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A mathematical model to assess 
the effects of COVID‑19 
on the cardiocirculatory system
Andrea Tonini 1*, Christian Vergara 2, Francesco Regazzoni 1, Luca Dede’ 1, Roberto Scrofani 3, 
Chiara Cogliati 4,5 & Alfio Quarteroni 1,6

Impaired cardiac function has been described as a frequent complication of COVID‑19‑related 
pneumonia. To investigate possible underlying mechanisms, we represented the cardiovascular 
system by means of a lumped‑parameter 0D mathematical model. The model was calibrated using 
clinical data, recorded in 58 patients hospitalized for COVID‑19‑related pneumonia, to make it 
patient‑specific and to compute model outputs of clinical interest related to the cardiocirculatory 
system. We assessed, for each patient with a successful calibration, the statistical reliability of model 
outputs estimating the uncertainty intervals. Then, we performed a statistical analysis to compare 
healthy ranges and mean values (over patients) of reliable model outputs to determine which were 
significantly altered in COVID‑19‑related pneumonia. Our results showed significant increases in right 
ventricular systolic pressure, diastolic and mean pulmonary arterial pressure, and capillary wedge 
pressure. Instead, physical quantities related to the systemic circulation were not significantly altered. 
Remarkably, statistical analyses made on raw clinical data, without the support of a mathematical 
model, were unable to detect the effects of COVID‑19‑related pneumonia in pulmonary circulation, 
thus suggesting that the use of a calibrated 0D mathematical model to describe the cardiocirculatory 
system is an effective tool to investigate the impairments of the cardiocirculatory system associated 
with COVID‑19.

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SAR-
SCoV-2) primarily affects the respiratory system, even if it does not spare other organs as it occurs for the 
cardiovascular system at  large1–3. In severe COVID-19-related pneumonia, impairment of heart function seems 
to be mainly driven by right ventricle involvement, while consequences on the left ventricle appear to be less 
 common4. Right ventricle dilation, diminished right ventricular function and elevated pulmonary arterial systolic 
pressure have been described and are associated with mortality in severe COVID-195,6. Respiratory failure with 
shortening of oxygen supply represents the main clinical picture of the disease. Hypoxemia is associated with a 
huge increase in intrapulmonary shunt (measuring the percentage of blood that does not oxygenate in the lungs) 
due to alveolar fluid filling/consolidations. In fact, the pulmonary shunt fraction is in physiological conditions 
below 5%7, whereas it reaches values up to 60% in patients with ongoing COVID-19  infection8,9. Endothelial dam-
age with diffuse micro-thrombosis has been widely described in histological studies in COVID-19 pneumonia 
patients and is associated with an increase in dead space in lungs and thus in non-oxygenated  blood10. On the 
other hand, such an increase in intrapulmonary shunt has been postulated to depend also on an impairment of 
hypoxic pulmonary vasoconstriction that should restrict pulmonary flow to hypo-ventilated lung  areas11. These 
mechanisms do not seem to be correlated with each other and seem to coexist to varying degrees in COVID-19 
pneumonia  patients12.

In this context, physics-based mathematical models are an effective and accurate tool for making predic-
tions through virtual scenarios and for providing clinical answers in terms of impairments of the cardiovascular 
function associated with COVID-1913–15. In this respect, we previously studied, by means of a computational 
lumped-parameter (i.e. 0D) model, possible effects in terms of, e.g. cardiac output and  pressures16. However, this 
previous study did not integrate clinical data into the analysis in a systematic manner.
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The main novelty of this paper is to assimilate, by means of a calibration method, clinical data coming from 
measurements on COVID-19 patients regarding, e.g. cardiac volumes and vascular pressures, into the compu-
tational model proposed in ref.17 to make it patient-specific and then to use such calibrated model for making 
predictions on the impairments of the cardiovascular function associated with the ongoing infection. To do 
this, we improved the model of ref.17 by adding further compartments representing systemic and pulmonary 
micro-vasculatures. In this work, we focused on reproducing the blunted hypoxic pulmonary vasoconstriction, 
that is among the causes of the reduction in blood oxygenation, by means of the calibration of the model, thus 
neglecting the possible increase in pulmonary resistance associated to diffuse micro-thrombosis.

Our final goal is to study possible associations between the ongoing infection of COVID-19 and the impair-
ments on the cardiocirculatory system by estimating physical quantities of clinical interest not available as 
measured clinical data, e.g. pulmonary arterial and capillary wedge pressures, heart chamber blood volumes 
and pressures, and by performing a statistical analysis on these quantities.

Methods
The modified lumped-parameter model consists of a system of ordinary differential equations (ODEs) that needs 
to be numerically solved to allow the computation of different model outputs of clinical interest. We calibrated the 
model to fit some clinical data of patients hospitalized for severe COVID-19-related pneumonia in the Internal 
Medicine ward of L. Sacco Hospital in Milan, Italy, between March and April 2020. We analysed the statistical 
reliability of the model outputs for each successful calibration by means of uncertainty intervals and, finally, we 
performed a statistical analysis on clinical data or model outputs by means of hypothesis tests to highlight the 
impairments of the cardiocirculatory system associated with COVID-19 pneumonia.

We identified four groups of quantities, taken from the dataset or obtained as an output of the calibrated 
model:

 (i) The clinical data used for the model calibration, obtained from clinical measurements and referring 
to physical quantities (PQ1), as, for example, the maximal left atrial volume  (LAVmax) and the systolic 
systemic pressure  (SAPmax);

 (ii) The inputs of the model (heart rate HR and body surface area BSA) and of the calibration procedure 
(right ventricular fractional area change  RVFAC and tricuspid annular plane systolic excursion TAPSE), 
provided by other clinical measurements;

 (iii) The parameters of the model (e.g. resistances and compliances) determined through a calibration pro-
cedure, from now on referred to as calibrated parameters;

 (iv) The outputs of the numerical simulation of the model (e.g. flow rate and mean pressure), from now 
on referred to as model outputs. Some of them (MO1) referred to physical quantities (PQ1) that were 
also measured (clinical data), for example,  LAVmax and  SAPmax. Other model outputs (MO2) referred to 
physical quantities (PQ2) that were not measured but quantified only by means of the computational 
model. Examples of the latter are the mean left atrial pressure  (LAPmean) and indexed right ventricular 
end diastolic volume  (RVI-EDV). The complete list of PQ1 and PQ2 is reported in Supplementary Table 1.

We remark that the indexed value of volumes of a patient can be computed dividing the volumes by the BSA 
of that patient (Supplementary Table 2). In what follows, an “I-” that precedes a subscript of a volume means that 
the volume is indexed (for example,  LVI-EDV is the indexed left ventricular end diastolic volume).

For the sake of clarity, we reported in Fig. 1 the diagram flowchart of the followed procedure that is described 
in detail in what follows.

Dataset
The dataset consists of 58 patients, who all required oxygen supplementation but none of them was on mechanical 
ventilation. Of such patients, only 29 were calibrated according to point (iii) above (see Calibration subsection 
below) ( 56± 18 years). Such patients did not present symptoms or signs of heart failure or substantial structural 
cardiac disease; 10 out of 29 were older than 64 years; 6 patients had arterial hypertension, 1 had diabetes and 4 
showed the association of hypertension and diabetes (Supplementary Table 2).

The echocardiography of each patient was performed early after the admission to the hospital. Examinations 
were performed at bedside using a Philips CX-50 portable device by expert operators. Measures were defined 
according to the latest European and American Echocardiography Society  guidelines18,19.

Each patient provided consent to use his/her data for observational studies. The institutional board has 
approved the study with protocol number 16088/2020.

Mathematical model
The cardiovascular system was studied by means of a lumped-parameter (0D) mathematical model that splits 
the system into compartments (e.g. right atrium, systemic arteries/veins) and, for each of them, the time evo-
lution of model outputs (pressures, flow rates and cardiac volumes) is modelled by a system of  ODEs20,21. The 
lumped-parameter model is described through an electrical circuit analogy: the current represents the blood 
flow through vessels and valves; the electric potential the blood pressure; the electric resistance plays the role of 
the resistance to blood flow; the capacitance represents the vessel compliance; the inductance the blood inertia; 
the increase in elastance the cardiac contractility.

There are different possible choices and number of compartments, depending on the purpose of the study, 
for the construction of a lumped-parameter model (e.g. Refs.16,17,22,23). We considered the computational model 
introduced in Ref.17, wherein the four heart chambers, the systemic and pulmonary circulations, with their 
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arterial and venous compartments were included, and we substituted the 3D left ventricle with a 0D component 
(as in Ref.16) and we added two new compartments accounting for systemic and pulmonary capillaries. The pul-
monary capillary circulation was also split in two compartments accounting for oxygenated and non-oxygenated 
capillaries (Fig. 2).

The system of ODEs associated with the lumped-parameter model is formed by the equations representing 
continuity of flow rates at nodes and of pressures in the compartments, and its numerical solution allows to 
compute several model outputs as functions of time: the left and right atrial and ventricular volumes ( VLA , VLV , 

Figure 1.  Diagram flowchart of the procedure used in this study. Top: calibration; mid: statistical analysis 
of measured physical quantities; bottom: statistical analysis of computed physical quantities. Calibration: the 
mathematical model required as inputs HR and BSA of a specific patient. The model computed MO1 using an 
initial setting of parameters (that could need to be calibrated, so they are highlighted in red). If MO1 were close 
enough to the clinical data the model was considered calibrated (the parameters are highlighted in green); if 
not, the calibration method was iteratively applied to the parameters using  RVFAC and TAPSE as inputs. If the 
parameters were not modified the calibration failed; if not, MO1 were recomputed by using the new setting of 
parameters and the previous steps were repeated. Statistical analysis 1: we performed hypothesis tests on clinical 
data (test I). Statistical analysis 2: HR and BSA were used as inputs of the calibrated model for every patient with 
a successful calibration, the model computed the MO2 and we checked the statistical reliability of MO2. We 
collected the reliable MO2 from every patient and we performed hypothesis tests on the reliable MO2 of all the 
patients (test II).
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VRA and VRV ), the systemic and pulmonary arterial, capillary and venous pressures ( pSYSAR  , pSYSC  , pSYSVEN , pPULAR  , 
pPULC  and pPULVEN ), the systemic and pulmonary arterial and venous blood fluxes ( QSYS

AR  , QSYS
VEN , QPUL

AR  and QPUL
VEN).

Starting from these functions, it is possible to compute the pressures of the four cardiac chambers ( pLA , pLV , 
pRA and pRV ), the blood fluxes through the valves ( QMV , QAV , QTV and QPV ), through the systemic capillaries 
( QSYS

C  ) and through oxygenated and non-oxygenated pulmonary capillaries ( QPUL
C  and QSH ), and all the model 

outputs referring to PQ1 and PQ2 (Supplementary Table S1).
We considered reference values of the parameters (such as resistances and compliances) such that all the 

model outputs were in the reference healthy ranges of the corresponding physical quantities taken from the 
 literature7,18,19,24 for an ideal individual with HR equal to 80 bpm (beats per minute) and BSA equal to 1.79  m2 
(Supplementary Table S3). We did not consider model outputs computed starting from the flow rates, because 
they are not uniquely defined depending on the tract of the compartment where they are measured, from pSYSC  , 

Figure 2.  Lumped-parameter cardiocirculatory model. The unknown pressures and flow rates are in red and 
blue, respectively, whereas the model parameters are in black. Notice in the green boxes the new compartments 
with respect  to16 featuring this work.
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due to the heterogeneity of the pressures of systemic capillaries among tissues, and from pSYSVEN , even if we recov-
ered the value of central venous pressure, that coincides with the right atrial  pressure24.

We reported the system of ODEs associated with the lumped-parameter model in Supplementary Equations 
S1. The lumped-parameter model was numerically discretized by means of Dormand-Prince  method25 (adaptive 
stepsize Runge–Kutta) which was implemented in Python using the Jax  library26.

Calibration
The lumped-parameter model was characterized by parameters representing the functional properties of the 
compartments (e.g. resistances). To properly select such values for a specific compartment and patient, a calibra-
tion procedure was  needed27,28.

We chose a priori the cardiac timings and the resistance of oxygenated pulmonary capillaries ( RPUL
C  ) equal 

to the associated reference values. In particular, we fixed RPUL
C  to avoid modelling micro-thrombosis because of 

its possible increase. For the remaining parameters, the calibration of the model relied on the method we pre-
sented in Ref.27, that is aimed to reduce the sum of squared relative errors between the model outputs MO1 and 
clinical data, modifying the parameters of the model in suitable bounded intervals Ii , for i = 1, . . . ,Np , where 
Np is the number of parameters, independent of the patient, built starting from the reference values of param-
eters mentioned before (Supplementary Table S3). Specifically, we chose to calibrate those parameters among 
the latter according to a sensitivity analysis estimating the absolute correlation coefficients between parameters 
and model outputs (Supplementary Table S4). We calibrated only the parameters featuring at least one absolute 
correlation coefficient greater than 0.1 that was associated to provided clinical data. To reproduce the blunted 
hypoxic pulmonary vasoconstriction condition, the resistance of non-oxygenated pulmonary capillaries ( RSH ) 
could decrease in such a way that the shunt fraction could reach values up to 70% in the worst-case scenario. The 
list of amendable parameters varies between different patients according to the different clinical data provided.

The calibration was based on clinical measurements of COVID-19 patients that were provided by L. Sacco 
Hospital in Milan and referred to HR and BSA, which were used as inputs for the lumped-parameter model, 
 RVFAC and TAPSE, which determined the bounded interval Ii used during the calibration, with i  the index refer-
ring to the right ventricular active elastance, and the clinical data, given by a subset of the pressures and volumes 
involved in the cardiac circulation (Supplementary Table S2).

To provide further mathematical details, we indicate with p a configuration of parameters of the cardiocir-
culatory model. The calibration method aimed to find the configuration of parameters pj which minimized the 
loss function for the specific patient j , that reads:

where N j is the number of available echographic clinical data for patient j , djl is the value of the l-th clinical data 
of patient j (Supplementary Table S2) and qjmj(l)

 is the value of the model output related to the l-th clinical data 

of patient j . The index m of qjm lies in {1, . . . ,Nq} where Nq is the number of both MO1 and MO2. We considered 
the model calibrated for a specific patient if the loss function was below 10−3 . Notice that, for some patients, the 
calibration procedure could fail, if, for example, it reaches the minimum of the loss function that is above the 
required threshold.

Moreover, to improve the robustness of the calibration procedure, we repeated, for every patient, the calibra-
tion three times, with different initial configurations of parameters, and we considered the calibrated setting 
of parameters that returned the lowest loss function. As anticipated above, only 29 out of 58 patients were suc-
cessfully calibrated. We noticed that by performing 4 times the calibration procedure the number of calibrated 
patients was still equal to 29 , precisely as after 3 calibrations.

The loss function (1) was minimized by the Quasi-Newton method L-BFGS-B29 implemented in Scipy by com-
puting its gradient by means of automatic differentiation (reverse mode gradient) included in the library  Jax26.

Uncertainty intervals
For every patient j calibrated with a loss function below 10−3 , a configuration of parameters pj was at disposal. The 
loss function was computed using the clinical data provided by L. Sacco Hospital, which were related to measure-
ment errors (Supplementary Table S1), that also affected the uncertainty of the model outputs qj . We needed to 
determine, for every patient, if the related model outputs were reliable or not, so we proceeded along two steps:

1. Build a sample of candidate model outputs qj,k for k = 1, ..., n ( n was 100);
2. Determine, by employing a simple statistical analysis, whether the mean of the model outputs was reliable.

Regarding step 1, for every provided clinical data djl of patient j , we built an interval Mj
l centred in the value 

of the clinical data with width equal to two times the measurement error (Supplementary Table S1). Then, we 
built the samples qj,k by following the subsequent procedure:

(a) Choose a relative width w ( w was 12.5%);
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(b) Build an interval centred at pji and with width 2wpji for every i = 1, . . . ,Np . If this interval is not included 
in the parameter interval Ii used for the calibration, then cut off its overflowing extremities.

(c) Perturb every parameter of the calibrated patient sampling from a uniform distribution in the correspond-
ing interval built at point b) thus obtaining pji;

(d) Run a simulation of the cardiocirculatory model with parameters pj;
(e) Check if the model output qjmj(l)

 generated at point d) lie in the intervals Mj
l . If they do, save the new con-

figuration of acceptable model outputs qj , otherwise reject it;
(f) Repeat from point c) until n iterations are performed;
(g) Check if the acceptance ratio (ratio between the number of saved configurations and the number of itera-

tions) is within [0.1, 0.15] . If it does, repeat from point c) to e) until n configurations are accepted because 
at this step the sample size of candidate model outputs is small (with n = 100 , the size is between 10 and 
15 ), otherwise increase or decrease w to retrieve the condition on the acceptance ratio, discard the previous 
configurations and repeat from point b).

Once the above procedure was concluded, we proceeded with step 2 by using the n samples of acceptable 
model outputs qj,k for k = 1, . . . , n generated at the previous step, for every specific patient j . If the standard 
deviation of the sample of a model output of patient j was lower than 5% of its mean, we considered the mean 
reliable and we used it for the hypothesis tests. In this way, for every model output we built a sample of accepted 
values (depending on the patient), where sample size depended on the considered model output.

Prediction intervals could have been used for this analysis, but, if the sample was not normally distributed, 
a link function would be needed to retrieve  normality30. We checked, for every patient j and for every model 
output, if the sample of that model output was normally distributed by means of a chi-squared test. It turned 
out that the sample is not normally distributed for all patients. Thus, since we wanted to use the same statisti-
cal approach for every patient, we resorted to this heuristic approach based on standard deviation instead of 
prediction intervals.

Statistical analysis
If the sample mean, calculated over all patients, of a clinical data or MO2 (referring to physical quantities PQ1 
and PQ2, respectively) fell inside the healthy range of the corresponding physical  quantity7,18,19,24, we did not 
consider the physical quantity altered in association with COVID-19 infection, otherwise we performed hypoth-
esis tests to check whether the mean was significantly (p-value below 0.01 ) increased or decreased with respect 
to the healthy range to investigate the impairments of the cardiovascular system in association with COVID-19 
infection. If the sample mean, calculated over all patients, was less than the lower bound of the healthy range, the 
null hypothesis was that the mean was greater or equal than the lower bound of the healthy range, whereas the 
alternative hypothesis was that the mean was smaller than the lower bound of the healthy range. If we accepted 
the null hypothesis, then the corresponding physical quantity was considered not altered in association with the 
infection of COVID-19; otherwise, we considered the physical quantity altered in association with COVID-19. 
If, instead, the sample mean was greater than the upper bound of the healthy range, we proceeded similarly.

For each clinical datum, we computed the mean and the standard deviation of its sample without resorting 
to the mathematical model. The sample sizes were large enough to use one-tailed z-tests (assuming the variance 
equal to the unbiased sample variance) comparing their means to the nearest bound of the healthy range (test I).

For every MO2 we computed the mean and the standard deviation of its sample. We performed a chi-squared 
test and not every sample was normally distributed, so we opted for one-tailed z-tests (assuming the variance 
equal to the unbiased sample variance) only if the sample had more than 24 elements comparing their means to 
the nearest bound of the healthy range (test II).

Notice that for group PQ1 the statistical analysis was carried out directly using the clinical data and not the 
MO1 values. Accordingly, the clinical data were used in a twofold way:

 (i) To statistically compare PQ1 clinical measures with healthy ranges independently of the application of 
the proposed lumped-parameter model (test I);

 (ii) To calibrate the lumped-parameter model for the patients at hand thus allowing to obtain MO2 that are 
statistically compared with healthy ranges (test II).

Results
Time transients of model outputs
To perform a qualitative analysis, in Fig. 3 we reported the time-dependent model outputs (by normalizing the 
heartbeat duration) together with the healthy ranges (in green) related to the following physical quantities among 
PQ2: maximal, minimal and mean left atrial pressures  (LAPmax,  LAPmin and  LAPmean), maximal and minimal left 
ventricular pressures  (LVPmax and  LVPmin), indexed maximal right atrial volume  (RAI-Vmax), indexed right ventricu-
lar end diastolic and systolic volumes  (RVI-EDV and  RVI-ESV), maximal, minimal and mean right atrial pressures 
 (RAPmax,  RAPmin and  RAPmean), maximal and minimal right ventricular pressures  (RVPmax and  RVPmin), minimal 
and mean pulmonary arterial pressures  (PAPmin and  PAPmean) and the minimal and mean pulmonary wedge 
capillary pressures  (PWPmin and  PWPmean). Notice that, for each graph, only patients such that the correspond-
ing model output had been found to be statistically reliable (on the basis of the estimated uncertainty interval) 
were reported. We point out that, from Fig. 3, some sample sizes were too small to analyse the corresponding 
model output (e.g.,  RVPmin). For the remaining model outputs, we moved on to the statistical analysis to study 
the impairments of the cardiocirculatory system associated with COVID-19, as detailed in the next paragraph.
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Statistical analysis of PQ1 (clinical data, test I) and PQ2 (test II)
We analysed the PQ1 using the clinical data (test I—Table 1), namely: the maximal left atrial volume  (LAVmax), 
the left ventricular end diastolic and end systolic volumes  (LVEDV and  LVESV), the left ventricular ejection frac-
tion  (LVEF), the maximal right atrioventricular pressure gradient (max ∇prAV), the systolic and diastolic systemic 
pressures  (SAPmax and  SAPmin) and the systolic pulmonary pressure  (PAPmax). There was no statistical evidence 
that the clinical data related to PQ1 were altered in association with COVID-19-related pneumonia because the 
mean of the samples lied in the corresponding healthy ranges.

Instead, we analysed the PQ2 using the model outputs MO2 (test II—Table 2), obtaining the following 
outcomes:

 I. For  RVPmax,  PAPmin,  PAPmean,  PWPmin and  PWPmean we rejected the null hypothesis and thus these physical 
quantities resulted significantly increased with respect to the healthy ranges;

Figure 3.  Time transients of model outputs during a cardiac cycle. In green, the reference healthy ranges of the 
corresponding PQ2 (the name reported above each graph) are highlighted. In red boxes the model outputs that 
possibly lie significantly outside of the healthy range are reported. The duration of a heartbeat was normalized to 
1 s. Notice the different sample size of the plots depending on the corresponding discarded patients. The model 
outputs plotted are the left atrial and ventricular pressures ( pLA and pLV ), the indexed right atrial and ventricular 
volumes ( VI−RA and VI−RV ), the right atrial and ventricular pressures ( pRA and pRV ), the pulmonary arterial 
and venous pressures ( pPULAR  and pPULVEN).

Table 1.  Statistics of clinical data. The mean and standard deviation of the samples are provided together 
with the sizes in brackets. Notice that the sample sizes of the clinical data are different due to heterogeneous 
samples. The hypothesis tests were not performed because the mean of the samples lied in the respective 
healthy range, Test I.

PQ1 Healthy range Mean ± std dev

LAI-Vmax [mL/m2]  (LAVmax [mL]) [16,  34]18 32.7 ± 13.7 (n = 56), (59.1 ± 26.2)

LVI-EDV [mL/m2]  (LVEDV [mL]) [50,  90]24 56.5 ± 11.6 (n = 58), (101.5 ± 24.1)

LVESV [mL] [18,  52]18 36.8 ± 15.3 (n = 57)

LVEF [%] [53,  73]18 64.5 ± 7.5 (n = 58)

max ∇prAV [mmHg] – 23.0 ± 5.9 (n = 42)

SAPmax [mmHg] [–,  140]18 120.6 ± 14.7 (n = 58)

SAPmin [mmHg] [–,  80]18 71.0 ± 11.4 (n = 58)

PAPmax [mmHg] [15,  28]24 27.9 ± 5.1 (n = 40)
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 II. For left ventricular stroke volume  (LVSV), cardiac index (CI) and thus the cardiac output (CO),  LAPmax, 
 LAPmean,  LVPmax,  RAI-Vmax,  RVI-EDV, right ventricular ejection fraction  (RVEF), systemic and pulmonary 
vascular resistances SVR and PVR, we did not reject the null hypothesis, thus there was no statistical 
evidence that these physical quantities were altered in association with COVID-19-related pneumonia;

 III. The sample sizes of  LAPmin,  LVPmin,  RVI-ESV,  RAPmax,  RAPmin,  RAPmean,  RVPmin and the Shunt Fraction were 
too small to perform the hypothesis tests.

Discussion
This study addressed the association between COVID-19-related pneumonia and the impairments of the car-
diovascular system. This has been faced by analysing clinical measures and model outputs computed through a 
calibrated lumped-parameter cardiocirculatory mathematical model. To the best of our knowledge, the current 
study is the first that used clinical measures and calibrated models to infer the cardiovascular physical quantities 
significantly altered in association with COVID-19-related pneumonia.

We start by discussing the available clinical data measured at L. Sacco Hospital in Milan and related to cardio-
vascular physical quantities for COVID-19 pneumonia patients. We found that none of the measured physical 
quantities (i.e. PQ1) was altered in association with COVID-19-related pneumonia (Table 1). See also ref.31 for 
another analysis of the same dataset of clinical measures.

Regarding the analysis of MO2, we noticed from Fig. 3 that some of the related physical quantities (among 
PQ2) lied within healthy ranges (e.g.  LVPmax), whereas other physical quantities lied outside them (e.g.  RVPmax). 
For the remaining physical quantities, we could not infer from Fig. 3 if they were altered or not in association 
with COVID-19-related pneumonia (e.g.  PWPmean or  RAPmean). Therefore, to significantly assess the alterations 
associated with COVID-19, we resorted to hypothesis tests.

We found that the pulmonary resistances (PVR), did not significantly increase in association with COVID-
19-related pneumonia (Table 2). Nonetheless, we highlighted a slightly large value of  PAPmax (Table 1) that was 
accompanied by a significant increase not only in  PAPmin,  PAPmean and  RVPmax, but also in  PWPmin and  PWPmean 
(Table 2). These results seem to be in line with previous evidence reported in COVID-19-related pneumonia 
patients studied with cardiac  catheterization11. In this study, patients did not show an increase in PVR but the 

Table 2.  Statistics of MO2. The mean and the standard deviation of samples are provided together with the 
sizes in brackets. If there is statistical evidence of impairments of the cardiocirculatory system associated with 
COVID-19 the p-value is below 0.01 . If the mean of a sample lied in the healthy range, the hypothesis test was 
not performed. The sample sizes less than 25 were too small to perform the hypothesis tests. For some of the 
physical quantities with a big sample size, we report the COVID-19 ranges taken from literature. Test II.

PQ2 Healthy range Mean ± std dev Test II (p-value)
COVID-19 literature 
ranges

Rejected null hypothesis

RVPmax [mmHg] [15,  28]24 33.7 ± 6.8 (n = 29) 2.62E-06 [30,  46]32

PAPmin [mmHg] [5,  16]24 23.6 ± 6.2 (n = 29) 3.06E-11 [15,  26]11

PAPmean [mmHg] [10,  22]24 27.1 ± 6.5 (n = 29) 9.97E-06 [25,  33]11

PWPmin [mmHg] [1,  12]24 17.1 ± 5.2 (n = 28) 1.04E-07 –

PWPmean [mmHg] [6,  15]24 17.5 ± 5.1 (n = 28) 5.35E-03 [11,  18]11

Not rejected null hypothesis

LVSV [mL] [30,  80]18 74.0 ± 10.7 (n = 29) – [68,105]11

CI [L/min/m2] (CO [L/min]) [2.8, 4.2]24 3.2 ± 0.5 (n = 29) (5.9 ± 1.0) – [2.7, 4.5]11/[1.98, 3.32]33 
([4.4, 6.3] 34)

LAPmax [mmHg] [6,  20]24 12.8 ± 3.2 (n = 25) – –

LAPmean [mmHg] [4,  12]24 10.2 ± 2.8 (n = 27) – –

LVPmax [mmHg] [90,  140]24 124.4 ± 13.3 (n = 29) – –

RAI-Vmax [mL/m2] [10,  36]18 31.8 ± 8.0 (n = 28) – [15,  29]11/[14,  25]33

RVI-EDV [mL/m2] [44,  80]19 75.4 ± 12.4 (n = 29) – –

RVEF [%] [44,  71]19 53.6 ± 5.3 (n = 29) – –

SVR [mmHg min/L] [11.3, 17.5]24 15.9 ± 3.3 (n = 29) – [8.1, 13.0]11

PVR [mmHg min/L] [1.9, 3.1]24 3.0 ± 1.4 (n = 28) – [3.1, 4.7]11

Sample size too small

LAPmin [mmHg] [− 2,  9]24 7.4 ± 2.2 (n = 22) – –

LVPmin [mmHg] [4,  12]24 6.2 ± 1.4 (n = 12) – –

RVI-ESV [mL/m2] [19,  46]19 33.1 ± 8.4 (n = 14) – –

RAPmax [mmHg] [2,  14]24 11.7 ± 3.3 (n = 9) – –

RAPmin [mmHg] [− 2,  6]24 4.4 ± 2.9 (n = 10) – –

RAPmean [mmHg] [− 1,  8]24 7.0 ± 2.6 (n = 23) – –

RVPmin [mmHg] [0,  8]24 3.0 ± 2.6 (n = 5) – –

Shunt Fraction [%] [0,  5]7 3.7 ± 0.8 (n = 9) – –
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mild increase in pulmonary arterial pressure was associated with an increase in wedge pressure. The authors 
hypothesized that a hyperdynamic state not accompanied by an increased in hypoxic-driven vasoconstriction 
could determine (especially in their population of old and often hypertensive patients) an increase in wedge 
pressure related to an increase of LV filling pressure. In our population a substantial percentage of patients were 
old ( 34% were older than 64 years), with arterial hypertension and/or diabetes, conditions that could be in line 
with this interpretation, taking into account that the mean value of cardiac output computed by the model was 
rather large ( 5.9± 1.0 L/min, Table 2).

There was no statistical evidence that the maximal and mean left atrial pressures increased (Table 2). This 
could be due to limitations of the lumped-parameter model in representing the atria. Unfortunately, the sample 
size of  LVPmin was too small to infer any interpretation.

In what follows, we refer to clinical literature of patients affected by COVID-19 for a comparison with the 
outcomes of our mathematical model (the model outputs MO2)11,32–34 (see Table 2). If the mean of our samples 
lied in the intervals identified in clinical literature, we considered them in accordance one another. We noticed 
from Table 2 that the sample mean of some of the physical quantities  (RVPmax,  PAPmin,  PAPmean,  PWPmean,  LVSV 
and CO) agreed with the COVID-19 literature, whereas the means of  RAI-Vmax and SVR were slightly larger and 
PVR slightly lower than the values of literature, although still lying inside the healthy range.

We emphasise that the statistical analysis of raw clinical data did not allow us to infer alterations in the 
cardiovascular system in association with COVID-19 infection (Table 1). Instead, thanks to the computational 
model we proposed, suitably calibrated by using the clinical data, we were able to identify some specific physical 
quantities related to pulmonary circulation (i.e.  RVPmax,  PAPmin,  PAPmean,  PWPmin and  PWPmean) which were 
significantly altered in association with COVID-19, in the sense that there was a statistically relevant discrepancy 
with respect to the healthy ranges. This showed the importance of combining clinical data and computational 
models as an effective strategy to give meaningful insights about the impairments of the cardiocirculatory system 
associated with COVID-19 on cardiovascular physical quantities, which was not possible with raw clinical data 
and non-calibrated computational tools. Therefore, the proposed model-based approach has the advantage of 
increasing the interpretability of clinical data compared to signal processing methods, extrapolating information 
about physical quantities (PQ2) not referring to raw clinical data.

We now discuss the limitations of this study. First, notice that we did not have at disposal a control group to 
perform hypothesis tests in tests I–II, so we took a conservative approach comparing the mean of our samples 
with the lower and upper bounds of healthy ranges found in literature to infer the impairments of the cardiovas-
cular system in association with the infection of COVID-19. The sample means of physical quantities significantly 
outside the corresponding healthy range highlight a clear impairment of a compartment of the cardiocirculatory 
system in association with COVID-19 infection. Nevertheless, we do not exclude that small changes in some 
physical quantity could indicate an impairment in the cardiocirculatory system as well.

Second, although being able to capture the considerable haemodynamic features, the lumped-parameter 
model is rather simple in comparison to other models for the study of the cardiac function (see e.g. refs.35–38). 
Improvements of the computational model will allow also to use other clinical measurements not used in this 
work (such as partial pressures of oxygen and carbon dioxide). In particular, we neglected cardio-respiratory 
interactions. Due to alterations of quantities of interest in the pulmonary circulation found by means of our 
analysis, the integration of the lumped-parameter cardiocirculatory model with a  respiratory38 and a gas exchange 
 model35 should be included in future works to provide further clinical insights concerning the hypoxemia typi-
cally caused by COVID-19-related pneumonia.

Third, to quantify the uncertainty in the estimation of the model outputs, we adopted a rather simple approach 
in terms of independence in the selection of the parameter configurations used to computationally generate the 
model outcomes. More sophisticated strategies that account for a selective choice of the new parameter configu-
ration starting from the previous ones (e.g. Markov chain Monte Carlo  methods27), which nevertheless entail a 
larger computational cost, could be considered in further developments of this work.

Possible improvements of the present work are also related to the clinical measurement acquisition. Other 
clinical measurements, when available, could be added to the framework of the present work to improve the 
outcomes. It may be of particular interest having a measure of the shunt fraction, that gives information on the 
pulmonary capillaries, to avoid the a priori assumption between micro-thrombosis and blunted hypoxic pul-
monary vasoconstriction. As a limitation, in this work we neglected the contribution of micro-thrombosis10 and 
we focused only on the study of blunted hypoxic pulmonary vasoconstriction in the increase of non-oxygenated 
 blood11.

Finally, we notice that the approach presented in this work can be extended to cardiovascular diseases dif-
ferent from COVID-19-related pneumonia, such as hypertension, patent foramen ovale or partial anomalous 
pulmonary venous return. To represent a different condition from COVID-19-related pneumonia, a modifica-
tion of the compartments of the lumped-parameter model might be required. For example, in the case of patent 
foramen ovale, a circuit branch connecting the two atria should be added to the  model39.

Data availability
The datasets generated and/or analysed are available from the corresponding author upon reasonable request.
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