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Dynamic Bayesian network 
structure learning based 
on an improved bacterial foraging 
optimization algorithm
Guanglei Meng 1,2, Zelin Cong 1,2*, Tingting Li 2, Chenguang Wang 2, Mingzhe Zhou 1,2 & 
Biao Wang 1,2

With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network 
(DBN), as an effective probabilistic graphical model, has been widely used in many engineering 
fields. And swarm intelligence algorithm is an optimization algorithm based on natural selection 
with the characteristics of distributed, self-organization and robustness. By applying the high-
performance swarm intelligence algorithm to DBN structure learning, we can fully utilize the 
algorithm’s global search capability to effectively process time-based data, improve the efficiency 
of network generation and the accuracy of network structure. This study proposes an improved 
bacterial foraging optimization algorithm (IBFO-A) to solve the problems of random step size, limited 
group communication, and the inability to maintain a balance between global and local searching. 
The IBFO-A algorithm framework comprises four layers. First, population initialization is achieved 
using a logistics-sine chaotic mapping strategy as the basis for global optimization. Second, the 
activity strategy of a colony foraging trend is constructed by combining the exploration phase of 
the Osprey optimization algorithm. Subsequently, the strategy of bacterial colony propagation is 
improved using a "genetic" approach and the Multi-point crossover operator. Finally, the elimination-
dispersal activity strategy is employed to escape the local optimal solution. To solve the problem 
of complex DBN learning structures due to the introduction of time information, a DBN structure 
learning method called IBFO-D, which is based on the IBFO-A algorithm framework, is proposed. 
IBFO-D determines the edge direction of the structure by combining the dynamic K2 scoring function, 
the designed V-structure orientation rule, and the trend activity strategy. Then, according to the 
improved reproductive activity strategy, the concept of "survival of the fittest" is applied to the 
network candidate solution while maintaining species diversity. Finally, the global optimal network 
structure with the highest score is obtained based on the elimination-dispersal activity strategy. 
Multiple tests and comparison experiments were conducted on 10 sets of benchmark test functions, 
two non-temporal and temporal data types, and six data samples of two benchmark 2T-BN networks 
to evaluate and analyze the optimization performance and structure learning ability of the proposed 
algorithm under various data types. The experimental results demonstrated that IBFO-A exhibits 
good convergence, stability, and accuracy, whereas IBFO-D is an effective approach for learning DBN 
structures from data and has practical value for engineering applications.

Keywords  Dynamic Bayesian networks, Structural learning, Swarm intelligence optimization algorithm, 
Bacterial foraging optimization algorithm

Bayesian networks (BNs) combine probability theory with graph theory and exhibit strong interpretability and 
high learning efficiency. The logical relationships inherent in data can be effectively investigated, offering a 
promising technical approach for establishing causal models for complex problems1. Dynamic Bayesian networks 
(DBNs) are powerful algorithmic tools that integrate the structure of static BNs with time-related information and 
are employed for dynamic uncertainty inference and temporal data analysis. DBNs have applications in various 
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fields, including artificial intelligence, machine learning, and automatic control2. Furthermore, DBNs have a 
broad range of engineering applications, such as managing transcriptional regulatory relationships between 
cancer genes3, identifying connectivity issues between human brain regions through high-order DBNs using 
functional magnetic resonance imaging time series data4, and analyzing the vascularization in the formation 
process of engineered tissues, aiming to enhance the accuracy of predicting future time steps and ensuring an 
acceptable uncertainty in forecasting the future progress of the organization5. Integrating structural prediction 
methods, such as mutual information and maximum information coefficient into the DBN model enhances the 
efficiency and scale of gene regulatory network reconstruction6.

However, the introduction of time information into the DBN network increases search space complexity, 
reduces structure learning accuracy, and impedes the direct application of the static BN learning method. Early 
learning approaches involved constructing DBN network structures by experts based on their prior experience7,8. 
Conversely, for large datasets with numerous parameters and high complexity, relying only on expert experience 
poses challenges in establishing causal relationships based on temporal information and ensuring structural 
accuracy. To solve these problems, Leray et al.9 proposed a classical DBN structure learning algorithm inspired 
by the dynamic max–min hill climb (DMMHC) local search algorithm. This algorithm allows for the quick 
identification of constraints based on temporal information in the 2T-BN model. Trabelsi et al.10 introduced the 
heuristic greedy search (GS) algorithm11, which was extended to 2T-BN networks to perform local optimal selec-
tion through a generative neighborhood algorithm as a way to expect to find the globally optimal DBN structure.

However, these classical DBN structure learning methods still have problems such as low efficiency of gen-
erating networks and lack of escaping local optimum mechanism. Therefore, how to further optimise the DBN 
structure learning methods to improve their search efficiency and search accuracy is the current research hot-
spot for scholars. In recent years, researchers have shown significant interest in nature-inspired metaheuristic 
algorithms based on swarm intelligence (SI) for optimization. Notable optimization algorithms include genetic 
algorithm (GA)12, ant colony optimization13, particle swarm optimization (PSO)14,15, grey wolf optimization 
(GWO)16, artificial bee colony17, bat optimization18, whale optimization19, and firefly optimization20. Scholars 
have also improved the aspects of population initialization and individual optimization iterative updating strate-
gies of these optimization algorithms on the original basis by introducing a series of effective methods such as 
Lévy flights21, opposition-based learining22, adaptive strategies, and hybrid algorithms, aiming to improve their 
optimization performance, as well as the accuracy and stability of the optimization results. Wu et al.23 proposed 
an improved ant colony optimization algorithm (ICMPACO) by introducing multiple swarm strategies, co-
evolutionary mechanism, pheromone updating strategy and pheromone diffusion mechanism, which improved 
the optimization ability and stability of the algorithm. And it was applied to Traveling Salesmen Problem to obtain 
better allocation results. Gao et al.24 proposed an improved variable weight gray wolf optimization algorithm 
VW-GWO, which improves the probability of the algorithm escaping from the local optimum by introducing 
control parameters and decreasing control equations. Liu et al.25 proposed an adaptive weighted particle swarm 
optimization algorithm (AWPSO) based on sigmoid function, which updated the acceleration coefficients using 
the sigmoid activation function of the neural network and considered both the particles to the global optimal 
position through an adaptive weighting strategy, thus improving the optimization efficiency and convergence 
characteristics of the algorithm. Zhang et al.26 proposed a Chaotic Bacterial Foraging Optimization (ChaoticBFO) 
algorithm to achieve a reasonable balance between exploration and exploitation by introducing a chaotic ini-
tialization strategy and a chaotic local search with a "contraction" strategy in the convergence step. Mou et al.27 
proposed an adaptive non-dominated sorting genetic algorithm III (ANSGAIII), the algorithm enhances the 
objective function by considering non-linear relationships, equality constraints, actuator rate and position con-
straints. The algorithm solves the problem of autonomous berthing and dynamic positioning of over-actuated 
ships. Giri et al.28 proposed an adaptive neighbourhood for locally and globally tuned biogeography based opti-
mization algorithm (ANLGBBO) which inherits features of the nearest neighbour of the local best individual 
to be migrated along with a global best individual of the pool. And explore large Spaces by identifying areas 
with high-quality solutions. In addition, literature research shows that advanced optimization algorithms and 
their variants have played an important role in practical engineering applications in many intelligent fields, such 
as: Data mining engineering29,30, automatic driving31,32, intelligent robots33, network topology architecture34,35, 
military intelligent equipment36,37 and other fields.

The use of metaheuristic search mechanisms to investigate the solution space is a common characteristic 
among SI-based algorithms. During each computation iteration, these algorithms update the state of the local 
models and generate new populations to search for local optima. The quality of the solutions continuously 
improves as the number of iterations increases, ultimately approaching the optimal model. Based on this, opti-
mizing the DBN network structure using a high-performance swarm intelligence optimization algorithm is a 
novel and effective research method. Li et al.38 introduced a binary PSO algorithm based on mutual information, 
which effectively prunes the search space. The algorithm accelerates the convergence speed of deep belief net-
work structure learning by updating the particles using a probability threshold. Heng et al.39 proposed a fitness 
function and redefined the encoding format of the particle swarm algorithm for DBN structure learning from 
incomplete datasets. Santos et al.40 redefined the positions and velocities in the particle swarm algorithm to learn 
the high-order dynamic Bayesian network structure from large-scale and multivariate time series data. Jiang 
et al.41 proposed an adaptive learning algorithm for DBN structure learning using a two-step strategy and adap-
tive crossover and mutation rates within a GA framework. Quesada et al.42 proposed an order-invariant, Markov 
order-independent high-order particle encoding approach that exhibits scalability in high-order networks. Deng 
et al.43 proposed an improved binary bat algorithm for learning the transitional network structure of a DBN and 
constructed a fitness function to quantitatively assess the node order in the network.

Although the aforementioned SI-based DBN structure learning approaches have achieved a certain level of 
effectiveness, there is still substantial potential for improvement in terms of optimization efficiency and accuracy. 
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Passino et al.44 proposed a bacterial foraging optimization (BFO) algorithm that stimulates the foraging behavior 
of Escherichia coli bacteria in the human body. BFO is a global stochastic search algorithm, The simulation of 
the bacterial population comprises four steps: chemotaxis, grouping, reproduction, and elimination-dispersal. 
It has the characteristics of not requiring the gradient information of the optimization object during the opti-
mization process, low complexity and fast convergence, which can be applied to reduce the number of iterative 
convergence times for finding the candidate network, jumping out of the local optimum, and searching for the 
highest scoring globally optimal DBN network structure. However, the original BFO also has certain defects, 
such as random steps of chemotactic activity, poor information exchangeability of clustering mechanism, and 
inability to maintain a balance between global and local search.

In summary, to enhance the BFO optimization performance, we propose a new hybrid algorithm, called the 
improved bacterial foraging optimization algorithm (IBFO-A), which aims to improve optimization iteration 
speed and accuracy while maintaining the low time complexity and fast convergence performance of BFO and 
balancing the global and local exploration and development capabilities. Then, within the framework of the 
IBFO-A algorithm, combined with a dynamic K2 scoring function and customized learning strategy, an IBFO-D 
method for DBN structure learning is designed to improve its ability to optimize the learning network structure 
from the data.

The main contributions of this study can be summarized as follows:

(1)	 To improve the population quality, the population is initialized using a logistics-sine chaotic mapping 
strategy. During the development and exploration phase of hybrid osprey optimization algorithm (OOA), 
the chemotactic activity of bacteria was reconstructed, improving the ability of individual bacteria to rec-
ognize and move toward the optimal target fitness value.

(2)	 Based on the replication idea of GA and the Multi-point crossover operator, the reproduction steps were 
reconstructed. This involves crossing the poor individual Xworst and fusing the better individual Xbest , 
thereby improving performance, increasing the species diversity of the flora, and escaping the local optimal 
solution based on the elimination-dispersal operator.

(3)	 A dynamic K2 scoring function and V structure orientation rule are established. Combined with the IBFOA 
framework, the cumulative health score is saved during the breeding stage to reduce the number of iterative 
convergence in searching for candidate networks, and it is used in the elimination-dispersal stage to find 
the globally optimal DBN network structure with the highest score.

(4)	 The effectiveness of the proposed algorithms (IBFO-A and IBFO-D) is evaluated and comparisons are made 
with other mature algorithms through experimental tests on the benchmark data set. Statistical analyses 
of the experimental results are conducted as follows:

•	 Firstly, the IBFO-A algorithm is compared with seven other optimization algorithms using 10 sets of dif-
ferent types of CEC2005 benchmark functions (unimodal, multimodal, and hybrid). These include three 
original algorithms, two classical algorithms, and two recent advanced algorithms. Additionally, sensitivity 
analysis experiments were conducted for the three parameters of IBFO-A. The experimental results indicate 
that IBFO-A algorithm runs stably, ASR ranks first and has a certain competitiveness. Subsequently, we 
conducted comparative experiments on 12 optimization algorithms, including IBFO-A, using the CEC2019 
benchmarking functions and two real-world engineering optimization problems. Some novel as well as 
improved optimization algorithms are included. The experimental results show that the IBFO-A algorithm 
exhibits good optimization performance, indicating its potential in real engineering applications.

•	 Secondly, the B0 and B→ network structure learning capabilities of IBFO-D in non-temporal and temporal 
data samples are investigated, revealing that the generated network structure can converge stably within a 
high fitness value.

•	 Finally, IBFO-D is compared with two other structure learning algorithms using six 2T-BN temporal net-
work data samples. The experimental results show that IBFO-D is an effective method for optimizing DBN 
structure learning from the data.

The remaining sections of this study are structured as follows. Preliminaries offers a review of the relevant 
concepts and scoring metrics of BN, along with an introduction to the basics of DBN. In Methodology, the 
principles of IBFO-A and IBFO-D algorithms and the design of dynamic scoring function are described in 
detail. Experimental section presents the results and analysis of the simulation experiments. Finally, Conclusion 
provides the conclusion and outlines plans for future research.

Preliminaries
Static Bayesian network
The Bayesian network N is represented as a binary tuple N = (G,�) comprising structure G and network param-
eters � . In graph theory, the independent relationships among a set of variables can be represented using a 
directed acyclic graph (DAG). Here, G = (X,E) represents a specific instance or representation of such a graph; 
where X is a nonempty set of all nodes in the graph. X = {X1,X2, . . . ,Xi , . . . ,Xn} , Xi can be either an observed 
variable or a latent variable; E is the set of directed line segments between different variables in the DAG, and 
Xj → Xi d represents the direct dependencies between nodes45.

(1)E =
{

Xj → Xi|Xj ∈ pa(Xi), i = 1, . . . , n
}
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where pa(Xi) is the "causes" of the node Xi , also called the set of parent nodes. Given the parent node set pa(Xi) , 
Xi is independent of its non-descendant node set nd(Xi) based on Markov independence. Thus, the joint prob-
ability of several nodes Xi that follow the Markov rule can be expressed as follows:

The conditional probability table of each node Xi given its known parent node set pa(Xi) is represented by 
the network parameter � = {�1,�2, . . . ,�n} . It is possible to calculate the joint probability distribution of the 
node Xi when the network structure G and the network parameters � of a Bayesian network are known. Com-
pared with other approaches for calculating joint probabilities, the efficiency of Bayesian network algorithms is 
significantly higher because of the conditional independence among nodes.

Scoring function
The search and score-based BN learning approach mainly comprises two parts: model selection and model 
optimization. Its core idea involves considering all possible structures as the domain, selecting a scoring func-
tion that assesses the quality of specific structures, and treating the process of identifying the best structure as 
an optimization problem of searching for the optimal value of the scoring function within the domain.

Prior knowledge about structure G is summarized as a probability distribution P(G) , referred to as the 
structure prior distribution for a Bayesian network N = (G,�) . Similarly, prior knowledge about parameters � 
is summarized as another probability distribution P(�|G) referred to as the parameter prior distribution for a 
given structure G . In this manner, the prior distribution of N can be expressed as follows:

The posterior probability distribution P(G|D) is calculated when given an observed dataset 
D = {D1,D2, . . . ,DN } . Only the structural models G∗ corresponding to the maximum posterior probability 
distribution in the search space are considered.

And

Selecting the structure with the maximum posterior probability is equivalent to selecting the structure that 
maximizes the following function since P(D) does not depend on G:

Based on penalized maximum likelihood or marginal likelihood, various scoring metrics, including Bayes-
ian Dirichlet, Bayesian Dirichlet equivalent, K2, minimum description length, Bayesian information criterion, 
and mutual information test, have been proposed to assess the fitness of networks during the search process.

The most classic K2 scoring function formula is expressed as follows:

where n denotes the number of variables in the sample, qi denotes the number of parent nodes for Xi , ri denotes 
the number of possible values for Xi , Nijk denotes the number of samples, and Nij denotes the total number of 
samples.

Dynamic Bayesian networks
DBN is a graphical model structure that illustrates the conditional independence relationships between random 
variables and their temporal evolution patterns46. Its unique transition network can reflect the state changes of 
the system under different environmental factors in various time slices, showing the complex interactions and 
dependencies among variables in the system and offering a closer approximation to the real situations of dynamic 
multidimensional data.

However, representing X1,X2, . . . ,Xn stochastic processes using DBN requires deriving a probability distribu-
tion over the random variable a, which can be highly complex. Thus, it is crucial to make appropriate assumptions 
about DBN and design a reasonable and efficient optimization algorithm for structure learning to study and 
model complex systems (see Methodology). These assumptions can be summarized as follows:

(1)	 The marginal directionality rule describes the dependency relationships between nodes in a finite time slice 
t, and the changes in conditional probabilities tend to converge to consistent stability across all processes.

(2)	 Given the random variables at time step t, the random variables at time step t + 1 are conditionally inde-
pendent of the remaining random variables;Xt+1||(Xt−1,X0)|Xt . In other words, the Markov chain prop-

(2)P(X1, · · · ,Xn) =

n
∏

i=1

P(Xi|pa(Xi))

(3)P(G,�) = P(G)P(�|G)

(4)G∗ = argmax
G

P(G|D)

(5)P(G|D) =
P(D|G)P(G)

P(D)

(6)argmin
G

log P(G|D) = argmin
G

log P(D|G)+ log P(G)+ C

(7)P(G,D) = P(G)

n
∏

i=1

qi
∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri
∏

k=1

Nijk!
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erty is satisfied to P(Xt+1|X0,X1, . . . ,Xt) = P(Xt+1|Xt) by the entire dynamic discrete-time probabilistic 
process47.

(3)	 Across all adjacent time steps, the network topology remains invariant and the transitional network, along 
with its corresponding conditional probability dependencies, remains the same. In other words, P(Xt+1|Xt) 
is independent of time t.

The DBN constructed on the time trajectory of the random process comprises two components based on the 
aforementioned conditions: (B0,B→).

(1)	 The initial network B0 , defined on the initial state X0 , and the joint probability distribution P(X0) obtained 
from it form the most initial graphical structure of the Bayesian network (BN) from which the prior prob-
abilities of any node can be derived.

(2)	 The graphical structure of the BN composed of more than two time steps is represented by the transitional 
network B→ , defined by variables X0 and X1 , with transitional probabilities P(Xt+1|Xt).

In other words, the entire DBN corresponds to {0, 1, 2, . . . ,T} finite period, a and unfolds the probabilistic 
graphical model onto the topology of the random variable X0,X1, . . . ,XT . The parent nodes of X0 are those in 
the initial network B0 at time 0. At time t + 1 , the parent nodes of Xt+1 are those in the transitional network B→ 
that are relevant in both time steps t  and t + 1 . A set of initial networks B0 , a transitional network B→ , and a 
simple DBN model structure with two time slices are illustrated in Fig. 1.

To summarize, given a DBN model, the joint probability distribution on X0,X1, . . . ,XT is defined as follows:

(8)P(X0,X1, . . . ,XT ) = PB0(X0)

T
∏

t=0

PB→(Xt+1|Xt)

Figure 1.   Dynamic Bayesian network model diagram.
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To solve the actual optimization decision problem, the SI-based structure learning method of DBN extends 
the static optimization model, starting with the static initial network B0 . This process involves the construction 
of a basic graph model for dynamic intelligent optimization using time slice information. Figure 2 shows the 
specific algorithmic process. A round of the BN network node set can be generated through the transitional 
network t + 1 when the environmental factors change in round B→ . A new population is generated along with 
the actual optimization problem based on the BN nodes in the round t + 1 , which is then evolved and optimized 
to produce a set of excellent solutions and an optimal BN structure graph that matches the current environment, 
serving as the most suitable reasoning tool for the current problem. Subsequently, the node set to be optimized 
in the round t + 2 is generated by the DBN, and this process continues. As environmental factors change, infer-
ence and optimization are conducted to effectively address various emergencies and enhance the mitigation of 
the effect of uncertain factors on the findings.

Methodology
IBFO‑A optimization algorithm
Population initialization
For swarm intelligent optimization algorithms, the selection of individual initial positions often affects the 
algorithm’s iterative convergence performance. The original BFO algorithm uses random initial locations, which 
results in the dispersion of most bacteria generated at the initial moment being far away and even not meeting 
the boundary constraints. Chaotic mapping48 is an effective method to improve the population initialization of 
the optimization algorithm. In this study, a logistics-sine mixed method proposed by Demir et al.49 is used to 
integrate the two most universal methods of chaotic mapping: Logistic mapping and Sine mapping evenly dis-
tribute the population in the mapping space, significantly improving the species diversity and search efficiency 
of the population in the following ways:

The upper bound of the feasible domain of each dimension of the objective function ub = [ub1, ub2, . . . , ubd] 
and the lower bound lb = [lb1, lb2, . . . , lbd] . The location matrix modeling of bacterial individuals in the search 
space is as follows:

Use the logistics-sine method to initialize the bacterial individual location:

(9)X =

















x1,1 · · · x1,j · · · x1,m
...

. . .
... . .

. ...
xi,1 · · · xi,j · · · xi,m
... . .

. ...
. . .

...
xn,1 · · · xn,j · · · xn,m

















n×m

(10)ai+1 = rai(1− ai)

Figure 2.   DBN intelligent optimization model diagram.
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where ai ∈ (0, 1) and bi ∈ (0, 1) are randomly generated series, ai+1 represents the logistic chaotic mapping, bi+1 
represents the sine chaotic mapping, r represents the chaos coefficient, and xi+1 is the bacterial chaotic mapping 
value determined by logistics-sine.

Finally, the chaotic sequence is mapped to the solution space:

Chemotactic activity
Chemotactic activity plays a crucial role in the IBFO-A’s algorithm, in which bacteria first tentatively choose 
the direction for a "flip" motion, and then swim to a nutrient-rich area through a "swim" motion. In the origi-
nal BFO algorithm, the trend activity is randomly given the i th bacterial movement step C(i) and receives the 
attraction signal from other individuals in the population to swim to the center of the population, and the attrac-
tion between bacteria is represented by Jicc

(

θ , θ i(j, k, 1)
)

, i = 1, 2, . . . , S . At the same time, there will be repul-
sion between bacteria, which prevents the consumption of nearby nutrients by maintaining a certain distance. 
Jcc(θ , P(j, k, l)) said that the combined influence of attraction and repulsion between bacteria is considered at 
the same time, and its computation formula is as follows:

where P(j, k, l) represents the position of each bacterium in the population S after the j trend operation, the k 
replication operation, and the l  elimination-dispersal operation, θ = [θ1, . . . , θD]

T is a point on the optimization 
domain, θ im is the m element of the i bacteria, dattract represents the amount of attraction released by the bacte-
ria, Wattract is used to measure the width of the attraction signal. hrepenatint indicates the amount of rejection 
released by the bacteria, and Wrepelinat measures the width of the rejection signal.

However, there are some problems in the original BFO trend activity. First, the bacterial movement step C(i) 
is given randomly, resulting in a low convergence accuracy of the algorithm. To solve this problem, most scholars 
choose to design a new step size. Supriyono et al.50 developed three types of step size strategies: linear step size, 
quadratic step size, and exponential step size. Niu et al.51 proposed a linear chemotactic decline step and a non-
linear chemotactic decline step as well as other types of non-adaptive steps52–54.

In addition, the effect of communication between bacterial groups is limited, but the clustering mechanism 
with complex objective function cannot effectively guide bacterial individuals to the high-nutrient (fitness value) 
region, resulting in the algorithm often falling into the local optimal value prematurely. To solve this problem, 
scholars often choose to ignore the original clustering mechanism and combine better communication mecha-
nisms to improve the algorithm. Chen et al.55 combined the PSO algorithm to enhance intercellular communica-
tion and proposed an adaptive foraging strategy using area-focused search. Wang et al.56 also chose to combine 
the PSO algorithm and Gaussian distribution to adjust the chemotactic activity of the flora and strengthen the 
ability of information exchange among the populations. Zhao et al.57 employed the gravitational mechanism in 
GSA to improve the ability of information exchange between individuals in the chemotactic step of the BFO 
algorithm.

The Osprey optimization algorithm was proposed by Mohammad Dehghani and Pavel Trojovsky in 2023 to 
simulate the predation behavior of Osprey58. In the first stage of OOA, the Osprey identifies the position of the 
fish (fitness value) and performs the arrest (moving in the direction of high fitness and updating the individual 
position). For each Osprey, the position of the other Osprey with a better target fitness value in the search space 
is also regarded as the fish school. OOA Phase 2 brings the fish to the appropriate position to feed (moving in a 
random direction and updating the individual position). Among them, FPi operator with certain clustering and 
optimal value searching ability in the OOA algorithm, and xP1i,j  operator with more optimal positions to update 
individual positions, can be used to solve the problems in the BFO algorithm. In summary, this study chose to 
combine the first phase of OOA with BFO chemotaxis to fully improve the performance of the IBFO-A algorithm. 
The second stage and subsequent elimination-dispersal activities are not selected to be combined with this stage.

The mathematical formula of "flip" movement:

Formula 15 is used to investigate the search space with a good target value, where FP is a set of i target loca-
tions and XB is the best candidate solution.

The mathematical formula of "swimming":

(11)bi+1 =
(4− r) sin (πbi)

4

(12)xi+1 = (ai+1 + bi+1)(mod1)

(13)Xi = lb+ xi+1(ub− lb)

(14)

Jcc(θ , P(j, k, l)) =

s
∑

i=1

J iCC(θ , θ
i(j, k, l))

=

s
∑

i=1

[

−datact exp

(

−wattact

p
∑

m=1

(

θm − θ im
)2

)]

+

s
∑

i=1

[

hrepenatint exp

(

−wrepelinat

p
∑

m=1

(

θm − θ im
)2

)]

(15)FPi = {Xk|k ∈ {1, 2, . . . ,N} ∧ Fk < Fi} ∪ {Xbest }
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Formula 16 calculates the new position of the individual, and if this new position improves the target fit-
ness value, the previous position is replaced according to Formula 17, where Xi is the original position of the 
individual, xP1i,j  is the new position of the individual i, FP1i  is its objective function value, SFi,j is the candidate 
solution chosen by the individual i, ri,j is the random number in the interval [0,1], and Ii,j is the random number 
in the set {1, 2}.

Reproductive activity
Reproduction is a fundamental biological behavior observed in various species and is a crucial aspect of life 
preservation. With each reproductive generation, the search efficiency of the colony improves. It has been men-
tioned in the conventional BFO algorithm that inferior bacteria should be eliminated and superior bacteria 
retained for reproduction. The cumulative state of the health fitness value of the i bacteria is represented by 

J i =
Nc+1
∑

j=1
J
(

i, j, k, l
)

.

The population of bacteria is divided into two sets based on the accumulation of their health fitness scores: 
Xbest , comprising the top-ranked elite individuals with higher cumulative scores and Xworst , comprising the 
lower-ranked inferior individuals with lower cumulative scores. Then, a “genetic” approach was employed to 
perform reproduction activities following the specific formula below:

where ⊗ represents a crossover operator employed to perform the "Multi-point crossover"59 of the encoding.⊕ 
denotes the fusion operator. X ′

best represents the reproduction elite individual obtained by Xbest after replication 
and coding. X ′

best and Xworst perform crossover operations on their encodings, leading to a single reproductive 
crossover individual Xco . X ′ denotes the new bacterial population obtained by fusing with Xco and Xbest . This 
method enables an increase in the chemotactic ability of bacteria with lower cumulative scores, i.e., it enhances 
the average quality of the entire population while maintaining the original total number of bacterial individuals 
S. Furthermore, it improves the species diversity of the population and prevents the algorithm from becoming 
trapped in local optima.

Elimination‑dispersal activity
In this study, the elimination-dispersal activity mechanism was enhanced based on adaptation theory. The bacte-
rial population randomly selects and performs elimination-dispersal activity after each Nr round of reproduction, 
prompting the bacterial individuals to produce new solutions and conduct a new search for positions, thereby 
escaping local optima.

The specific definition of the elimination-dispersal function is expressed as follows:

where Pi
ed

 is the elimination-dispersal probability at the current moment Pi−1
ed

 represents the probability of 
elimination-dispersal at the previous time. fmin represents the worst goal score in history, f

max
 represents the best 

goal score in history, and fi represents the current goal score of specific bacteria i.
With an increase in the number of iterations, the adaptive elimination-dispersal probability shows a non-

linear decreasing trend. At the early stage of iteration, to explore the solution space more widely, a larger elim-
ination-dispersal probability is needed to find other foraging paths. In the later iteration, due to the guidance 
of the global optimal solution, the algorithm conducts a fine search near the global optimal solution, and the 
elimination-dispersal probability is reduced. Thus, the local development ability is enhanced, and the bacteria 
can find the target solution more quickly and accurately. In addition, for formula (21), to determine a better 
objective function, the population elimination-dispersal probability increases when the current score is close 
to the lowest score.

K2 dynamic scoring function
K2 scoring function differs from that of static BN because of the introduction of time information in DBN. A 
dynamic scoring function is necessary to measure the validity of the network structure. Thus, the K2 dynamic 
scoring function in IBFO-D is discussed in this section.

First, the initial network B0 can be learned from the dataset assuming that the training set consists of N 
complete sequence samples, where the length of the l-th sample is Nl , and a specific value is assigned to the 

(16)xP1i,j = xi,j + ri,j ·
(

SFi,j − Ii,j · xi,j
)

(17)Xi =

{

XP1
i , FP1i < Fi

Xi , else

(18)Xbest = X ′
best

(19)Xco = X ′
best ⊗ Xworst

(20)X ′ = Xco ⊕ Xbest

(21)Pi
ed
=

∣

∣fmin

∣

∣+
∣

∣(f
max

− fi) ∗ P
i−1
ed

∣

∣

∣

∣fmin

∣

∣+
∣

∣(f
max

− fmin) ∗ P
i−1
ed

∣

∣
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variable xl[0], . . . , xl[Nl] . Then, the transitional network B→ can be learned from the transformed data N =
∑

Nl . 
Considering the definitions of network parameters t = 1, · · · ,T and sequence samples θ within the time slice N:

where I represents an indicator function, specifically defined as:

The joint probability density of DBN is expressed as follows:

The structure of DBN decomposes the likelihood function distribution into:

The first term of the integral is decomposed into the following formula:

The second term of the integral is decomposed into the following formula, assuming that the prior distribu-
tion on conditional probabilities is conditionally independent:

The likelihood function can be rewritten as the product of two integrals by substituting the aforementioned 
formula:

The likelihood function P(D|G) can be further expressed as a product of K20 and K2→ given the hyperpa-
rameter N0

i,j,kN
→
i,j,k

 and complete data, and with the parameter prior following a Dirichlet distribution:

where n denotes the number of variable samples, qi denotes the number of parent nodes for Xi , ri denotes the 
number of possible values for Xi , N0

i,j
 denotes the number of samples, and N→

i,j,k
 denotes the total number of 

samples.
This study selects the logarithm of the likelihood function to minimize in practical applications. The final 

expression of the dynamic K2 scoring formula is as follows:

IBFO‑D optimization algorithm
Initialization
In Swarm intelligent optimization algorithms, encoding approaches to generate abstract structures and the 
concretization of the optimization process are crucial elements. In this study, the network structure is repre-
sented using an adjacency matrix A = (aij) with n× n dimensions. The directed edge from node i to node j is 
represented by aij = 1 , whereas the absence of a connection between node i and node j is denoted by aij = 0.

(22)
θ0i,j,k = P

(

Xi[0] = ki|Pa
(

Xi[0] = ji
))

θ→i,j,k = P
(

Xk[t] = ki|Pa(Xk[t]) = ji
)

(23)







N0
i,j,k =

�

l

I
�

Xi[0] = ki , Pa
�

Xi[0] = ji; x
l
�

N→
i,j,k

=
�

l

�

0
I
�

Xi[t] = ki , Pa(Xi[t]) = ji; x
l
�

(24)I =

{

1 if
(

Xi[t] = ki , Pa(Xi[t]) = ji
)

0 else

(25)PDBN(x[0], x[1], . . . , x[T]) = PB0(X[0])

T−1
∏

t=0

PB→(x[t + 1]|x[t])

(26)P(D|G) =

∫

P(D|G, θ)P(θ |G)dθ

(27)P(D|G, θ) =
∏

i

∏

j

∏

k

(

θ0i,j,k

)N0
i,j,k

·
∏

i

∏

j

∏

k

(

θi,j,k
)N→

i,j,k

(28)P(θ |G) =
∏

i

∏

j

P
(

θ0i,j,k

)

·
∏

i

∏

j

P
(

θ→i,j,k

)

(29)P(D|G) =
∏

i

∏

j

∫

∏

k

(

θ0i,j,k

)N0
i,j,k

× P
(

θ0i,j,k

)

× dθ0i,j,k

(30)P(D|G) =

n
∏

i=1

qi
∏

j=1

(ri − 1)!

(N0
i,j
+ ri − 1)!

·

ri
∏

k=1

N→
i,j,k

!

(31)

Score(G|D) = K20(G|D)+ K2→(G|D)

=

n
∑

i=1

qi · log (ri − 1)! −

qi
∑

j=1

log
(

N0
i,j
+ ri − 1

)

! +

ri
∑

k=1

log
(

N→
i,j,k

)

!
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The specific process first initializes an empty adjacency matrix, develops and explores the search space through 
bacteria in the direction of high fitness, and constantly updates the location if and only if the new location has a 
higher score. Then, the network graph structure is updated by directional rules, and the process is repeated until 
the network structure with the highest K2 score in the time slice t  is found, and the optimization iteration of the 
t + 1 time slice is started. The DBN structure is represented as a DAG. Thus, it is crucial to consider their validity 
when constructing the initial network. In other words, in the searched DBN, the network structure should not 
contain any cycles or bidirectional edges. Reflected in the adjacency matrix, this indicates that the nodes in the 
matrix should not form cycles and that elements symmetrically located about the diagonal should not be to 1. 
Figures 3 and 4 illustrate examples of generating initial network B0 and transfer network B→ structural adjacency 
matrices, respectively. Node labels can be simplified to further reduce the search space, leading to B0 = 11|01|00 
and B→ = 00110|00011|00001|00010|00001|00000.

Network structure learning
IBFO-D In the framework of the IBFO-A algorithm, the state relationship between nodes in the DBN was con-
sidered. Restrictions were imposed on the tendency directions of the bacteria, such as NS and NC , considering 
the state relationships between nodes in the DBN. Consequently, three edge orientation rules, namely “add edge,” 
“remove edge,” and “reverse edge,” were designed:

(1)	 Add Edge: Given a collection of nonempty nodes X =
{

x1, x2, . . . , xi , xi+1, . . . , xj|xi ∈ G, xi /∈
∏

(xj)
}

 , if 
eij = xi → xj is added and eij ∈ G holds, then G′ ∈ G ∪ (eij);

(2)	 Remove Edge: Given a directed edge set E =
{

eij = xi → xj|xi ∈
∏

(xj), i = 1, · · · , n
}

 , if eij is removed, 
then G′ ∈ G\(eij) X =

{

x1, x2, . . . , xi , xi+1, . . . , xj|xi ∈ G, xi /∈
∏

(xj)
}

“ and eij = xi → xj are removed;
(3)	 Reverse Edge: Given a directed edge set E =

{

eij = xi → xj|xi ∈
∏

(xj), i = 1, . . . , n
}

 , if eij is removed, 
eji = xj → xi is added, and eji ∈ G holds, then G′ ∈ G\(eij) ∪ (eji).

(32)aij =

{

1 i is a parent of j
0 no edges or deleted edges

Figure 3.   Initial network B0.

Figure 4.   Transfer network B→.
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The chemotactic activity process continued until the bacteria reached a fixed position and no longer moved 
or had moved the maximum number of chemotaxis, which corresponded to finding the network structure with 
the highest K2 score in the DBN network or reaching the upper limit of search iterations.

To choose healthy bacteria, it is essential to assess the health level of each bacterium. This assessment involves 
computing the sum of the fitness values of the chemotaxis steps. A higher cumulative value signifies that maxi-
mum nutrition has been obtained, making it more suitable for reproduction. In this study, the step fitness value 
of bacteria is defined based on the dynamic scoring function in DBN structure learning. Specifically, the health 
score for the i bacterium is expressed as follows:

K20(G|D)(i, j, k, l) is defined as the prior fitness value function for the i bacterium during the j chemotaxis, k 
reproduction, and l  elimination-dispersal when generating the initial network. K2→(G|D)(it , jt , kt , lt) is the fit-
ness value function for subsequent transition networks. Health function assesses the accumulated K2 score for 
individual bacteria throughout the entire process of chemotaxis operations.

To determine the global optimal network structure, the specific definition of the elimination-dispersal func-
tion is expressed as follows:

where Pt
ed

 is the elimination-dispersal probability at the current moment. Pt−1
ed

 is the elimination-dispersal prob-
ability of the previous moment. HSmin is the lowest historical health score, HS

max
 is the highest historical health 

score, and HSit is the current specific health score of bacterium i.

Algorithm description
The IBFO-D Algorithm proposed in this study is shown in Algorithm 1. The whole DBN structure learning 
process is summarized as follows: the algorithm starts from the initialization of network parameters, randomly 
generates the initial DAG population, and finds the high-quality network structure through the chemotactic 
activity formula (15–17). At the same time, the driving force of DBN local optimization is generated according 
to three operators. The fitness value of each bacterium, namely the K2 score, was calculated, and the cumulative 
value HSit was recorded as a health score. By selecting elite individuals with high HSit , the average optimization 
ability of the bacterial population was updated according to the formula (18–20) to improve the convergence 
speed, while preserving certain species diversity to prevent falling into local optimality. According to formula 
(34), determine whether the bacterial individual generates a new solution and re-searches. According to the 
above optimization steps, as well as the dynamic K2 scoring measures and constraints, until a high-score network 
structure matching the data set is searched.

(33)HSit = K20(G|D)(i, j, k, l)+

Nc
∑

jt=1

K2→(G|D)(it , jt , kt , lt)

(34)Pt
ed
=

∣

∣HSmin

∣

∣+
∣

∣(HS
max

−HSit) ∗ P
t−1
ed

∣

∣

∣

∣HSmin

∣

∣+
∣

∣(HS
max

−HSmin) ∗ P
t−1
ed

∣

∣
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Algorithm 1.   IBFO-D

Experimental section
Experimental preparation
In the test experiment, we mainly focus on the optimization performance of the proposed method and its learning 
effect on the DBN model structure, and do not deny the validity and novelty of other optimization algorithms 
and their modeling in the corresponding domain. The parameter values of each algorithm used in the experi-
ment are shown in Table 1.

To test the optimization performance of the proposed algorithm, Firstly, we use IBFO-A and seven other 
optimization algorithms to perform comparative test experiments on 10 different benchmark functions. The 
reference function comes from CEC200560, including the multi-peak function, single-peak function, and fixed-
dimensional multi-peak function, which is used to test the convergence speed, accuracy, effectiveness, and global 
search ability of the algorithm. The specific reference function is shown in Table 2. Then we select three kinds of 
hyperparameters for parameter sensitivity analysis to test the stability of the algorithm.



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8266  | https://doi.org/10.1038/s41598-024-58806-0

www.nature.com/scientificreports/

Secondly, We conducted several more sets of comparative experiments of optimization algorithms. These 
include the eight optimization algorithms mentioned above and some novel optimization algorithms as well as 
improved optimization algorithms. The benchmark function for the simulation experiments is from CEC2019, 
which is a popular benchmark function that is quite effective in testing the performance of optimization algo-
rithms. Then we use 2 sets of real-world engineering optimization problems to test the optimization performance 
of the algorithms from multiple perspectives. The CEC2019 specific reference function is shown in Table 3.

Finally, for the IBFO-D algorithm network learning performance test, various dynamic benchmark network 
experiments were selected. These dynamic benchmark networks were derived from two well-known static BN 
networks: the Asia and Alarm networks. These 2T-BN networks comprise two time slices and include an initial 
network represented as B0 and a transition network represented as B→ . Benchmark network data can be obtained 
from the provided Supplementary URL online.

Table 1.   Parameter settings for the algorithms used.

Method Population size Maximum generation Other parameters

IBFO-A 60 1000 r = 0.86 ; Ped = 0.8 ; pc = 0.2

BFO 60 1000 Ped = 0.8 ; � ∈ [−1, 1]

OOA 60 1000 r ∈ [0, 1] ; I = {1, 2}

GA 60 1000 pc = 0.8 ; pm = 0.05

GWO 60 1000 a ∈ [2, 0] ; |r1| ∈ [0, 1] ; |r2| ∈ [0, 1]

PSO 60 1000 wmax = 0.9 ; wmin = 0.6 ; vmax = 6 ; c1 = 2 ; c2 = 2

BWO 60 1000 r1 ∈ (0, 1) ; r2 ∈ (0, 1) ; β = 1.5

DBO 60 1000 k ∈ (0, 0.2] ; b ∈ (0, 1)

COA 60 1000 temp = rand ∗ 15+ 20

GO 60 1000 pro ∈ (0, 1) ; rnd ∈ (0, 1) ; coe ∈ (0, 1)

AWPSO 60 1000 wmax = 0.9 ; wmin = 0.4 ; vmax = 0.5 ; vmin = −0.5

ChaoticBFO 60 1000 µ = 0.8 ; Ped = 0.8 ; � ∈ [−1, 1]

Table 2.   CEC2005 benchmark functions used in the experimental study. where D is the dimension of the 
function, fmin is the minimum value of the function, and search range S ⊆ Rn.

Test function Category D S fmin

f1(x) =
n
∑

i=1
x2i

Unimodal test functions

30 [−100, 100]n 0

f2(x) =
n
∑

i=1

|xi | +
n
∏

i=1

|xi | 30 [−10, 10]n 0

f3(x) =
n
∑

i=1

(

i
∑

j=1
xj

)2

30 [−100, 100]n 0

f4(x) =
n
∑

i=1

[

x2i − 10 cos (2πxi)+ 10
]

Multimodal test functions

30 [−5.12, 5.12]n 0

f5(x) =
1

4000

n
∑

i=1
x2i −

n
∏

i=1
cos

(

xi√
i

)

+ 1 30 [−600, 600]n 0

f6(x) = 0.1

{

sin2 (3πx1)+

n−1
∑

i=1

(xi − 1)2
[

1+ sin2 (3πxi+1)
]

+(xn − 1)
[

1+ sin2 (2πxn)
]}

+

n
∑

i=1

u(xi , 5, 100, 4)

30 [−50, 50]n 0

f7(x) =
11
∑

i=1

[

ai −
x1
(

b2i +bix2
)

b2i +bix3+x4

]2

Multimodal test functions with fix dimension

4 [−5, 5]n 3.075e−4

f8(x) =
[

1+
(

x1 + x2 + 1
)2(

19− 14x1 + 3x21 − 14x2

+6x1x2 + 3x22
)]

×
[

30+ (2x1 − 3x2)
2(18− 32x1

+12x21 + 48x2 − 36x1x2 + 27x22
)]

2 [−2, 2]n 3

f9(x) = −
4
∑

i=1
ci exp

[

−
6
∑

j=1
aij
(

xj − pij
)2

]

6 [0, 1]n − 3.32

f10(x) = −
10
∑

i=1

[

(x − ai)(x − ai)
T + ci

]−1
4 [0, 10]n − 10
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The experimental setup comprised the following environment: Windows 11 operating system, MATLAB 
and Python programming language, 32.0 GB RAM, an Intel Core i7-12700 K CPU running at 5.0 GHz, and an 
NVIDIA GeForce RTX 3080Ti graphics card.

Experimental results and analysis of IBFO‑A compared with other SI algorithms
Comparison and analysis of eight optimization algorithms in CEC2005 benchmark functions
The experimental design of algorithm optimization performance comparison is as follows: The optimization 
algorithm in IBFO-A is compared with three original optimization algorithms, BFO, OOA, and GA; two classical 
optimization algorithms, GWO and PSO, two recent advanced optimization algorithms BWO61 and DBO62, and 
a total of eight optimization algorithms are compared and tested on 10 groups of different types of benchmark 
functions. We uniformly set experimental parameters for all optimization algorithms, in which the population 
size is set to N = 60 , the maximum number of iterations T = 1000 , and the upper bound ub , lower bound lb , 
dimension D , and optimal value fmin of different test functions are set as shown in Table 2. We present 10 sets of 
optimization convergence curves, specific scores, and running timelines, and record the average score ranking 
(ASR) and average run-time ranking (ATR) of the algorithm that runs 30 times independently (if both algorithms 
converge to the optimal value, the ASR is determined by the number of iterations).

The simulation results in Table 4 show that IBFO-A can converge to the optimal value for 6 of the 10 bench-
mark functions. In unimodal and multimodal functions, IBFO-A converges directly to the optimal value 0 on the 
F1, F2, F3, F4, and F5 functions. In addition, it can converge directly to the optimal value 3 on the F8 function, 
and it is also very close to the theoretical optimal value in other fixed-dimensional multi-peak test functions, 
which shows that it has good global optimization ability.

Here, we choose the original BFO, OOA, and GA algorithms as reference objects. According to the analysis 
in Fig. 5, the GA and BFO algorithms perform poorly on F1, F2, and F3 unimodal functions, BFO improves 
somewhat on multi-modal functions F4 and F5, and the OOA algorithm performs better. IBFO-A can stably 
converge to the optimal with less than half of the OOA iterations. GA still performs poorly in F7 and F9 functions 
of fixed dimension, and the convergence values of OOA and BFO are also different from the theoretical optimal 
values. Compared with the IBFO-A algorithm, the performance of the IBFO-A algorithm is competitive. From 
the experimental data in Table 4 and the convergence curve in Fig. 5, except for poor performance on the F6 
generalized penalized function, compared with the other seven algorithms, IBFO-A exhibits the best performance 
in the seven function scoring tests, and ASR ranks first. This shows that the IBFO-A algorithm has good conver-
gence speed and accuracy, and proves that the improved chemotactic step and the replication step using cross 
strategy can avoid falling into the local optimal solution and enhance the local search ability of the algorithm. 
In addition, the ATR of the IBFO-A algorithm ranks fourth. From the perspective of algorithm time complexity, 
the time complexity of IBFO-A and BFO is O(n) , whereas that of OOA is O(n2) . Therefore, the computation time 
of IBFO-A is better than that of OOA. However, due to the extra computing steps, it consumes more computing 
time than the classical BFO, PSO, and GWO, which is also a limitation of the algorithm in this study.

Sensitivity analysis
This section discusses the hyperparameter sensitivity analysis of IBFO-A algorithm. We selected three hyper-
parameters that mainly affect the optimization performance of IBFO-A algorithm, including population size N, 
elimination-dispersal probability P

ed
 , and crossover probability pc . We set four different parameter values for 

each hyperparameter to be discussed, and use the IBFO-A algorithm to optimize several typical test functions 
of CEC2005 under these parameter settings. The specific parameter values and results are shown in Figs. 6, 7, 
8 and Table 5.

From the sensitivity analysis of IBFO-A to hyperparameter N , it can be seen that with the increase of popu-
lation size, the probability of finding the global optimal solution will increase, thus improving the optimiza-
tion performance of the algorithm. However, large population sizes can also lead to increased time costs. P

ed
 

determines the probability of initial elimination-dispersal occurrence of individual bacteria. According to the 
sensitivity analysis of IBFOA to hyperparameter P

ed
 , high P

ed
 parameter value enables bacteria to explore the 

Table 3.   CEC2019 benchmark functions used in the experimental study.

Test function Description D S fmin

F1 Storn’s Chebyshev polynomial fitting problem 9 [−8192, 8192] 1

F2 Inverse Hilbert matrix problem 16 [−16384, 16384] 1

F3 Lennard–Jones minimum energy cluster 18 [−4, 4] 1

F4 Rastrigin’s function 10 [−100, 100] 1

F5 Grienwank’s function 10 [−100, 100] 1

F6 Weierstrass funetion 10 [−100, 100] 1

F7 Modified Schwefel’s function 10 [−100, 100] 1

F8 Expanded Schaffer’s F6 function 10 [−100, 100] 1

F9 Happy Cat function 10 [−100, 100] 1

F10 Ackley function 10 [−100, 100] 1
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solution space more extensively in the early stage of iteration, which increases the possibility of quickly search-
ing for the global optimal solution. In addition, the improved adaptive activity solves the problem that excessive 
elimination-dispersal probability in the late iteration will lead to frequent update of bacterial colony location, 
which makes it difficult to conduct fine search near the optimal solution. In addition, it can be found that IBFO-A 
algorithm can also search the global optimal solution when P

ed
 parameter value is low, but it needs more iterations 

and time cost. From the sensitivity analysis of IBFO-A to hyperparameter pc , it can be seen that the higher the 
probability of pc , the more the coding composition of the individual in the flora is affected by other individuals, 

Figure 5.   Comparison of convergence curves of 8 optimization algorithms.
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Figure 6.   Sensitivity analysis of IBFO-A to parameter N. 

Figure 7.   Sensitivity analysis of IBFO-A to parameter Ped. 

Figure 8.   Sensitivity analysis of IBFO-A to parameter pc. 

Table 5.   Parameter sensitivity comparison experiment.

F1 F7 F9

Score Time Score Time Score Time

N

 30 0 0.26881 3.2398e−4 0.34955 − 3.2291 0.39857

 50 0 0.28275 3.0818e−4 0.34564 − 3.2296 0.40963

 80 0 0.33146 3.1231e−4 0.37591 − 3.3105 0.47671

 100 0 0.35398 3.0753e−4 0.37827 − 3.3136 0.51034

Ped

 0.4 0 0.43908 3.0939e−4 0.43906 − 2.4921 0.40801

 0.6 0 0.4155 3.0869e−4 0.41504 − 2.6352 0.37525

 0.8 0 0.34138 3.0749e−4 0.39222 − 3.2036 0.39457

 0.95 0 0.36583 3.0749e−4 0.39482 − 3.3043 0.39887

pc

 0.1 0 0.33018 3.0956e−4 0.32449 − 3.2927 0.40793

 0.3 0 0.34028 3.1217e−4 0.34316 − 3.3085 0.40045

 0.5 0 0.34936 3.0761e−4 0.34173 − 3.3193 0.43215

 0.8 0 0.35788 3.0766e−4 0.39245 − 3.3164 0.42945
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thus improving the optimization ability of the flora. However, even if IBFO-A uses the improved reproductive 
activity, too high a pc probability may still lead to a decrease in bacterial diversity, putting the algorithm at risk 
of falling into a local optimal solution. Finally, according to the optimization results and running time analysis, 
IBFO-A algorithm is not sensitive to the change of hyperparameters within a reasonable range.

Comparison and analysis of twelve optimization algorithms in CEC2019 benchmark functions
The experimental design of algorithm optimization performance comparison is as follows: In addition to the 
eight optimization algorithms mentioned above, including IBFO-A, Two novel and improved optimization 
algorithms for PSO and BFO :AWPSO25 and ChaoticBFO26, as well as the two latest advanced optimization 
algorithms COA63 and GO64, a total of 12 optimization algorithms were compared in 10 sets of different types 
of advanced benchmark functions in CEC2019. We set experimental parameters uniformly for all optimization 
algorithms. The specific 10 groups of optimization convergence curves, scores and running schedules are shown 
in Fig. 9 and Table 6.

According to the experimental data in convergence diagram 9 and Table 6, compared with other 11 algo-
rithms, IBFO-A has the best performance in four function scoring tests, and ASR ranks first, indicating that 
IBFO-A has good optimization performance. IBFO-A performs well in F1 and F10 test functions designed for 
single-objective real parameter optimization, demonstrating the IBFO-A algorithm’s good performance in the 
global search for the best solution. It also performs well in the two high-dimensional test functions F2 and F3, 
This shows that the improved chemotactic activity and replication activity achieve a harmonious equilibrium 
between exploration and exploitation. It makes IBFO-A algorithm have better searching ability in test functions 
of different dimensions, and can be used to optimize DBN structure model. In addition, the basic algorithm 
BFO and another improved algorithm, ChaoticBFO, are also competitive in F1 and F2 compared with other 
test functions, but their performance is slightly inferior in F3 test functions, which may be because the random 
elimination-dispersal activity they use is difficult to escape the local optimal solution under high-dimensional 
functions. For the test function of fixed-dimensional multi-modal and multi-objective optimization, IBFO-A 
ranks among the best in F7-F9 and performs well in F4-F6, indicating that IBFO-A algorithm can be applied 
to multimodal and multi-objective optimization problems. In addition, the ATR of IBFO-A algorithm ranks 
9th, indicating that the running time of IBFO-A algorithm has increased in complex optimization problems.

Two real‑world engineering optimization problems
In this section, we use two different real-world engineering optimization problems to evaluate the model opti-
mization capabilities of the IBFO-A algorithm, where each set of algorithms is run independently 50 times. Two 
kinds of engineering optimization problem parameter selection are shown in Table 7.

The first engineering optimization problem we chose was: Tension/compression spring design problem 
(TCSD)65, TCSD is a continuously constrained problem such that the volume V of the coil spring is minimized 
under constant tension/compression load. The second engineering optimization problem we selected is Con-
strained truss optimization problem66. Three-bar truss is a common structural form in engineering, which is 
widely used in bridges, buildings, mechanical equipment and other fields. The optimization problem of structure 
design of three-bar truss is to get the best structure layout under certain constraints by adjusting the parameters 
such as the size, shape and connection mode of the bar. The running results of 12 optimization algorithms in 
TCSD and Three-bar truss engineering problems are shown in Tables 8 and 9

Two groups of experiments show that IBFO-A algorithm has improved optimization performance compared 
with the original BFO algorithm in finding the best objective function. In summary, IBFO-A algorithm has a 
good optimization ability in practical engineering applications.

Experimental results and analysis of algorithm convergence
The performance test experiment of the IBFO-D algorithm on network learning is conducted in two steps. In 
the first step, two types of data were randomly extracted from the alarm benchmark network:

(1)	 Three sets of non-temporal data samples, each containing 1000, 2000, and 3000 randomly selected sample 
points.

(2)	 Three sets of time series sample data. The time series data contains two time slices, and each set contains 
1000, 2000, and 3000 randomly selected sample points.

As the optimization process is a random search, each iteration experiment is independently run 50 times to 
comprehensively evaluate and analyze the iterative convergence of the fitness values of the IBFO-D algorithm 
with respect to B0 and B→ . This analysis checks the stability of the learning network of the algorithm and whether 
it falls into its local optimal solution.

We chose to conduct convergence analysis experiments in the alarm network for two reasons:

(1)	 In the field of learning Bayesian network structures, the alarm network is widely recognized as the most 
popular benchmark.

(2)	 Compared with other network structures, the alarm network is more complex, and its performance on 
complex networks can better reflect the global search capability and stability of the IBFO-D algorithm.

Figures 10 and 11 illustrate the convergence of fitness scores during iterations, with the X-axis and Y-axis 
representing the number of iterations and the fitness score, namely the K2 score, respectively. In each generation, 
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the K2 score represents the average outcome of 50 independent runs of the algorithm. An analysis of the experi-
mental findings shows that the algorithm reaches convergence at approximately 110 iterations for the three sets 
of temporal data, whereas for the other three sets of non-temporal data, convergence is achieved at approximately 
70 iterations. This indicates that the IBFO-D algorithm can converge stably within a high fitness value in the 
temporal and non-temporal data without getting trapped in local optima due to its improved chemotaxis, repro-
duction, and elimination-dispersal strategies. Furthermore, this algorithm demonstrated a rapid convergence 
speed and good convergence accuracy.

Figure 9.   Comparison of convergence curves of 12 optimization algorithms.
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Experimental results and analysis of the algorithm performance comparison
The second step involved the use of two dynamic benchmark networks as experimental models. The structural 
hamming distance (SHD)67 was used to compare the IBFO-D algorithm with the DMMHC algorithm9 and the 
GS algorithm10 based on temporal information as a comprehensive evaluation metric. This comparison was 
conducted using three different sets of data samples. Each experiment was independently conducted 50 times 
to ensure thorough validation of the accuracy and efficiency of these algorithms.

The performance comparison results of the three different algorithms in the small-scale 2T-Asia network and 
the large-scale 2T-alarm network, across six different data samples, are presented in Tables 10, 11, 12, 13, 14 and 
15. In these tables, μ ± σ denotes the average value μ and standard deviation σ of the execution time (seconds) 
over 50 independent runs for each algorithm.

For the 2T-Asia network, the IBFO-D and DMMHC algorithms have the same optimal SHD when the sample 
size is 1000. However, the IBFO-D algorithm exhibits better stability and accuracy than the DMMHC algorithm 
with respect to the worst and average results. This is because the IBFO-D algorithm is based on global-search-
based SI optimization, where the error of an individual agent does not affect the optimization outcome of the 
entire swarm. Furthermore, the reproductive activity in IBFO-D improves the information exchange capability 
among bacterial individuals, thereby enhancing the overall optimization performance of the bacterial population. 

Table 7.   Two kinds of engineering optimization problem parameter selection.

Test function Subject to S

min f (x) = (x3 + 2)x2x
2
1

q1(x) = 1−
x32x3

71785x41
≤ 0

2 ≤ x1 ≤ 15
0.25 ≤ x2 ≤ 1.3
0.05 ≤ x3 ≤ 2

q2(x) =
4x22−x1x2

1256
(

x2x
3
1−x41

) + 1
5108x21

− 1 ≤ 0

q3(x) = 1− 140.45x1
x22x3

≤ 0

q4(x) =
x2+x1
1.5 − 1 ≤ 0

min f (x) =
(

2
√
2x1 + x2

)

× l

g1(x) =
√
2x1+x2

(√
2x21+2x1x2

) P − σ ≤ 0

0 ≤ xi ≤ 1, i = 1, 2g2(x) =
x2√

2x21+2x1x2
P − σ ≤ 0

g3(x) =
1√

2x2+x1
P − σ ≤ 0

Table 8.   The running results of 12 optimization algorithms in TCSD engineering problems.

IBFO-A BFO OOA GA GWO PSO

Best 0.012667247 0.013558966 0.012668072 NAN 0.01266895 0.012666835

Worst 0.014586288 0.029029047 0.016834462 NAN 0.012729057 0.016726958

Average 0.013056487 0.021083917 0.013893121 NAN 0.012705313 0.013185834

Std 4.60e−04 3.59e−03 1.10e−03 NAN 1.95e−05 9.54e−04

BWO DBO COA GO AWPSO ChaoticBFO

Best 0.01273713 0.012674165 0.01267023 0.012669091 0.012666912 0.013769665

Worst 0.016191356 0.017773158 0.01351603 0.017044529 0.014294677 0.023413664

Average 0.013232493 0.013493124 0.012866426 0.013174405 0.012949943 0.013940312

Std 7.39e−04 1.61e−03 1.93e−04 9.22e−04 3.30e−04 4.64e−03

Table 9.   The running results of 12 optimization algorithms in Three-bar truss engineering problem.

IBFO-A BFO OOA GA GWO PSO

Best 263.8959581 263.9397436 263.9019434 NAN 263.8959079 NAN

Worst 264.0877488 264.8430515 270.2676865 NAN 263.9024999 NAN

Average 263.9072699 264.28099 264.9638793 NAN 263.8977088 NAN

Std 3.01e−02 2.63e−01 1.30e+00 NAN 1.53e−03 NAN

BWO DBO COA GO AWPSO ChaoticBFO

Best 263.9797514 263.8958434 263.895859 263.8958465 263.8958434 263.929491

Worst 264.9257365 263.8969615 263.8975473 263.8966012 263.8963019 265.1599811

Average 264.2141197 263.8959623 263.8962099 263.8959696 263.8958947 264.1313994

Std 1.81e−01 2.00e−04 3.29e−04 1.29e−04 8.55e−05 2.58e−01
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(1) From the viewpoint of structural metrics, the differences in algorithm performance become more evident as 
the sample size increases and network complexity improves. The IBFO-D algorithm exhibits a clear advantage 
when the sample size is 3000, with a stable SHD of 1. Compared with IBFO-D, the DMMHC algorithm may have 
lower accuracy, but it generates networks that are relatively close to the true structure. However, the GS algorithm 
performs the worst, exhibiting the maximum structural variation in all scenarios. (2) The DMMHC algorithm 
is the fastest, closely followed by the IBFO-D algorithm, while the GS algorithm is the slowest when consider-
ing time metrics. These results can be attributed to the fact that global search typically requires more time than 
greedy local search. Furthermore, in SI algorithms, optimization and complete information exchange tasks are 
independently executed by individual agents during each iteration, leading to higher time costs. Notably, in the 
IBFO-D algorithm, significant time savings are achieved by omitting the grouping mechanism when searching 
for DBN structures in networks such as the small-scale Asia network.

For the 2T-alarm network: (1) When structural metrics are considered, the SHD values for all three algorithms 
are relatively large in the dataset with a sample size of 2000. This is because a small number of sample cases may 

Figure 10.   Experimental results of iterative convergence for three sets of non-temporal data samples.

Figure 11.   Experimental results of iterative convergence for three sets of 2T-BN temporal data samples.

Table 10.   Experimental results of the performance comparison of the three algorithms on 2T-Asia-1000.

DMMHC GS IBFO-D

SHD TIME SHD TIME SHD TIME

Best 2 41.9 8 127.2 2 44.7

Worst 4 63.2 10 191.6 3 61.1

Average 3.5 49.6 ± 11.7 9.3 144.7 ± 15.9 2.2 53.4 ± 6.3
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not fully reflect the network characteristics in complex networks, leading to challenges in the accurate learning 
of network structure by the algorithms. However, in all scenarios, the IBFO-D algorithm consistently exhibits 
smaller structural variations than the other two algorithms, with a worst-case SHD of 29. In the dataset with a 
sample size of 5000, a notable enhancement in algorithm performance was observed. On average, 91.8 of 110 
edges were correctly identified by the IBFO-D algorithm, making it the best-performing algorithm among the 
three. In the dataset with a sample size of 8000, this advantage becomes even more pronounced. This enhance-
ment is due to the improved chemotaxis and elimination-dispersal approach, which improves the global opti-
mization capability of the IBFO-D algorithm and enables the escape from local optima, thereby facilitating the 
search for the global optimum structure. (2) Considering time metrics, learning networks in complex node 
sequences requires more time. Comparative experimental analysis revealed that the IBFO-D and DMMHC algo-
rithms exhibit similar execution efficiencies on large-sample datasets, indicating that the improved chemotactic 
activity in the IBFO-D algorithm facilitates fast optimization for edge orientation, resulting in optimal time 

Table 11.   Experimental results of the performance comparison of the three algorithms on 2T-Asia-2000.

DMMHC GS IBFO-D

SHD TIME SHD TIME SHD TIME

Best 2 89.8 7 210.7 1 97.6

Worst 3 117.2 10 284.2 2 114.2

Average 2.7 101.3 ± 15.8 7.9 253.3 ± 41.3 1.6 107.4 ± 8.4

Table 12.   Experimental results of the performance comparison of the three algorithms on 2T-Asia-3000.

DMMHC GS IBFO-D

SHD TIME SHD TIME SHD TIME

Best 2 182.6 4 392.3 1 198.7

Worst 3 220.3 7 492.6 1 211.8

Average 2.2 196.3 ± 13.3 6.3 441.5 ± 47.1 1 205.2 ± 7.6

Table 13.   Experimental results of the performance comparison of the three algorithms on 2T-alarm-2000.

DMMHC GS IBFO-D

SHD TIME SHD TIME SHD TIME

Best 31 523.7 42 712.6 25 645.5

Worst 40 1006.4 61 1326.2 29 752.7

Average 34.7 783.3 ± 256.7 53.3 1026.4 ± 302.4 27.4 697.1 ± 41.4

Table 14.   Experimental results of the performance comparison of the three algorithms on 2T-alarm-5000.

DMMHC GS IBFO-D

SHD TIME SHD TIME SHD TIME

Best 24 1546.5 42 2164.1 13 1449.6

Worst 33 2152.8 58 3321.8 20 1813.1

Average 27.6 1798.8 ± 395.3 47.6 2713.5 ± 523.9 18.2 1590.1 ± 184.2

Table 15.   Experimental results of the performance comparison of three algorithms on 2T-alarm-8000.

DMMHC GS IBFO-D

SHD TIME SHD TIME SHD TIME

Best 20 2603.6 39 3765.3 9 2414.8

Worst 26 3319.4 45 5143.8 18 2926.7

Average 22.5 3120.5 ± 368.2 42.5 4246.1 ± 663.5 12.3 2753.7 ± 226.1
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performance. There is one exception, where, in the 2T-alarm-2000 dataset, the DMMHC algorithm outperforms 
the IBFO-D algorithm in terms of the best runtime. This is due to the lack of a local optima escape mechanism 
in the DMMHC algorithm, resulting in it being trapped in local optima in complex networks with inadequate 
sample size. Among the three algorithms, the GS algorithm performs the worst, mainly because of the substantial 
amount of time spent searching the search space. Based on the aforementioned experimental analysis, it can be 
concluded that the IBFO-D algorithm is an effective approach for learning DBNs from data, as it can identify net-
work structures with high scores and low structural variations.At the same time, it has high execution efficiency.

Conclusion
In this study, an IBFO-A was proposed using the logistics-sine chaotic mapping method to initialize the popula-
tion and improve the chemotactic activity, reproductive activity, and elimination-dispersal activity of the bacteria 
by combining the OOA algorithm development stage, GA crossover idea, and adaptive method. To solve the 
problem of complex DBN learning structures due to the introduction of time information, an IBFO-D algo-
rithm is proposed within the framework of the IBFO-A algorithm. In this algorithm, the fitness function and 
V-structure orientation rule were constructed, and simulation experiments were conducted on a series of refer-
ence functions, the 2T-Asia network and the 2T-Alarm network. The experimental results show that the initial 
population of the IBFOA algorithm using the chaotic mapping method can accelerate the iterative convergence 
speed, and the improved chemotactic activity and reproductive activity can improve the optimization ability 
of bacteria. Based on the adaptive elimination-dispersal activity, the algorithm can effectively prevent the local 
optimal to guide bacteria to find a better solution. The IBFO-D algorithm demonstrates stable convergence at 
higher fitness values in temporal and non-temporal data, and its performance is better than that of the other two 
algorithms. Future work will focus on applying the IBFO-D algorithm to learn higher-order dynamic Bayesian 
networks and time-varying dynamic Bayesian networks to reduce the complexity of their time computation. In 
addition, the improved BFO method will be combined with other meta-heuristic methods to further improve 
its ability to search for optimal datasets.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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