
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8268  | https://doi.org/10.1038/s41598-024-58753-w

www.nature.com/scientificreports

Bacterial biota associated 
with the invasive insect pest Tuta 
absoluta (Meyrick)
A. A. Lateef 1,2*, A. A. Azeez 1,4, W. Ren 1, H. S. Hamisu 3, O. A. Oke 3 & F. O. Asiegbu 1

Tuta absoluta (the tomato pinworm) is an invasive insect pest with a highly damaging effect on 
tomatoes causing between 80 and 100% yield losses if left uncontrolled. Resistance to chemical 
pesticides have been reported in some T. absoluta populations. Insect microbiome plays an important 
role in the behavior, physiology, and survivability of their host. In a bid to explore and develop an 
alternative control method, the associated microbiome of this insect was studied. In this study, 
we unraveled the bacterial biota of T. absoluta larvae and adults by sequencing and analyzing the 
16S rRNA V3-V4 gene regions using Illumina NovaSeq PE250. Out of 2,092,015 amplicon sequence 
variants (ASVs) recovered from 30 samples (15 larvae and 15 adults), 1,268,810 and 823,205 ASVs 
were obtained from the larvae and adults, respectively. A total of 433 bacterial genera were shared 
between the adults and larval samples while 264 and 139 genera were unique to the larvae and 
adults, respectively. Amplicon metagenomic analyses of the sequences showed the dominance of 
the phylum Proteobacteria in the adult samples while Firmicutes and Proteobacteria dominated 
in the larval samples. Linear discriminant analysis effect size (LEfSe) comparison revealed the 
genera Pseudomonas, Delftia and Ralstonia to be differentially enriched in the adult samples while 
Enterococcus, Enterobacter, Lactococcus, Klebsiella and Wiessella were differentially abundant in the 
larvae. The diversity indices showed that the bacterial communities were not different between the 
insect samples collected from different geographical regions. However, the bacterial communities 
significantly differed based on the sample type between larvae and adults. A co-occurrence network 
of significantly correlated taxa revealed a strong interaction between the microbial communities. 
The functional analysis of the microbiome using FAPROTAX showed that denitrification, arsenite 
oxidation, methylotrophy and methanotrophy as the active functional groups of the adult and larvae 
microbiomes. Our results have revealed the core taxonomic, functional, and interacting microbiota of 
T. absoluta and these indicate that the larvae and adults harbor a similar but transitory set of bacteria. 
The results provide a novel insight and a basis for exploring microbiome-based biocontrol strategy for 
this invasive insect pest as well as the ecological significance of some of the identified microbiota is 
discussed.

On a global scale, insect pests and pathogens are one of the major constraints in crop  production1 with up to $2.5 
billion per year as cost for their  control2. T. absoluta, also called the Tomato pinworm or leafminer, is a destructive 
invasive insect pest that originated from South America and has spread to other regions of the world including 
Europe, the Middle East and Africa where the damage is increasingly  occurring3,4. It primarily infests tomato 
plants both in greenhouse and in the open  field5, but can also invade other economic crops such as pepper and 
 eggplant6. T. absoluta is a significant threat to tomato farmers worldwide, which if left uncontrolled can cause 
severe losses of up to 100%4.

Chemical control is usually the main method for control of T. absoluta in several countries and recently with 
biological control agents like  nematodes4,7. However, the use of synthetic pesticide products often results in 
serious environmental degradation and economic issues, as a result, food and environment are contaminated, 
cost of production driven up and natural enemies of the insect pests are killed. In addition, some population of 
T. absoluta have the ability to develop rapid resistance to these  chemicals8–11. Also, the effectiveness of synthetic 
pesticides is limited as the larvae are difficult to target with insecticide sprays due to their endophytic feeding 
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 behaviour12. T. absoluta belongs to the insect order Lepidoptera which undergo complete metamorphosis 
(holometabolous) with their larval stage being the period of active feeding and  growth13,14.

Alternative control strategies should therefore be used within the context of integrated pest management 
(IPM) for this destructive pest. In the field of pest management, the microbiome of insects has emerged as a 
promising tool with immense potential for enhancing insect biocontrol  strategies15–18. By understanding the 
complex interactions between insect hosts and their associated microbes, scientists are uncovering new ways to 
control pests and reduce the reliance on traditional chemical  pesticides19. The understanding and manipulation 
of the microbial communities associated with insects as a means of biocontrol has proven to be effective in 
managing pest populations and maintaining ecological balance in agricultural  systems20. Furthermore, targeting 
the microbiome directly or altering it to reduce the vector competence of pests can have significant implications 
in managing insect  populations15.

The microbiomes associated with insect pests are highly diverse. The dynamics within and between members 
of this microbial communities which include fungi, bacteria and viruses affect the fitness and behaviour of 
insect pests in various  ways21. Studies on insect pest microbiota have demonstrated that various factors shape 
the microbial community composition, ranging from life stages to the environment as well as host  genetics22. In 
some cases, microbes also contribute towards the pest status of invasive  insects23.

Knowledge about the insect microbiome can be harnessed to control invasive insect  pests24. Most studies 
of the lepidopteran microbiota and specifically few studies on T. absoluta have focused only on the adult stage 
which only reveal a snapshot of the microbial community at that stage. Little is known about the changes in the 
microbiome at the most important stages of larvae. Previous research on the amplicon metagenomic analyses of 
the microbiome of invasive insect pest have revealed core microbiota associated with their host. Earlier  studies25,26 
on larvae of Fall armyworm (Spodoptera frugiperda), causing destruction in maize have revealed the dominance 
of the phyla Actinobacteria, Proteobacteria and Firmicutes. Similar trend was also recorded on adult T. absoluta 
in  China27 with the phyla Proteobacteria and Firmicutes dominating the microbiome and with samples from 
different regions having similar microbiome structures.

However, little is known about the complex microbial community associated with both adult and larvae of T. 
absoluta particularly in sub-saharan Africa. In the present study, we used the NovaSeq Illumina NGS platform 
to reveal the bacterial microbiome of the larvae and adults of T. absoluta, the network interaction and potential 
ecological functions.

Materials and methods
Sample collection
Larval and adult samples of T. absoluta were randomly collected from farmers’ tomato fields based on availability. 
The sampling was done from August to October during the 2022 farming season from six different locations 
within two agroecological zones in Nigeria: North Central and North West (Table 1).

The North Central (Ilorin and Minna collection points) is a Southern Guinea Savannah with a mean annual 
rainfall of 1150  mm30, while the North West (Jigawa and Kano), a Sudan Savannah, has a mean annual rainfall 
of 1000  mm31. Larval samples were collected from the leaves and upper stem by hand picking while adults 
were collected by swipe net. The adult and larval samples were stored in 90% ethanol in 15 mL falcon and 2 mL 
Eppendorf tubes, respectively. DNA extraction for all samples was done at the Forest Pathology Research Lab 
at the University of Helsinki, Finland.

DNA extraction, polymerase chain reaction (PCR), amplification of 16S region and Illumina 
next generation sequencing
Total genomic DNA was extracted from the larvae and adults of T. absoluta using a modified 
cetyltrimethylammonium bromide (CTAB)  protocol32. Briefly, the protocol is as follows, the larval and adult 
samples were grinded with a micropestle in a 2 ml tube in presence of liquid nitrogen. CTAB extraction buffer 
(pre-heated at 65 °C) and DTT (1 mol/L) was added to the tube, vortexed and incubated for 30 min at 65 °C on 
an Eppendorf Thermomixer Comfort (900 rpm). One volume of chloroform:isoamylalcohol (24:1) was added to 
the tube, mixed together and then centrifuged at 10,000g for 10 min, after which the upper phase (about 700 μL) 
was transferred to a new tube. Subsequently, another one volume of chloroform:isoamyl alcohol (24:1) was added 
to the tube, mixed and centrifuged at 10,000g for 10 min. The supernatant was then transferred into a new 1.5 ml 
Eppendorf tube, 40 μL NaAc (3 M) and one volume of cold isopropanol were added and incubated at − 20 °C 
for 20 min. The tube was then centrifuged at 10,000g for 20 min at 4 °C. The supernatant was discarded, and the 
pellet was washed with 70% ethanol at 12,000g for 5 min at 4 °C. Thereafter, the pellet was dried by discarding 
the supernatant and inverting the tube in a sterile hood. The DNA was then resuspended in Milli-Q water. The 
DNA extracted was quantified using NanoDrop Spectrophotometer (2000C, Thermo Scientific) following the 
manufacturer’s protocol.

PCR amplification of the V3–V4 regions of the 16S rRNA regions were performed using the primers 341F 
(CCT AYG GGRBGCASCAG) and 806R (GGA CTA CNNGGG TAT CTAAT)33 connecting with barcodes. The PCR 
products with proper size were selected by 2% agarose gel electrophoresis. Libraries were made by pooling equal 
amounts of PCR products from each sample, end-repaired, A-tailed, and then ligated with Illumina adapters. 
Libraries were sequenced on a paired-end Illumina platform at Novogene (UK) to generate 250 bp paired-end 
raw reads (Raw PE). The raw reads were demultiplexed, adapters trimmed and raw data with the sequencing 
quality information were recorded in a FASTQ  file34.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8268  | https://doi.org/10.1038/s41598-024-58753-w

www.nature.com/scientificreports/

Processing of sequencing data
The paired-end reads were demultiplexed and assigned to samples based on their unique barcodes. Barcodes and 
primer sequences were cut off from the reads. Quality filtering of the raw reads was performed under specific 
filtering conditions to obtain the high-quality clean reads. Paired-end reads for each sample were merged using 
FLASH Version 1.2.11 (http:// ccb. jhu. edu/ softw are/ FLASH/)35 and then spliced when reads overlapped. The 
paired-end sequence data were further processed through the Quantitative Insights Into Microbial Ecology 
(QIIME2)  pipeline36. Reads were denoised (i.e. filtered and dereplicated) based on quality scores (below Q30), 
chimera were detected and removed using the DADA2  algorithm37 to generate amplicon sequence variants 
(ASVs).

Amplicon sequence variant (ASV) assignment and taxonomic annotation
Amplicon sequence variants (ASVs) taxonomic assignments were done against a pre-trained Naive Bayes 
classifier and QIIME2-compatible SSUrRNA SILVA database (clustering at 97% similarity threshold, release 
138 (http:// www. arb- silva. de/)38,39 at each taxonomic rank. Abundance normalization of the ASVs were done 
based on the smallest sample size (31,101) and was used in further analysis. Rarefaction and diversity analyses 
including  ACE40,  Chao141, Shannon and Simpson  indices42 were done both in  Qiime243 and in Rstudio (version 
4.2.0). Principal coordinate analysis (PCoA) was used to assess the Beta diversity with the weighted UniFrac 
(Bray–Curtis) distance matrix of the relative abundance of ASVs calculated by the QIIME2 using the vegan and 
 ggplot244 package in RStudio (version 4.2.0)45,46. Further analyses and visualizations were carried out using R 
packages which include qiime2R (v0.99.6) (https:// github. com/ jbisa nz/ qiime 2R? search=1), phyloseq (v1.38.0)47, 
and tidyverse (v2.0.0)48.

Statistical analyses of data
Differences in the alpha diversity between samples and relative genera abundances were tested using 
Wilcoxon rank-sum and Kruskal–Wallis tests (with post hoc Dunn test). Permutational analysis of variance 
(PERMANOVA) and Kruskal–Wallis test (at p ≤ 0.05) were used to compare the differences in the beta diversity. 
Microbial ecological network  analyses49 was done to assess the interaction between each taxa based on the 

Table 1.  The sample collection locations and their coordinates.

S/N Sample ID Sample type Location Region GPS

1 F1 Larvae Ilorin Northcentral 8° 26′ 23.8848″ N, 4° 31′ 28.2144″ E

2 G1 Larvae Ilorin Northcentral 8° 26′ 23.8848″ N, 4° 31′ 28.2144″ E

3 H1 Larvae Ilorin Northcentral 8° 26′ 23.8848″ N, 4° 31′ 28.2144″ E

4 J1 Larvae Ilorin Northcentral 8° 26′ 23.8848″ N, 4° 31′ 28.2144″ E

5 K1 Larvae Ilorin Northcentral 8° 26′ 23.8848″ N, 4° 31′ 28.2144″ E

6 Q1 Larvae Minna Northcentral 9° 34′ 44.5254″ N, 6° 33′ 15.6852″ E

7 R1 Larvae Minna Northcentral 9° 34′ 44.5254″ N, 6° 33′ 15.6852″ E

8 S1 Larvae Minna Northcentral 9° 34′ 44.5254″ N, 6° 33′ 15.6852″ E

9 T1 Larvae Minna Northcentral 9° 34′ 44.5254″ N, 6° 33′ 15.6852″ E

10 U1 Larvae Minna Northcentral 9° 34′ 44.5254″ N, 6° 33′ 15.6852″ E

11 V1 Larvae Kano Northwest 11° 58′ 31.458″ N, 8° 32′ 47.1114″ E

12 W1 Larvae Kano Northwest 11° 58′ 31.458″ N, 8° 32′ 47.1114″ E

13 X1 Larvae Kano Northwest 11° 58′ 31.458″ N, 8° 32′ 47.1114″ E

14 Y1 Larvae Kano Northwest 11° 58′ 31.458″ N, 8° 32′ 47.1114″ E

15 Z1 Larvae Kano Northwest 11° 58′ 31.458″ N, 8° 32′ 47.1114″ E

16 AA1 Adults Bagwai, Kano Northwest 12° 9′ 11.56″ N, 8° 8′ 14.49″ E

17 AB1 Adults Bagwai, Kano Northwest 12° 9′ 11.56″ N, 8° 8′ 14.49″ E

18 AC1 Adults Bagwai, Kano Northwest 12° 9′ 11.56″ N, 8° 8′ 14.49″ E

19 AD1 Adults Bagwai, Kano Northwest 12° 9′ 11.56″ N, 8° 8′ 14.49″ E

20 AE1 Adults Bagwai, Kano Northwest 12° 9′ 11.56″ N, 8° 8′ 14.49″ E

21 AF1 Adults Kazaure, Jigawa Northwest 12° 38′ 58.956″ N, 8° 24′ 51.8034″ E

22 AG1 Adults Kazaure, Jigawa Northwest 12° 38′ 58.956″ N, 8° 24′ 51.8034″ E

23 AH1 Adults Kazaure, Jigawa Northwest 12° 38′ 58.956″ N, 8° 24′ 51.8034″ E

24 AI1 Adults Kazaure, Jigawa Northwest 12° 38′ 58.956″ N, 8° 24′ 51.8034″ E

25 AJ1 Adults Kazaure, Jigawa Northwest 12° 38′ 58.956″ N, 8° 24′ 51.8034″ E

26 AK1 Adults Rogo, Kano Northwest 11° 34′ 0.00″ N, 7° 49′ 60.00″ E

27 AL1 Adults Rogo, Kano Northwest 11° 34′ 0.00″ N, 7° 49′ 60.00″ E

28 AM1 Adults Rogo, Kano Northwest 11° 34′ 0.00″ N, 7° 49′ 60.00″ E

29 AN1 Adults Rogo, Kano Northwest 11° 34′ 0.00″ N, 7° 49′ 60.00″ E

30 AO1 Adults Rogo, Kano Northwest 11° 34′ 0.00″ N, 7° 49′ 60.00″ E

http://ccb.jhu.edu/software/FLASH/
http://www.arb-silva.de/
https://github.com/jbisanz/qiime2R?search=1
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ASV abundance correlations using the psych package in R and visualized in Gephi (Version 0.9.2). Functional 
annotation of prokaryotic taxa (FAPROTAX) was used to predict the ecological functional groups of the taxa 
using the annotated prokaryotic 16S sequence  database50,51.

Deposition of nucleotide sequences
The sequences obtained in this study were deposited in the GenBank short-read archive (SRA) with accession 
number PRJNA1032433 (https:// datav iew. ncbi. nlm. nih. gov/ object/ PRJNA 10324 33).

Results
Sequencing data
A total of 2,561,953 paired-read sequences were obtained from 30 samples which after quality filtering, denoising 
and chimera removal yielded 2,092,015 sequences (Supplementary Table S1). The sequences from each sample 
ranged from 31,101 to 102,707 sequences with an average ± standard deviation of 71,276 ± 20,000 reads per 
sample.

All samples had good coverage based on the rarefaction curves (Fig. 1).
From all the 2,092,015 ASVs recovered from the 30 samples (15 larvae & 15 adults), 1,268,810 ASVs were 

obtained from the larvae and 823,205 ASVs from the adults. All the ASVs in all samples were identified to belong 
to bacteria (99.8%) with only 1 sample (AO1) containing an unassigned proportion of 6.86% (Supplementary 
Fig. S1).

Composition and structure of T. absoluta bacterial biota
The bacterial biota was classified into 36 phyla with Proteobacteria (77.56%) being the most abundant followed by 
Firmicutes (18.86%), Bacteroidota (1.71%), Actinobacteria (0.96%), Bdellovibrionota (0.27%) and Cyanobacteria 
(0.22%). The phyla Proteobacteria were more abundant in the adult sample than in the larvae and both 
Proteobacteria and Firmicutes were more abundant in the larvae (Fig. 2).

Also at the Order taxonomic rank, Pseudomonadales were more abundant in the adult samples which 
gradually decreased in the larvae while Enterobacterales and Lactobacillales were more abundant in the larvae 
compared to the adults (Supplementary Fig. S2). A similar changing pattern of relative abundance in the adults 
and larvae were also obtained at the genus and species level (Fig. 3) where Pseudomonas was more abundant in 
the adults which reduced drastically in the larvae while Klebsiella, Enterococcus and Enterobacter had the opposite.

A total of 792 bacteria genera (Supplementary Table S2) were present in both the adult and larvae samples 
with the top 10 members of the group including Pseudomonas, Enterococcus, Klebsiella, Enterobacter, Ralstonia, 
Erysipelatoclostridium, Lactococcus, Weissella, Aeromonas, and Stenotrophomonas in decreasing other of relative 
abundance. A similar number of genera 264 and 139 were unique to the adults and larvae respectively while 389 
genera were shared (Fig. 3). All the top 10 most abundant genera were not unique to either the adults or larvae 
but were found overlapping (shared) between the two sample types.

The genera Aurantisolimonas, Luteolibacter, Filimonas, Edaphobaculum, Siphonobacter, Kerstersia and 
Peredibacter were exclusively found in the larvae, Eubacteriaceae, Muribaculaceae, Kerstersia and Romboutsia 
were exclusively found in the adults.

Figure 1.  Rarefaction curves of the 30 samples.

https://dataview.ncbi.nlm.nih.gov/object/PRJNA1032433
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Figure 2.  Top 10 bacteria phyla from the adult and larval samples.

Figure 3.  Top Abundant Bacterial species based on sample type ranging from 0 (least abundant) to 4 (most 
abundant).
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Significant differences in the bacterial taxa were also identified by linear discriminant analysis effect size 
(LEfSe) comparison. The LEfSe chart (Fig. 4) showed that Lactococcus, Enterococcus, Enterobacter and Klebsiella 
were differentially abundant in the larvae while Pseudomonas, Ralstonia, Delftia were differentially abundant in 
the adults. This shows that the larvae samples had more taxa signatures than the adults. This is also supported 
by the Venn diagram above (Fig. 5).

Figure 4.  LEfSe result based on differentially abundant taxa in the larvae as compared to that of the adult.

Figure 5.  The Shared and Unique bacterial ASVs in each sample type.
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Bacteria community richness and diversity of T. absoluta microbiome
There were differences between the larval (15 samples) and adults (15 samples) alpha diversities (Wilcoxon 
P ≤ 0.01) (Fig. 6). However, there were no significant differences in the alpha diversities (observed, Shannon and 
Simpson) between the larval samples from the 3 different (Kruskal–Wallis P > 0.05). Sample F1 from Southwest 
had the highest diversity species richness (chao1) with Shannon index of 4.04 (Supplementary Fig. S4) while 
sample K1 had the lowest diversity.

Within the adults, sample AH1 collected from Kazaure, Jigawa had the highest chao1 species richness index 
of 449 followed by sample AO1 from Rogo, Kano with 388 while sample AL1 from Rogo, Kano had the least 
richness (127.11) (Supplementary Fig. S5).

The principal coordinates analysis (PCoA) of the ASVs from the larval and adults samples showed distinct 
clustering which was confirmed significant by PERMANOVA at P < 0.01 (Fig. 7). Larval samples showed higher 
similarities with each other than with the adult samples and same pattern was observed with the adult-adult 
samples. Also, the samples did not differ based on location with the microbial communities having more 
similarities based on sample type.

Microbial network interaction analysis of T. absoluta bacteria communities
The inter-taxa correlations of the bacterial communities were revealed by the network analysis in Rstudio. The 
networks were explored and visualized with Gephi 0.10.1 (Bastian et al., 2009). The network topology indices 
such as modularity, clustering coefficient, average node connectivity, average path length and network diameter 
were calculated (Newman, 2003, 2006). The network analyses involved 150 and 337 core taxa in the adults 
(Fig. 8A) and larvae (Fig. 8B) respectively with Spearman correlation values ρ > 0.7, and P < 0.001. These core 
taxa had stronger and more significant connections between them in the larvae than in the adults. The phylum 
Proteobacteria had more interactions in both the larvae and adult bacterial communities. The average network 
distance between all pairs of taxa (average path length) and network diameter was lower in the adult bacterial 
communities (1.28 edges/diameter of 5) compared to (2.7 edges/diameter of 10) in the larvae respectively. The 

Figure 6.  Bacterial communities Alpha diversity indices- Observed, Chao1, Shannon and Simpson of the adult 
and larva samples of T. absoluta.
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pattern of the network showed that the taxa tend to cluster together more in the adult than in the larvae with 
a clustering coefficient/modularity index of 0.29/0.79 for the adults and 0.27/0.72 for the larvae respectively.

Based on the weighted in-degree index from the different properties of the network analyses (Supplementary 
Tables S3 and S4), ASV5511 (Bordetella genomosp), ASV5247 (Enterobacter kobei), ASV5087 (Rhizobium 
naphthalenivorans), ASV5054 (Kaistia sp.) & ASV5039 (Devosia sp.) with ≥ 15 index were identified as the top 
keystone taxa in the adult bacterial communities while ASV5511 (Bordetella genomosp), ASV5503 (Bordetella 
genomosp), ASV4965 (Sphingomonas sp.), ASV4943 (Sphingobium herbicidovorans) and ASV 5099 (Rhizobium 
sp.) with ≥ 30 index were identified in the larvae.

Potential functional analysis of T. absoluta bacteria microbiome
Functional Annotation of Prokaryotic Taxa (FAPROTAX) was used to predict the functions of the bacterial 
communities of T. absoluta larvae and adults. A total of 20 putative functional groups (Fig. 9) were prominently 
identified such as sulphur respiration, arsenite reduction and oxidation as well as nitrification. Nitrous oxide 
denitrification and nitrite denitrification were the most dominant putative functions both in the adult and 
larvae bacterial biota followed by nitrate denitrification, dissimilatory arsenite oxidation, arsenite oxidation 
detoxification, methanol oxidation and methylotrophy.

There were no differences among the larvae and adults and bacterial functional groups (Fig. 9). However, the 
adults had an increased functional groups in sulfate respiration and methanogenesis activities.

Discussion
In this study, the bacterial biota of T. absoluta were dominated by the phylum Proteobacteria with few Firmicutes 
which is similar to the only previous microbiome report on T. absoluta from China and  Spain27. Proteobacteria 
has also been reported as dominant in other Lepidopteran insects such as in Spodoptera littoralis52, Brithys crini53 
and Cnaphalocrocis medinalis54.

In contrast to the adults, the phylum Firmicutes followed by Proteobacteria were dominant in the larval 
samples of T. absoluta which is also in line with the larvae microbiome report of Spodoptera littoralis52, Spodoptera 
frugiperda55–57 and Helicoverpa armigera58.

Thakur et al.52 reported the dominance of the phylum Proteobacteria in adults of Spodoptera littoralis which 
was maintained in the eggs, reduced in the early-instar larvae, and then was gradually switched in the late-
instar larvae where the Firmicutes were dominant with less Proteobacteria. This pattern possibly indicates that 
these bacterial biota are transmitted from adults to newborns via the  eggs52. Proteobacteria which are mainly 
Gram negative are currently the largest phylum within the bacteria  domain59 and Fimicutes which are mainly 
Gram positive and capable of breaking down carbohydrate in the human  gut60. Our results are in agreement 

Figure 7.  Principal co-ordinate analysis (PCoA) of the beta diversity of larval and adult samples beta diversity 
analyses by PERMANOVA at P < 0.01.
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with previous reports that have shown that microbiomes of Lepidopteran insects are dominated by the phyla 
Proteobacteria and  Firmicutes61.

The abundance of the genus Pseudomonas in the adult samples of T. absoluta has also been reported as 
dominant in Lepidopteran  insects61 and it represents the core bacterial community in the adult samples together 
with Ralstonia and Delftia. The genus Enterococcus from the phylum Firmicutes which dominated the microbiome 
of the larval samples in this study has also been reported to be dominant in Lepidopteran  insects62,63. Klebsiella 
and Enterobacter both from the phylum Proteobacteria were also reported present with relatively high abundance 
next to Enterococcus from the phylum Firmicutes from larvae of Spodoptera frugiperda57. Enterococcus were also 
found to be dominant in the microbiome study of larvae of Spodoptera littoralis52, S. frugiperda56,57 and from 
culture-dependent study of S. frugiperda  larvae57. Enterobacter was also dominant in fresh larvae of mealworm 

Figure 8.  (A) Network analyses of the bacterial biota from adult samples. Each connection stands for a strong 
(Spearman’s ρ > 0.7) and significant (P-value < 0.01) correlation. The size of each node is proportional to the 
number of its connections (degree). ASVs coloured by taxonomy. (B) Network analyses of the bacterial biota 
from larvae samples. Each connection stands for a strong (Spearman’s ρ > 0.7) and significant (P-value < 0.01) 
correlation. The size of each node is proportional to the number of its connections (degree). ASVs coloured by 
taxonomy.
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larvae (Tenebrio molitor)64. Both Enterobacter and Enterococcus have been  reported65 as dominant in adult 
Drosophilia melanogaster.

Bacterial genera such as Weissella, Pseudomonas, Lactococcus, Ralstonia, Enterococcus, Delftia, Enterobacter, 
Rhizobium, Klebsiella and Achromobacter which were observed in this study to be shared between the larvae 
and adult samples can persist as symbionts during the larval and adult  stages66–68 with a considerable change in 
the composition from larvae to adults. This phenomenon is common in Lepidopteran insects, probably due to 
dramatic physiological and diet changes during  metamorphosis61. It has been suggested that the crucial role of 
the microbiome in the development of insects is related to aspects such as immunity, reproduction, digestion, 
nutrition, and production of metabolites such as pheromones and antimicrobial  molecules69. Enterococcus sp. 
isolated from the guts of Plutella xylostella enhance insecticide resistance to chlorpyrifos (organophosphate 
pesticide) by regulating the expression of an antimicrobial peptide named  gloverin63. Insects may need specific 
bacteria such as Enterococcus sp. to degrade the toxic compounds like alkaloids and latex in their host plant as 
observed with the insects Hyles euphorbiae and Brithys crini70. Enterococcus spp. are also reported to be involved 
in plant defense  suppression71.

The genus Pseudomonas is one of the most versatile bacterial genera with symbiotic relationship with their 
insect  host72 and commonly found dominant in insects. It is believed to increase the genetic capacity of their 
hosts to degrade  terpenes73 including plant defense  suppression71,74 as well as providing pesticide resistance to 
their insect  hosts75. Interestingly, Pseudomonas which was higher in the adults and disappeared in the larvae 
has been reported to have high larvicidal activity in Spodoptera littura  larvae18. Several species of Pseudomonas 
such as P. paralactis, Pseudomonas entomophila and Pseudomonas chlororaphis have been reported to exhibit 
insecticidal activities against Spodoptera littura17, Heliothis virescens and Plutella xylostella76. In terms of diversity 
and richness, there were no significant difference both within the adult and larvae samples based on the different 
sample location which corroborates the reports of Wang et al.27 on T. absoluta from Spain, Xinjiang and Yunnan 
as well as that of Ugwu et al.25 on Spodoptera frugiperda. However, some reports revealed that environmental 
variability, developmental  stage52,77 and  diet61,78 can influence the insect microbiome. Furthermore, the 

Figure 9.  Abundance of the 20 predicted bacterial functions in the adult and larvae of T. absoluta as predicted 
by FAPROTAX.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8268  | https://doi.org/10.1038/s41598-024-58753-w

www.nature.com/scientificreports/

community structures based on sample types (adults or larvae) were similar from the different agroecological 
locations.

The PCoA showed a significant difference in the beta diversity between the larval and adult samples which 
might be as a result of significant shifts in the microbiome as the larvae mature and metamorphosed into the 
adult  stage79. It has been noted that insect developmental stages also have influence on the host microbiome as 
the composition, pattern, and relative abundance of each taxa  changes52,77,80. The larvae had a core microbial 
taxa which were significantly different from those of the adults which was also supported by the LEfSe analyses. 
The biomarker discovery by LEfSe identifies the most biologically informative taxa distinguishing two or more 
genomic  dataset81. In this study, the LEfSe result showed that the larvae samples have more taxa signatures 
than the adults. Gupta et al.82 found that differential abundant increase of Pseudomonas sp. improved pesticide 
resistance and survivability in adult brown planthopper (Nilaparvata lugens) causing damage in Rice fields. In 
the same way, Gong et al.83 showed that Delftia which was differentially abundant in T. absoluta adults has been 
linked with detoxification of insecticides and increased fitness in Nilaparvata lugens. These suggests that one of 
the ways which insects adapt to insecticides is by shifting its microbiome to interact with beneficial symbiont.

Enterococcus have also been reported to increase larval defense of Bombyx mori to biological control and 
removal of the Enterococcus symbiont from the larvae would increase the success of biocontrol of this insect 
 larvae84. Enterococcus and Lactococcus can protect insect larvae against pathogens, plant toxins and increase host 
 fitness54,85. Enterococcus is significantly abundant in Hyles euphorbiae and Brithys crini70 and other Lepidopteran 
 larvae86,87.

The microbial network analyses explores the microbiome beyond the compositional and diversity inferences 
to reveal near real-world interactions between taxa. The co-occurrence pattern observed in this study indicate 
the presence of highly connected taxa of 4 nodes each on average. The clustering coefficient of the networks also 
indicate taxa from the same phylum clustered much more closely (77%) as expected in real-world microbial 
 communities88. One of the most useful features of network analysis is that hubs (also termed keystone ASVs), 
which are taxa that are highly associated in a microbiome can be  identified89. The network analyses clearly 
showed that ASV5511 (Bordetella genomosp.) identified as a keystone taxa in both adult and larvae bacterial 
microbiomes in T. absoluta had the most interactions with other taxa within the network. However, several other 
taxa also contributed to interactions within their hubs.

The predicted ecological functions of T. absoluta bacterial biota which showed a dominance of nitrous oxide 
and nitrite denitrification corroborates the results of the dominance of Pseudomonas, Klebsiella, Enterobacter 
and Rhizobium both in the network and taxonomic analyses. Denitrifying bacteria enhance the detoxification 
of organic insecticides in their  host63,90,91. Furthermore, members of the Alicagenaceae, Pseudomonaceae and 
Rhizobiaceae to which most dominant and keystone taxa in this study belong to have been reported to have 
the As(III) oxidase  gene92,93 which is responsible for oxidizing the arsenic found in some arsenic contaminated 
 farms93. This result corroborates the recent study of Wang et al.94 on the abundance of nitrate reduction functions 
in bacterial communities of the brown planthopper (Nilaparvata lugens) destroying rice fields in Asia.

Conclusion
With the continuous expansion in the geographic distribution of T. absoluta, characterizing the microbial 
diversity of T. absoluta is a significant step to developing alternative non-chemical methods to combat this 
pest. This study reveals the bacterial microbiomes of T. absoluta, their abundance, distribution, and interaction. 
Although no obvious impact on sampling sites was observed, a more detailed study involving samples from the 
six agroecological zones merit further investigation to ascertain any potential impact of geographical location 
on the microbiome. The results, however, could further contribute to the development and exploitation of the 
microbial symbionts and natural enemies of T. absoluta as an alternative to chemical control management strategy 
of this destructive invasive pest.

Data availability
The sequencing dataset can be found in online SRA repository of the National Center for Biotechnology 
Information (NCBI) under the BioProject ID PRJNA1032433.
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