MiRNAs play an essential role throughout the developing brain, contributing to cell fate specification and 
differentiation in many neural or glial stem/progenitor  cells6. Extensive documentation of miRNA dysregulation 
in glioblastoma and their effects on key cancer pathways suggests they are also important in  tumorigenesis7. 
Furthermore, miRNA expression profiles can significantly improve classification of tumors with TCGA subtypes, 
making them potential biomarkers and suggesting their activity is intrinsically linked to gene networks that drive 
each of these  subtypes8. As research has now highlighted a direct link between TCGA subtypes and cell state 
compositions on a single cell level, this implies that miRNA expression is also associated with these cell states 
and may have important functions in cell state  regulation5. Despite this, there is an absence of studies in the lit-
erature which aim to investigate miRNA expression in glioblastoma single cells and the role miRNAs play in the 
regulation of cell states. In this study, we highlight that miRNAs from the Dlk1-Dio3 and miR-224/452 clusters 
may be expressed cell autonomously and that their expression is associated with cell state genes in glioblastoma.
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Methods
Single cell small RNA sequencing pre‑processing and mapping
For the single cell small RNA sequencing reads, UMI sequences were removed prior to adapter removal and 
appended to the read headers. Adapters were then removed using cutadapt (v2.7) with a minimum overlap of 
1 nt and maximum error rate of 0.1 between reads and adapter  sequences9. After UMI and adapter removal, 
reads shorter than 15 nucleotides were excluded. To identify duplicated reads, reads were aligned to the human 
genome (hg38) using bowtie (v1.2.3) with the following parameters: -n 2 -e 120 -l 20 –best10. Human-aligned 
reads were subsequently deduplicated with umitools (v1.0.0) with default  settings11.

Processed reads were aligned to miRbase (v22.1) annotated precursor miRNAs using miraligner (v3.4), 
with the following parameters: -sub 1 -trim 3 -add  312. Reads which successfully aligned to a miRNA were also 
annotated with any variants to the miRbase defined mature sequence and converted to miRNA counts.

Identification of cell subpopulations with miRNA expression
To identify glioblastoma cell subpopulations, miRNA expression was analyzed with the R package Seurat 
(v3.1.5)13. MiRNAs present in three or less cells, or cells with less than 1000 mapped reads, were excluded from 
analysis. For dimensionality reduction, Principal Component Analysis was used on the top 25% of variable 
features after centering and scaling the data. Cells were visualized using Uniform Manifold Approximation 
and Projection (UMAP). This was followed by cell clustering using Seurat’s FindNeighbors (k.param = 30) and 
FindClusters (resolution = 0.8) functions. Clustering of cells was stable across a range of parameters and was 
deemed acceptable due to the presence of cluster specific miRNA ‘markers’ highly expressed in one population 
and absent in the other. Seurat’s FindAllMarkers function was used for differential expression analysis, and only 
features with an adjusted p-value (p.adj) less than 0.05 and  loge fold-change larger than 1 were considered dif-
ferentially expressed.

Scoring for TCGA subtypes and cell states
Scores which reflect the expression of a set of genes (i.e. gene modules) were calculated using a method similar 
to that described in the Neftel et al.  study5. Briefly, gene counts for all samples were converted to  log2 transcripts-
per-million  (log2[TPM + 1]) and centered by deducting expression of each gene by its mean expression across 
all samples from the same dataset. Then for each sample, scores were calculated from the mean expression of 
the gene module minus the mean expression of a control gene set. For the control gene set, aggregate expression 
of each gene across all samples from the same dataset were used to organize genes into 30 expression bins. For 
each gene in the gene module, 100 genes were randomly selected from the same expression bin and placed in 
the control gene set.

The gene sets for the three TCGA subtypes were obtained from Wang et al.’s  study4. Cell state gene sets were 
obtained from Neftel et al.’s  study5.

Results
Expression of the Dlk1‑Dio3 and miR‑224/452 clusters characterize subpopulations of a glio‑
blastoma primary culture.
To investigate if miRNA heterogeneity may contribute to cell state regulation or identity in glioblastoma, we 
analyzed publicly available single cell small RNA-seq data for 173 cells from 3 glioblastoma primary cultures 
and 1 glioblastoma cell  line14. UMAP projections for miRNA expression (Fig. 1A) revealed that most cells co-
localized with others from the same cell type with minimal evidence of common miRNA expression modules 
across different cell types. However, we observed that one of the glioblastoma primary cultures (KS4) formed 
two distinct groups, not associated with their batch number, that we hypothesized represent two subpopulations 
in different cell states (Fig. 1B and Supplementary Table 1).

Following this, we compared miRNA expression between the two KS4 cell clusters using differential expres-
sion analysis (Fig. 1C–D). In total, we identified 20 miRNAs which were significantly upregulated in KS4 cluster 
1, and 5 miRNAs which were significantly upregulated in KS4 cluster 2 (p.adj < 0.05). Upon further investigation 
into the miRNAs upregulated in KS4 miRNA cluster 1, we noted that 18 of the 20 upregulated miRNAs originated 
from the same miRNA cluster hosted within the Dlk1-Dio3 gene locus on chromosome 14q32 (Fig. 1C and Sup-
plementary Fig. 1). Three of the five upregulated miRNAs in cluster 2—miR-224-5p, miR-224-3p, miR-452-5p, 
were also from a single miRNA cluster on chromosome X (Fig. 1D). Out of the differentially expressed miRNAs 
identified between the two KS4 subpopulations, expression was dominated (> 75%) by the miRNAs from the 
Dlk1-Dio3 and miR-224/452 clusters (Fig. 1E–F).

MiRNAs are associated with glioblastoma subtypes and cell state genes.
To predict the function of the upregulated miRNAs in the two KS4 clusters, we analyzed glioblastoma bulk 
RNA and miRNA expression data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) to iden-
tify any association between miRNA expression and marker genes for glioblastoma subtypes or known cell 
states. Previous work demonstrated that glioblastoma subtypes are indicative of the most dominant cell states 
within a tumor, with the proneural subtype (TCGA-PN) typically enriched with cells in a neural-progenitor-like 
(NPC) or oligodendrocyte-progenitor-like (OPC) state, mesenchymal subtype (TCGA-MS) enriched with cells 
in mesenchymal-like (MES) state, and classical subtype (TCGA-CL) enriched with cells in an astrocyte-like 
(AC)  state5. Therefore, we reasoned that if the miRNA pathway had a role in regulating cell states, then it may 
be possible to identify miRNAs with strong associations to the genes typically upregulated in these cell states 
using population level data.
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To detect potential associations between miRNAs and TCGA subtypes or cell states we scored tumors by 
their mean expression of marker genes associated with subtype or cell  state5. Tumors were typically associated 
with at most one TCGA glioblastoma subtype and scores for each TCGA subtype were negatively correlated 
(Pearson’s R = − 0.47 to − 0.31; Supplementary Fig. 2). Out of the top 200 expressed miRNAs measured across 
all glioblastoma tumors, 146 miRNAs were significantly correlated with at least one subtype score (p.adj < 0.05; 
Fig. 2A). The strongest correlations of miRNA expression and subtype scores were with the TCGA-PN and 
TCGA-MS subtypes.

Cell states were defined according to the four cell states described by Neftel et al., and included six gene mod-
ules in total, one module associated with each of the AC and OPC states and two modules associated with each of 
the NPC and MES  states5. Cell state module scores were correlated against expression of each miRNA (Fig. 2B). 
The highest Pearson correlation values were observed with the NPC1, NPC2, MES1, and MES2 cell states. Strong 
anti-correlation patterns with similar magnitudes were observed between the NPC1/NPC2 states and MES1/
MES2 states across most miRNAs. A high number of miRNAs had matching correlation signs between NPC1, 
NPC2, OPC, and AC cell states, although correlation was generally weaker with the OPC and AC cell states.

The correlation of scores and miRNA expression was similar between the TCGA-Proneural subtype and 
NPC1/NPC2 states, as well as the TCGA-MS subtype and MES1/MES2 states (Fig. 2C). This was consistent with 
Neftel et al.’s previous work suggesting these subtypes were predominantly composed of cells exhibiting these 
respective  states5. A weaker association was observed between the TCGA-CL subtype and each cell state, with 
the highest association to the AC state (R = 0.34), possibly reflecting this subtype’s mixed population of states.

The Dlk1‑Dio3 and miR‑224/452 clusters are associated with glioblastoma cell states.
Focusing on the differentially expressed miRNAs identified between the two KS4 glioblastoma subpopulations, 
most miRNAs that were co-upregulated in one of these subpopulations had matching signs of correlation coef-
ficients for each cell state (Fig. 2D). For example, 16/20 (p.adj < 0.05) miRNAs upregulated in KS4 cluster 1 
were positively correlated with the NPC1 cell state score, 16/20 (p.adj < 0.05) with the NPC2 score, and 10/20 
(p.adj < 0.05) with the OPC score. Conversely there was a negative correlation with 8/20 (p.adj < 0.05) miRNAs 
and the MES1 scores. All 18 of the miRNAs from the Dlk1-Dio3 locus had a positive correlation coefficient with 
the NPC scores, however some were weakly correlated or not statistically significant. Only one miRNA, miR-
155-5p, appeared to contradict the miRNAs in this group, having a positive correlation with MES1 scores and 
negative correlations with NPC1, NPC2, and OPC scores. Out of the five miRNAs upregulated in KS4 cluster 
2 (Fig. 2D), three were positively correlated with the MES1 scores and two with the MES2 scores, as well as 
two negatively correlated with NPC1 scores, and one with NPC2 and OPC scores. All three miRNAs from the 

Figure 1.  Identification of heterogenous glioblastoma cell subpopulations from miRNA expression. (A) 
UMAP plot of miRNA expression from four glioblastoma cell types. (B) UMAP plot for KS4 glioblastoma cells 
colored by cluster. Comparison of expression in select miRNAs that were differentially upregulated (adjusted 
p-value < 0.05) in KS4 cluster 1 (C) or KS4 cluster 2 (D). miRNA expression shown is in  loge. Relative expression 
of the differentially expressed miRNAs for miRNAs upregulated in (E) KS4 Cluster 1 or (F) KS4 Cluster 2. 
miRNAs belonging to the same miRNA cluster were colored similarly.
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Figure 2.  Expression of miRNAs correlate with TCGA subtypes and cell state modules. Pearson correlation 
for the 200 highest expressed miRNAs and (A) TCGA subtype or (B) cell state module scores. miRNAs are 
ordered by ascending Pearson correlation coefficients for the Proneural (TCGA-PN) subtype. Non-significant 
Pearson coefficients are shown as transparent dots. (C) Hierarchical clustering of Pearson correlation values 
between each miRNA’s expression and corresponding gene module score. (D) Pearson correlation of miRNAs 
upregulated in KS4 cluster 1 (top) or (bottom) KS4 cluster 2 with each TCGA subtype or cell state score. 
miRNAs belonging to the Dlk1-Dio3 miRNA cluster or miR-224/452 cluster are shown in bold, as well as 
combined expression of all miRNAs from each cluster (All) or only miRNAs differentially expressed between 
KS4 cells (DE Only). P-values are shown as asterisks—*: 0.005 <  = p-value < 0.05; **: 0.0005 <  = p-value < 0.005; 
***: 0.00005 <  = p-value < 0.0005. CL: Classical; MS: Mesenchymal, PN: Proneural; AC: Astrocyte-like; MES: 
Mesenchymal-like; NPC: Neural-progenitor-like; OPC: Oligodendrocyte-progenitor-like.
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miR-224/452 cluster negatively correlated with AC cell state scores. We also considered that an aggregated expres-
sion of miRNAs from each cluster (Fig. 2D), including all miRNAs belonging to this cluster (All) or only those 
differentially expressed between the two KS4 glioblastoma subpopulation (DE Only), may provide a stronger 
association to these cell states than any individual miRNA. We found for both measurements of the Dlk1-Dio3 
cluster expression (Fig. 2D), correlation was similarly positive with the NPC1, NPC2, and OPC states, although 
not significant with the OPC state for the differentially expressed miRNAs. No significant negative correlation 
was shown between the aggregated Dlk1-Dio3 miRNA expression and the AC, MES1, and MES2 scores. For the 
aggregated miR-224/452 cluster miRNA expression, significant positive correlation was observed with the MES1 
and MES2 states, and negative correlation with the NPC1, OPC, and AC state scores (both All and DE Only). 
The evidence indicated that expression of select miRNAs, such as miR-323a-3p and miR-224-5p, may be on par 
or better than an aggregate expression of the clusters for distinguishing between cell states.

Finally, we noted that the cell state scores were generally consistent with the bulk subtype scores (Fig. 2D), 
with the miRNAs upregulated in KS4 Cluster 1 generally positively correlating with the TCGA-PN subtype 
score and miRNAs from KS4 cluster 2 positively correlating with the TCGA-MS subtype score. The combined 
evidence of cell autonomous regulation of these two miRNA clusters as well as their association with specific 
cell states highlights a novel form of intra-tumor heterogeneity in glioblastoma and implicates them as potential 
regulators of glioblastoma cell states.

The Dlk1‑Dio3 cluster lncRNA MEG3 is associated with the neural progenitor‑like and oligo‑
dendrocyte progenitor‑like cell states in single cells.
Previous studies suggest that miRNAs from the Dlk1-Dio3 locus are co-transcribed from a common primary 
transcript with 3 long non-coding RNAs—MEG3, MEG8, and  MEG915. To investigate expression of this locus 
in single cells we analyzed single cell RNA-seq data from four studies. Although single cell RNA-seq does not 
capture miRNAs, we hypothesized that expression of these long non-coding RNAs would be strongly correlated 
with miRNA expression from this locus and would be potential marker genes for Dlk1-Dio3 miRNA expression 
in single cells.

Firstly, to determine if the long non-coding RNAs MEG3, MEG8, and MEG9 could predict expression of 
miRNAs from the Dlk1-Dio3 locus, we used paired bulk RNA and miRNA expression data for glioblastoma 
tumors from the CPTAC dataset to determine the correlation of an aggregated expression of Dlk1-Dio3 miRNAs 
with each gene in the RNA dataset. There was a high correlation between the combined Dlk1-Dio3 miRNA 
expression and the non-coding RNAs MEG8 (Pearson’s r = 0.71), MEG3 (Pearson’s r = 0.67), and MEG9 (Pear-
son’s r = 0.65), as well as with RTL1 (Pearson’s r = 0.65), all of which are encoded from this locus (Supplementary 
Table 2). Excluding genes which code for miRNAs or snoRNAs, these four were the most positively correlated 
across the glioblastoma tumors, indicating their expression corresponded well with Dlk1-Dio3 miRNA expres-
sion. This provided strong support for their use as markers to infer miRNA expression from this locus when 
only RNA-seq data is available.

To investigate if the Dlk1-Dio3 marker genes were associated with any cell states we utilized single cell RNA-
seq data from 4 different studies, which included 50 glioblastomas (45 unique tumors) and 16,269 cells after 
 filtering5,16–18. Of the Dlk1-Dio3 markers, only MEG3 was detectable in a high number of cells so we focused 
on this gene.

Glioblastoma cells were assigned a score for each cell state using the same methodology described previously. 
We calculated the Pearson correlation of cell state module scores and MEG3 expression  (log2[TPM + 1]) for all 
cells in each dataset. In most tumors (38/50), MEG3 expression was positively correlated with at least one of the 
NPC cell state scores, and many were also positively correlated with the OPC scores (22/50; Fig. 3). Tumors with 
a positive correlation of MEG3 expression and NPC scores generally had a corresponding negative correlation 
with the MES1 and/or MES2 scores. Although correlations between MEG3 and cell state scores were typically 

Figure 3.  MEG3 is associated with glioblastoma cell states. MEG3 expression (top) and Pearson correlation 
with cell state module scores (bottom) in glioblastoma cells from different patients. P-value significance is shown 
as asterisks. *: 0.005 <  = p-value < 0.05; **: 0.0005 <  = p-value < 0.005; ***: 0.00005 <  = p-value < 0.0005; ****: 
0.000005 <  = p-value < 0.00005. AC: Astrocyte-like; MES: Mesenchymal-like; NPC: Neural-progenitor-like; OPC: 
Oligodendrocyte-progenitor-like.
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weak to moderate in strength (R < 0.7), the results were consistent with our previous findings for the Dlk1-Dio3 
miRNAs in the population-level data.

Discussion
In this study we identified miRNAs from the Dlk1-Dio3 and miR-224/452 clusters which distinguished two 
subpopulations of cells in a primary glioblastoma culture and show that both miRNA clusters are associated with 
different glioblastoma cell states. Our results suggest miRNA expression from the Dlk1-Dio3 locus, as well as the 
putatively co-expressed long non-coding RNA MEG3, is positively associated with the NPC cell state and nega-
tively associated with the MES state. The opposite was true with the miR-224/452 cluster where it was positively 
associated with the MES cell state but negatively associated with the NPC cell state. However, cause-and-effect 
is difficult to establish via association and it remains to be seen if any of these miRNAs are capable of driving 
or maintaining cancer cell states, or if their expression simply changes in response to other, more critical genes. 
Even in the absence of a functional role, the miRNA highlighted in this study may hold value as biomarkers for 
cell states once the field evolves towards clinical strategies which factor intra-tumoral heterogeneity.

Recently, a lot of attention has focused on accurately classifying glioblastoma subtypes using smaller gene 
panels which may be more feasible for use in a clinical setting. The initial Verhaark classification identified a 
total gene set of 840 genes for classifying classical, mesenchymal, neural, proneural signatures, later reduced to 
a 48 gene classifier that retained 90.91%  accuracy3,19. A 50 gene signature was later defined for IDH-wild type 
glioblastoma which excluded the neural  subtype4. A later study by Fu et al. demonstrated 83.7% accuracy in 
classifying tumors into proneural or mesenchymal subtypes utilizing a smaller set of 26  genes20. None of these 
studies utilized miRNA expression for classification and our results suggest that a combination of both RNA and 
miRNA expression may further enhance this accuracy.

A key question is whether defining cell states with RNA or miRNA expression will identify the same cell states 
or if examining each expression modality will lead to the detection of different subpopulations. In a study with 
hepatocellular carcinoma cells, the authors used hierarchical clustering to identify three subpopulations of cells 
with RNA expression but found only two with miRNA  expression21. There was significant overlap between two of 
the RNA expression-based subpopulations and the miRNA subpopulations, however the third was not identifiable 
in the miRNA expression data. This suggests that it cannot always be assumed that there is concordance between 
RNA-based cell states and miRNA expression. Consequently, if the miRNAs examined in this study, including 
those from the Dlk1-Dio3 and miR-224/452 clusters, regulate cell subpopulations in a manner that is different 
to the cell states used in this study, then it is less likely that we would observe any strong association with them. 
However, our study indicates RNA and miRNA expression may classify similar populations.

MiRNAs such as miR-9-3p, miR-27a, and miR-23a, have previously been identified as markers for discrimi-
nating TCGA-PN and TCGA-MS  subtypes22. Results from our study were consistent with this work, as these 
three miRNAs had some of the strongest correlation coefficients with these subtypes compared to other miR-
NAs, supporting the validity of these findings. How well these observations translate to single cell level miRNA 
expression and their association with cell states remains to be confirmed.

We highlighted an inverse relationship between RNA expression of NPC/OPC genes and MES genes. This 
observation was also evident in bulk miRNA expression data when comparing NPC/OPC and MES scores 
and suggests miRNA expression is highly responsive to cell states and likely incorporated into the same gene 
networks. Although we have preliminary evidence that the two subpopulations of KS4 cells are most strongly 
associated with the NPC and MES cell states, further research which pairs miRNA sequencing with a more 
direct way of identifying biologically relevant cell states is critical. Furthermore, studies will need to be scaled 
up to include multiple tumors to determine if heterogenous expression of miRNAs from the Dlk1-Dio3 and 
miR-224/452 clusters are a common feature in glioblastoma or an isolated case.

In conclusion, our study is the first to implicate the Dlk1-Dio3 and miR-224/452 miRNA clusters as poten-
tial regulators of glioblastoma intra-tumoral heterogeneity and may serve as valuable biomarkers for cell state 
identification.

Data availability
Raw single cell small RNA sequencing reads were obtained from the Gene Expression Omnibus (GEO) database 
under accession id GSE81287. Raw or normalized gene counts and metadata from glioblastoma single cell RNA 
sequencing was obtained the Gene Expression Omnibus (GEO) database under accession ids GSE84465 (Dar-
manis dataset), GSE131928 (Neftel and Neftel_10X datasets), GSE102130 (Filbin dataset), and GSE57872 (Patel 
dataset)5,16–18. Pre-mapped read counts from bulk miRNA and RNA sequencing of glioblastomas were obtained 
from the GDC Data Portal under project ID CPTAC-3.
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