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Leveraging continuous glucose 
monitoring for personalized 
modeling of insulin‑regulated 
glucose metabolism
Balázs Erdős 1,2*, Shauna D. O’Donovan 3, Michiel E. Adriaens 1, Anouk Gijbels 4, 
Inez Trouwborst 5, Kelly M. Jardon 5, Gijs H. Goossens 5, Lydia A. Afman 4, Ellen E. Blaak 5, 
Natal A. W. van Riel 3 & Ilja C. W. Arts 1

Continuous glucose monitoring (CGM) is a promising, minimally invasive alternative to plasma glucose 
measurements for calibrating physiology‑based mathematical models of insulin‑regulated glucose 
metabolism, reducing the reliance on in‑clinic measurements. However, the use of CGM glucose, 
particularly in combination with insulin measurements, to develop personalized models of glucose 
regulation remains unexplored. Here, we simultaneously measured interstitial glucose concentrations 
using CGM as well as plasma glucose and insulin concentrations during an oral glucose tolerance test 
(OGTT) in individuals with overweight or obesity to calibrate personalized models of glucose‑insulin 
dynamics. We compared the use of interstitial glucose with plasma glucose in model calibration, and 
evaluated the effects on model fit, identifiability, and model parameters’ association with clinically 
relevant metabolic indicators. Models calibrated on both plasma and interstitial glucose resulted in 
good model fit, and the parameter estimates associated with metabolic indicators such as insulin 
sensitivity measures in both cases. Moreover, practical identifiability of model parameters was 
improved in models estimated on CGM glucose compared to plasma glucose. Together these results 
suggest that CGM glucose may be considered as a minimally invasive alternative to plasma glucose 
measurements in model calibration to quantify the dynamics of glucose regulation.

The development of type 2 diabetes (T2D) is characterized by accruing deteriorations in the tightly regulated 
mechanisms of insulin action and insulin secretion, culminating in a loss of glycemic control and  hyperglycemia1. 
Assessment of the impaired glucose homeostasis is predominantly based on average glycated hemoglobin 
(HbA1c), a measure of long-term glycemic control, fasting glucose, or 2h glucose concentrations after an oral 
glucose tolerance test (OGTT)2,3. However, additional assessment of postprandial insulin concentrations provides 
further insight into (impairments in) insulin sensitivity and  secretion4.

The hyperinsulinemic-euglycemic clamp, the gold-standard method to quantify insulin sensitivity, is invasive, 
labor intensive, and does not fully represent normal physiology due to a constant insulin  infusion5. Therefore, 
a variety of surrogate measures of insulin sensitivity and β-cell function have been used, based on fasting and/
or OGTT-derived  measurements6–10. While these surrogate indices may capture particular aspects of glucose 
regulation, they rely on single time-point or average glucose and insulin values derived from dynamic postpran-
dial data. Hence, the temporal dynamics and the interaction of glucose and insulin responses are not taken into 
account, potentially masking inter-individual differences in glucose and insulin dynamics.

Physiology-based mathematical models (PBMMs) of glucose regulation can capture the temporal dynamics 
of glucose regulation, while accounting for the interaction of glucose and  insulin11–13. Such models have been 
successfully developed to quantify insulin sensitivity, insulin secretion, and beyond from plasma glucose and 
insulin concentrations during an OGTT or mixed meal  challenge14–16. Recently, we have shown that the E-DES 
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model, a PBMM of the insulin-mediated glucose homeostasis was able to capture the heterogeneity in insulin 
secretion and insulin sensitivity in a large population of individuals with overweight or  obesity17. However, such 
model-based quantification of glucose regulation depends on the availability of plasma measurements from clini-
cal experiments, for example an OGTT, to facilitate model calibration. Extending model calibration to include 
at-home measurements made in a free-living setting may enable the use of PBMMs in digital twin technologies 
that go beyond their current use in  research18.

Continuous glucose monitoring (CGM) is gaining popularity in both research and clinical applications, pro-
viding information on both short-term patterns (e.g. meal responses) as well as daily or even weekly measures 
of glycemic  variability19. The minimally invasive nature, frequent sampling, and potential for real-time monitor-
ing are increasingly exploited for diabetes prevention, management, and  beyond20,21. The assimilation of CGM 
data into glucose-insulin models has the potential to broaden the use and impact of PBMMs from in-clinic to 
free-living conditions and may enable digital twin technologies for the prediction of disease and the optimiza-
tion of treatment in a more personalized  setting22. Nevertheless, the use of CGM data necessitates additional 
considerations such as the lag time of interstitial glucose compared to plasma glucose, as well as the accuracy 
and reliability of sensor  data23–26.

Recently, glucose homeostasis models have been fitted to CGM glucose to capture features of glucose 
responses in healthy individuals, individuals with pre-diabetes, and patients with T2D, and to predict insulin 
levels in patients with type 1 diabetes (T1D)27–29. However, these studies are based on glucose data only, thereby 
largely ignoring the interaction with insulin. Furthermore, a systematic study of using interstitial glucose from 
CGM devices compared to the conventional plasma glucose from OGTT for the calibration of PBMMs of 
glucose-insulin dynamics has yet to be performed.

The aim of the present study was to determine the effect of replacing the conventional plasma glucose meas-
urements with interstitial glucose from CGM devices in the calibration of personalized glucose-insulin models. 
We made use of simultaneously measured plasma glucose and interstitial glucose data from an OGTT in a 
population of individuals with overweight or obesity. We compare the calibrated models in terms of model fit, 
practical identifiability, as well as the association of estimated model parameters with clinically relevant indices 
of metabolic health.

Methods
Data
Data from the PERSonalized Glucose Optimization Through Nutritional Intervention (PERSON) study, a two-
centre, randomized, dietary intervention trial was used in this  work30. The study was performed in line with 
the principles of the Declaration of Helsinki, and approved by the Medical Ethical Committee of the MUMC+ 
(NL63768.068.17), and registered at ClinicalTrials.gov (NCT03708419). All participants gave written informed 
consent. The study design and methodology have been described in detail  previously31. Inclusion criteria were: 
age 40–75 years, BMI 25-40 kg/m2 , body weight stability for at least 3 months (no weight gain or loss >3 kg), 
and tissue-specific insulin resistance, characterized by predominant muscle or liver insulin resistance. Exclu-
sion criteria included pre-diagnosis of type 2 diabetes, diseases or medication use that affect glucose or lipid 
metabolism, major gastrointestinal disorders, history of major abdominal surgery, uncontrolled hypertension, 
smoking, alcohol consumption >14 units/week, and >4 h/week moderate-to-vigorous physical activity. In the 
week before the start of the dietary intervention (baseline; CIW1) and in the last week (follow-up; CIW2) of the 
12-week intervention trial, participants underwent a clinical investigation week.

Oral glucose tolerance test
During the clinical investigation week at baseline and 12-week follow-up participants underwent a 7-point oral 
glucose tolerance test (OGTT) following an overnight fast. Two hundred ml of ready-to-use 75 g glucose solution 
(Novolab) was ingested within 5 min. Blood samples were collected from the antecubital vein via an intravenous 
cannula under fasting conditions (t = 0 min) and after ingestion of the glucose drink (t = 15, 30, 45, 60, 90, and 
120 min) for determination of plasma glucose and insulin  concentrations30. Responses with more than two 
missing samples or missing samples at baseline (t = 0 min) or 2-hour post-load were excluded from the analysis.

Continuous glucose monitoring
During the clinical investigation weeks, study participants wore a CGM device for 6 days, including the duration 
of the OGTT. The CGM device (iPro2 and Enlite Glucose Sensor; Medtronic, Tolochenaz, Switzerland) was worn 
lateral to the umbilicus and recorded subcutaneous interstitial glucose values every 5 minutes. Participants were 
asked to perform four daily capillary glucose self-measurements (SMBG) via Contour XT (Ascensia Diabetes 
Care, Mijdrecht, the Netherlands) while wearing the CGM device. The CGM measurements were then calibrated 
using the SMBG values in CareLink (Medtronic, Tolochenaz, Switzerland) according to the manufacturer’s 
instructions. To avoid insufficient calibration, sensor glucose readings outside the time interval of the first and 
last SMBG measurements were excluded from the analysis. Participants were blinded to the CGM recording, but 
not to the SMBG values. In addition, CGM data files with irregular measurement frequencies (i.e. other than 5 
minute) were excluded from the analysis (n = 3). In order to use the CGM measurements in model calibration, 
the segment of sensor glucose time-course overlapping with the time of the OGTT test were extracted. Note that 
the exact sample times of the OGTT were used in this work. Therefore, due to variability in sampling time the 
time-course may be slightly longer or shorter than the intended 120 minutes.

In total, 404 glucose and insulin responses (228 at baseline and 176 at follow-up) from 237 study participants 
were included in the analysis. Responses with a missing set of glucose measurements (OGTT, CGM or both) 
were excluded from the analysis.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8037  | https://doi.org/10.1038/s41598-024-58703-6

www.nature.com/scientificreports/

Metabolic indicators
Indicators of insulin sensitivity including the Matsuda index, HOMA-IR, the area under the glucose curve 
between baseline and 30 min of the OGTT ( AUC30

glu ), the muscle insulin sensitivity index (MISI) and the hepatic 
insulin resistance index (HIRI) were calculated as previously  described6–9. A subset (n=76 and n=61 at CIW1 
and CIW2, respectively) of the study participants also underwent a 2.5h two-step hyperinsulinemic-euglycemic 
clamp with constant 40 mU/m2/min infusion of  insulin31. The M-value representing peripheral insulin sensitiv-
ity was calculated as previously  described5. Furthermore, indicators of β-cell function and/or insulin secretion 
including the disposition index, HOMA-β , the area under the insulin curve between baseline and 30 min of the 
OGTT ( AUC30

ins ), and the insulinogenic index were also derived as previously  reported30. The definition of the 
metabolic indicators used in this work are also described in the Supplementary Appendix.

E‑DES model
The Eindhoven-Diabetes Education Simulator is a physiology-based mathematical model of the human insulin-
mediated glucose regulatory system in health, type 1, and type 2  diabetes32. The model consists of a gut and 
plasma compartments within which the change in glucose mass and glucose/insulin concentration over time 
is described according to coupled differential equations. In addition, we implemented an interstitial compart-
ment describing the diffusion process of glucose from plasma to the interstitial space, as previously employed 
by Faggionato et al.33:

where Gpl and Gi are glucose concentration in plasma and in interstitium and τg is the equilibration time constant 
between plasma and interstitium. The interstitial compartment enables the use of interstitial glucose concentra-
tions from CGM devices to be used in model calibration. A complete description of the model can be found in 
the Supplementary Appendix.

Here, we make use of an implementation with improved computational efficiency. The model source code 
(using DifferentialEquations.jl34) and analysis are available at https:// github. com/ blzse rdos/ edes_ cgm. The model 
can simulate the plasma glucose and insulin response of healthy individuals, those with overweight or obesity, 
individuals with pre-diabetes, or patients with  T2D14,17,35. Personalized models may be generated by calibrating 
the model on subject-specific time-series of plasma glucose and insulin  concentrations17.

Model calibration
Model parameters representing the rate of glucose appearance in the gut ( k1 ), rate of insulin-dependent glucose 
uptake to peripheral tissues ( k5 ), and rate of insulin secretion proportional to the elevation in plasma glucose 
from basal levels ( k6 , for brevity, referred to as rate of glucose-dependent insulin secretion) were estimated from 
experimental data. In addition, the lag time ( τg ) was estimated in the case where interstitial glucose is used in 
calibration. The remainder of the parameters were fixed to population average/median values as previously 
described in Ref.17. The complete set of model parameters including the fixed parameters and constants and 
their values are listed in the supplement. The experimental data used for calibration consists of a set of simulta-
neously measured time-series of plasma glucose and insulin concentrations (at t = 15, 30, 45, 60, 90, 120 min) 
as well as interstitial glucose concentrations from CGM (at t = 5, 10, ..., 120, 125, 130 min) after an OGTT. The 
t = 0 samples are provided as inputs to the model. For each response, two models were calibrated: one using 
plasma glucose and plasma insulin, and a second using interstitial glucose and plasma insulin. In other words, 
the insulin measurements were the same, only the glucose data source was changed between the two models. 
For brevity, we refer to the data used in model calibration as ’plasma glucose’ in the case of using plasma glucose 
and plasma insulin measurements, and ’CGM glucose’ in the case of interstitial glucose from CGM device and 
plasma insulin. The objective in model calibration is

where M, and Ni represent the number of metabolites, and the number of measurement time-points, respectively. 
The measured data point of metabolite i at time-point j is denoted by yi,j , while ˆyi,j is the corresponding model 
prediction given the parameters θ . The difference between measurement and prediction is weighted by the maxi-
mum of the measured data points to account for the difference in scales between metabolite values. The TikTak 
multistart optimization algorithm (implemented in MultistartOptimization.jl) was used to optimize the objective 
in Eq. (2)36. The parameter search ranges were constrained to avoid non-physiological parameter configurations. 
In order to evaluate whether the plasma and CGM measurements are sufficiently informative to determine the 
model parameters with adequate precision, practical identifiability was assessed via profile likelihood analysis 
using LikelihoodProfiler.jl37,38. We considered the combination of model and data as practically identifiable if 
the confidence interval of all estimated parameters were of finite size in the parameter scan  range39. In addition, 
to highlight the uncertainty in the model estimated observables, profile likelihood-based confidence bands are 
plotted alongside model simulation in graphics. The confidence bands are derived by estimating confidence 
intervals (with confidence level 0.95) of an observable (glucose or insulin) as a function of all parameters over 
simulation time-points37. Details of the parameter search, including the search ranges, and profile likelihood 
analysis are reported in the Supplementary Methods.

(1)
dGi

dt
=

1

τg
(Gpl

− Gi)

(2)L(θ) =

M
∑

i=1

Ni
∑

j=1

(

yi,j − ŷi,j(θ)

max(yi)

)2

https://github.com/blzserdos/edes_cgm
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Model fit, practical identifiability, and parameter estimates are compared between models calibrated on CGM 
glucose compared to plasma glucose after an OGTT. The experimental data contains responses at both baseline 
and follow-up of the PERSON study, however, the interpretation of the intervention effect has been previously 
reported, and is out of scope for the current  study30.

Results
In total, 404 glucose and insulin responses (228 at baseline and 176 at follow-up) from 237 study participants 
were included in the analysis. The average glucose and insulin responses to the OGTT are shown in Fig. 1. In 
general, interstitial glucose was higher than plasma glucose, and the response profiles show a delay and slower 
dynamics in interstitial compared to plasma glucose.

Comparison of model fit and diagnostics between models estimated on plasma and CGM 
glucose
Personalized E-DES models were estimated for each participant based on the plasma glucose and insulin 
responses. Thereafter, the calibration was repeated with interstitial glucose (’CGM glucose’) instead of plasma 
glucose leading to a total of 404 personalized models per glucose data type. The model calibration produced 
parameter estimates representing the rate of glucose appearance in the gut ( k1 ), rate of insulin-dependent glucose 
uptake to tissues ( k5 ), and rate of glucose-dependent insulin secretion ( k6 ) in each of the personalized models. In 
addition, τg was estimated in the case of CGM glucose. The mean squared error (MSE) between model simulation 
and measured data point is shown in Fig. 2, panel a, while the residuals per time point are shown in Fig. 2, panel 
b. The MSE in the simulation of glucose was higher, indicating a worse fit, when calibrated on plasma glucose 
compared to CGM glucose. Additionally, the MSE of the personalized models calibrated on plasma and CGM 
glucose did not correlate well, indicating that some models fitted one or the other glucose data type better (Fig. 2, 
panel a). In the case of insulin simulation, better agreement was observed between the calibrated models, with 
slightly higher MSE in models calibrated on CGM glucose. The residuals by measurement time showed that 
in general the E-DES model captured the trend in the data well, both in the case of plasma glucose and CGM 
glucose (panel b). The residuals in insulin simulation indicate that few bad model fits were characterized by 
underestimated insulin concentrations, particularly at the later stage (90, 120 min) of the response.

Examples of model fit to experimental data are visualized in Fig. 3. In panel a, the distribution of mean 
squared error in glucose simulation of personalized models fitted to CGM glucose is displayed as an indicator 
of model fit. The distribution of MSE is heavily right-skewed, indicating that the majority of models displayed 
good agreement with the experimental data. There were only 9 out of 404 models with an MSE in CGM glucose 
above 1.5. Models with the highest MSE (A-E; red shading) and lowest MSE (K-O; green shading) are shown in 
panel b. The median MSE across the individual models was 0.11. Five randomly selected models in the proxim-
ity of the mean MSE (0.27) are shown on F-J (yellow shading). The MSE in plasma glucose showed a similar 
distribution to that of MSE in CGM data. For completeness, visualization of model fit of personalized models 
ordered by MSE after calibration on plasma glucose are shown in Supplementary Fig. S3.

Practical identifiability of the personalized models was assessed by profile likelihood analysis (PLA) of the 
estimated parameters k1 , k5 , k6 within each calibrated model. As the parameter τg is only meaningful in the case of 
interstitial glucose and is solely there to account for the delay between plasma and interstitial glucose, we do not 
include it in PLA. Eleven out of 404 personalized models contained parameters that were practically unidentifi-
able in the case of calibration based on plasma glucose, while only 6 out of 404 models contained unidentifiable 

Figure 1.  Median glucose and insulin response to an OGTT in individuals with overweight or obesity from the 
PERSON study. Plasma glucose and interstitial glucose concentrations from CGM devices are shown in the top 
panel in blue and orange, respectively. Plasma insulin concentration is shown in the bottom panel. Error bars 
represent the interquartile range. OGTT  oral glucose tolerance test, CGM continuous glucose monitoring.
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parameters in the case of calibration based on CGM glucose. In all but one of the cases, the unidentifiable 
parameter was the rate of glucose-dependent insulin secretion ( k6).

Parameter estimates from model calibration on plasma compared to CGM glucose
The distribution of parameter estimates and the association between parameters estimated from plasma glucose 
compared to CGM glucose are shown in Fig. 4. In general, the parameter estimates corresponding to the rate 
of glucose appearance in the gut ( k1 ) and rate of insulin-dependent glucose uptake to peripheral tissues ( k5 ) 
showed very good agreement between the models calibrated on plasma compared to CGM glucose (Spearman’s 
ρ = 0.89, p < 0.001 for k1 , and ρ = 0.92, p < 0.001 for k5 , respectively; Fig. 4, bottom row). No difference in the 
parameter estimates for k1 and k5 were found between the models estimated on plasma compared to CGM glucose 
(two-sample Kolmogorov-Smirnov statistic D = 0.073, p = 0.22 and D = 0.027, p = 0.99 , respectively). The 
parameter estimates of k6 showed moderate association (Spearman’s ρ = 0.50, p < 0.001 ), and differed between 
the models calibrated on plasma compared to CGM glucose (Kolmogorov-Smirnov statistic D = 0.12, p < 0.006 ). 
The median k6 estimates were 17.9% higher when calibrated on plasma glucose compared to CGM glucose. In 
particular, for a small number of responses (N=11 and N=5 in the case of models estimated from plasma and 
CGM glucose, respectively) the model calibration procedure resulted in k6 estimates on the upper boundary of 
the parameter search range (Fig. 4, right column). An example of such a model fit is shown in Fig. S3, panel b, 
sub-panel A, response A. In this case, while the estimated value of k6 is on the upper boundary of the parameter 
search (10.0), the model fails to capture the glucose response. In order to evaluate whether the difference in 
the distribution of k6 between the glucose data types was driven by failed model fit associated with parameter 
estimates on the upper boundary of the k6 search range, we repeated the tests after excluding models (N=16) 
with k6 estimates on the upper boundary ( k6 = 10.0 ) of the parameter search range. The difference in the distri-
bution of k6 estimates is not statistically significant (Kolmogorov-Smirnov statistic D = 0.095, p = 0.051 ) after 
excluding these models. Removing the pairs of personalized models with k6 estimates on the upper bound of the 
parameter search range results in a Spearman correlation between the plasma and CGM glucose-based estimates 
of ρ = 0.58, p < 0.001 . Finally, when calibrating on CGM glucose, the median lag time ( τg ) was 2.5 min (with 
interquartile range 3.7e−6 − 8.7 ; Fig. S6).

Parameter estimates association with indicators of glucose homeostasis
Results of the comparison of parameter estimates ( k1 and k5 in particular) suggest that the representation of 
glucose homeostasis between the personalized models obtained via calibration on plasma and CGM data are 
similar. However, while the general trend shows good agreement, the heterogeneity between plasma and CGM 
glucose-based personalized models in Fig. 4, in particular in the case of k6 , implies that there may be differences 
in what the models represent between the glucose data types used in calibration. Therefore, we compared the 

Figure 2.  Panel (a) Mean squared error (MSE) in the glucose and insulin simulation of the personalized 
models. Both horizontal and vertical axes use logarithmic scale to better visualize the heavily right skewed error 
distributions. Panel (b) probability density of residuals in glucose and insulin simulation per measurement time-
point.
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parameter estimates with well-established measures of metabolic health. The models (N=16) with k6 estimates 
on the upper boundary of the search range were excluded from the analysis. The Spearman correlation of the 
personalized model parameter estimates and markers of insulin secretion (insulinogenic index, HOMA-β , AUC 
30
ins , disposition index) and insulin sensitivity (Matsuda index, HOMA-IR, MISI, HIRI, AUC 30glu ) including the 
M-value of the hyperinsulinemic-euglycemic, the gold standard for quantifying peripheral insulin sensitivity 
are shown in Table 1.

Figure 3.  Model fit examples of personalized E-DES models calibrated on CGM glucose, arranged by MSE in 
the simulation of CGM glucose. Panel (a) histogram of MSE in glucose simulation. The three sections with red, 
yellow, and green shading indicate models with the worst, examples around the mean, and best fit, respectively, 
as measured by the MSE. Panel (b) Glucose and insulin data of participants are shown as circles (A–O) with 
corresponding model simulation shown as continuous line. Blue and orange color indicates the type of glucose 
measurement (plasma vs CGM glucose), and simulations from the correspondingly calibrated models. The 
shaded region around the simulation corresponds to confidence bands generated from estimated confidence 
intervals (with confidence level 0.95) as function of all parameters over simulation time-points. CGM 
continuous glucose monitoring, MSE Mean squared error.
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In general, the parameter estimates’ associations with metabolic indicators showed similar trends between 
models based on plasma glucose compared to CGM glucose. The parameter corresponding to insulin-dependent 
glucose uptake to periphery ( k5 ) strongly associated with the Matsuda index both when calibrated on plasma and 
CGM glucose (Spearman’s ρ = 0.75 and 0.77 both p < 0.001 , respectively). k5 also showed a moderate association 
with the disposition index (Spearman’s ρ = 0.65 and 0.65 both p < 0.001 , respectively), the M-value (Spearman’s 
ρ = 0.51 and 0.51 both p < 0.001 , respectively), HOMA-IR (Spearman’s ρ = −0.55 and −0.56 both p < 0.001 , 
respectively) and MISI (Spearman’s ρ = 0.50 and 0.50 both p < 0.001 , respectively).

Differences between association of metabolic indicators with parameter estimates calibrated on plasma com-
pared to CGM glucose include weaker association of k1 with HIRI (Spearman’s ρ = 0.64 vs 0.52 both p < 0.001 , 
respectively), AUC 30ins (Spearman’s ρ = 0.60 vs 0.50 both p < 0.001 , respectively), AUC 30glu (Spearman’s ρ = 0.40 
vs 0.29 both p < 0.001 , respectively). In addition, a stronger associations was found when calibrated on CGM 

Figure 4.  Personalized model parameter estimates resulting from calibration on plasma glucose compared to 
CGM glucose. Top row: distribution of personalized model parameter estimates. k1 : rate of glucose appearance 
in the gut, k5 : rate of insulin-dependent glucose uptake to peripheral tissues, and k6 : rate of glucose-dependent 
insulin secretion. Bottom row: association of parameter estimates estimated from plasma glucose and CGM 
glucose. Spearman’s ρ is indicated in the top left corner of each panel.

Table 1.  Association of personalized model parameter estimates and indicators of metabolic health. Bold 
indicates significance ( p < 0.05). k1 : rate of glucose appearance in the gut. k5 : rate of insulin-dependent 
glucose uptake to peripheral tissues. k6 : rate of glucose-dependent insulin secretion. CGM continuous glucose 
monitoring.

Metabolic indicator

Spearman’s ρ

k
Plasma

1
k
CGM

1
k
Plasma

5
k
CGM

5
k
Plasma

6
k
CGM

6

MISI 0.17 0.18 0.50 0.50 − 0.19 − 0.26

HIRI 0.64 0.52 − 0.13 − 0.16 0.36 0.47

HOMA-IR 0.03 -0.03 − 0.55 − 0.56 − 0.01 0.13

Matsuda − 0.07 0.01 0.75 0.77 0.02 − 0.17

AUC30

glu
0.40 0.29 − 0.27 − 0.32 − 0.23 − 0.04

M-value 0.07 0.07 0.51 0.51 − 0.04 − 0.07

HOMA-β 0.04 0.02 − 0.29 − 0.27 0.22 0.28

AUC30
ins 0.60 0.50 − 0.06 − 0.09 0.49 0.56

insulinogenic index 0.52 0.45 0.02 0.00 0.60 0.61

disposition index 0.37 0.38 0.65 0.65 0.51 0.35
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glucose compared to plasma glucose in terms of k6 and HIRI (Spearman’s ρ = 0.36 vs 0.47 both p < 0.001 , 
respectively) as well as k6 and AUC 30ins (Spearman’s ρ = 0.49 and 0.56 both p < 0.001 , respectively). Data are 
shown in Supplementary Figs. S4 and S5.

Discussion
Physiology-based mathematical modeling of the glucose-insulin dynamics enables the quantification of key 
parameters, such as insulin sensitivity and insulin  secretion13. However, their calibration depends on the avail-
ability of invasive measurements such as time-series of plasma glucose and insulin after an OGTT. Minimally-
invasive, frequently-sampled interstitial glucose measurements from CGM devices have the potential to enable 
a broader impact of PBMMs by reducing their reliance on in-clinic measurements. Here, we presented a sys-
tematic comparison of using CGM glucose instead of plasma glucose in the calibration of the E-DES model by 
using simultaneously measured plasma and interstitial glucose measurements from an OGTT. We showed that 
the personalized E-DES models can fit the CGM profiles well and provide comparable parameter estimates of 
insulin secretion and insulin sensitivity when calibrated on interstitial glucose compared to plasma glucose 
concentrations after an OGTT in individuals with overweight or obesity. In addition, the associations between 
model parameters and the Matsuda and insulinogenic indices are also in agreement with our previous findings 
in a similar study  population17. Differences in the models calibrated on interstitial compared to plasma glucose 
included a slightly lower estimate of the rate of glucose-dependent insulin secretion ( k6).

Model fit and identifiability
In general, the personalized E-DES models displayed good agreement with the data both when calibrated on 
plasma glucose as well as CGM glucose in a wide range of glucose and insulin responses after an OGTT in 
individuals with overweight or obesity. The discrepancy in the MSE in simulation between glucose data types 
may originate in the difference in the proportion of available data for calibration between plasma and interstitial 
glucose. The more frequent sampling in the case of CGM glucose resulted in a lower MSE in the simulation 
of glucose, and a higher MSE in the simulation of insulin when compared to calibration on plasma glucose. 
More similar MSE between the glucose data types may be achieved by introducing a weighting of the glucose 
and insulin loss by number of available measurements in the objective function. However, the improvement in 
glucose MSE resulted in a comparatively small increase in insulin MSE (Fig. 2), therefore we chose to keep the 
original loss objective.

The heavily right skewed MSE distributions in models calibrated on plasma as well as CGM glucose suggest 
that there were only few personalized models that showed poor agreement with the data irrespective of glucose 
data type. Additionally, poor model fit (such as the ones in panel b, subpanels B, C in Fig. 3) was a result of a 
failed parameter search leading to a (upper) boundary value estimate for k6 . The boundary k6 estimates were 
observed in only 16 personalized models in total, and more frequently when calibrating on plasma glucose 
(N=11) compared to CGM glucose (N=5). Coincidentally, the parameter k6 was practically unidentifiable in 
these cases with the resulting models displaying large MSE in model fit. While this issue may be resolved by 
tuning the search bounds of the parameters, this should be done systematically, taking into account physiologi-
cally plausible regions of the parameter space. Alternatively, formulating the parameter estimation procedure 
in the Bayesian framework, relying on sampling the parameter space, may circumvent some of these  issues40,41. 
However, exploring such avenues were outside the scope of the current study. Additionally, it is important to 
note, that while the MSE gives an overall indication of goodness of fit, it may be biased towards responses with 
higher measurement values irrespective of whether the temporal dynamics (a qualitative but important feature) 
are approximated well.

In addition to model fit, we evaluated the practical identifiability of each personalized model via profile likeli-
hood analysis, to assess whether the quantity and quality of available experimental measurements are sufficient 
to have well-determined model parameters and  predictions38. In total, 2% of the personalized models were found 
to be unidentifiable, suggesting that the model complexity is balanced for the availability of experimental data. 
Furthermore, due to the sampling frequency of the CGM device, approximately four times more glucose data 
was available when calibrating on CGM glucose compared to plasma glucose. Correspondingly, 6 personalized 
models were unidentifiable from CGM glucose compared to the 11 unidentifiable models from plasma glucose. 
This is in line with the expectation that more experimental data improves identifiability.

Parameter estimates and personalized model‑based representation of glucose regulation
No significant differences were found between the distribution of parameter estimates after calibration on plasma 
glucose compared to CGM glucose, except for k6 . This difference is driven by a handful of personalized models 
ending up with k6 estimates on the upper boundary of the parameter search range. Excluding these models from 
the analysis, the discrepancy between plasma and CGM glucose-based k6 estimates disappears. Nevertheless, out 
of the parameters of interest, k6 showed the worst agreement after calibration between the glucose data types. 
This may indicate that a more complex model of the plasma-to-interstitium glucose equilibration is desired. 
However, increased similarity in model representation between the data types may not justify the added model 
complexity, especially when parameters are estimated from limited individual-specific experimental data. In 
addition, we found large inter-individual variability in lag time between interstitial and plasma glucose, consist-
ent with earlier  findings42. A more thorough inspection of the lag time between plasma and interstitium may 
be necessary to reliably characterize the inter-individual variability, ideally with experimental data containing 
repeated challenge tests in the same individuals.

Overall, the models showed good agreement between the glucose data types used in model calibration when 
comparing the parameter estimates with metabolic indicators. In particular, the parameter estimates of k5 , 
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corresponding to insulin sensitivity, associated similarly with MISI, HOMA-IR, Matsuda index, M-value, HOMA-
β and the disposition index between models calibrated on plasma compared to CGM glucose. In the case of 
k1 and k6 , representing glucose appearance in the gut, and rate of glucose-dependent insulin secretion, similar 
trends with differences in the strengths of the association with metabolic indicators were observed between the 
glucose data types. In particular, the differences in k1 between plasma and CGM glucose are representative of 
the slower early phase (<30 min) dynamics in the case of CGM glucose. This is indicated by the discrepancy in 
the correlation of k1 with metabolic indicators derived from the 0-30 min measurements, such as the AUC30 , 
the insulinogenic index or HIRI. Similarly, the differences in the associations of k6 with metabolic indicators 
were also more prevalent in the case of indices targeting the early phase of the responses, such as HIRI and the 
disposition index. While, differences in the associations of k6 with metabolic indicators such as MISI is indicative 
of the difference in the late phase of the glucose concentrations between plasma and CGM glucose. Finally, the 
difference between the k6 estimates between the data types are indicative of the relative nature of the model-based 
rate of glucose-dependent insulin secretion ( k6 ). As the definition of the parameter suggests, the estimated rate of 
glucose-dependent insulin secretion is in the context of the glucose concentrations. Therefore the same insulin 
concentrations may be simulated with different rate parameters for insulin secretion given differences in glucose 
concentrations. This is reinforced by the weaker association of k6 with the disposition index when estimated 
from interstitial glucose. The disposition index is a measure of β-cell function normalized to insulin sensitivity 
(approximated by the glucose area under the response curve). Since the interstitial glucose responses tended 
to be larger than plasma glucose responses, the normalization leads to comparatively lower disposition index.

CGM data in dynamic models of glucose homeostasis
The potential use of CGM glucose in the calibration of a computational model describing glucose-insulin dynam-
ics in type 1 diabetes (T1D) has previously been explored by Goel et al. (2018), however, in their study, insulin 
data was scarcely  available27. Similarly, Eichenlaub et al. (2019), adapted the oral glucose minimal model to be 
calibrated on CGM glucose only, in healthy individuals, individuals with prediabetes, and patients with T2D 
and incorporated the effect of subsequent  meals12,28. However, in order to accurately estimate the glucose-insulin 
dynamics in individuals with intact endogenous insulin secretion, the use of insulin (or insulin proxy) measure-
ments in model calibration are crucial due to altered insulin secretion and insulin  resistance43,44. In addition, 
changes in insulin secretion and its relation to circulating glucose levels in the development of both T1D and 
T2D have been reported to be non-monotonic, rendering the estimation of insulin secretion purely from glucose 
very  challenging45,46. The importance of insulin in model calibration is also highlighted in an example simulation 
showcasing a model calibrated with and without insulin data (Fig. S2).

Recently, Ng et al. (2022), developed a parsimonious mathematical model of glucose homeostasis calibrated 
solely on peaks and nadirs extracted from CGM  glucose29. Their three-parameter model showed better agree-
ment with CGM glucose compared to other models including the Bergman minimal  model11. However, in line 
with the previous studies, the utility of quantifying (disrupted) glucose regulation with PBMMs is limited when 
relying solely on glucose as the input. The present study also demonstrates the use of a parsimonious model 
with three estimable parameters, however, the use of both glucose and insulin data allows our model to infer 
various states of insulin resistance by accounting for β-cell adaptation. Similarly to our results, Faggionato et al. 
(2023) showed good agreement between the parameter estimates of the Oral Minimal Model when estimated 
with plasma compared to interstitial glucose in patients with  T1D33.

There is a growing need to reduce the reliance on in-clinic measurements, and make use of free-living or 
at-home measurements such as CGM for the diagnosis and management of diabetes as well as in applications 
of precision  nutrition19. Combining sensor data from wearable devices with mathematical modeling may serve 
as the basis for the development of digital twin technologies that enable in silico testing, disease prediction and 
optimization of treatment in a personalized  setting47–49. While conventional plasma insulin measurements were 
available for model calibration in the current study, recent advances in dried blood spot analysis for determina-
tion of C-peptide present a promising alternative to the in-clinic measurements of C-peptide or  insulin50,51. Fur-
thermore, novel insulin sensors for non-invasive, real-time monitoring of bioavailable insulin are being actively 
 developed52. The use of such insulin or C-peptide data in combination with CGM may allow for the calibration 
of glucose homeostasis models completely based on at-home measurements. In addition, the minimally inva-
sive nature, and the higher sampling frequency (5-15 min) of CGM may support a comparatively sparse insulin 
sampling in turn, to facilitate model calibration. The parsimonious representation of an individual’s glucose 
homeostasis as given by the parameter estimates of such models may in turn enable the monitoring of changes 
in metabolic health.

However, there remain issues such as the CGM accuracy being dependent on glucose levels, and glucose 
rate-of-change that may influence modeling  results24,53. Recently, Howard et al. (2020), reported inconsistencies 
between different glucose monitors worn simultaneously, while another group found good agreement between 
 devices54,55. Systematic differences between data from different devices will affect model calibration and may 
hinder subsequent model-based analysis. In addition, the (dis)agreement of CGM-based interstitial glucose 
with plasma glucose should be considered when used to calibrate a model that was designed and developed to 
be used with plasma  glucose26,56,57. Despite the addition of an interstitial compartment to account for the lag 
time between plasma and interstitial glucose concentrations, the dynamics between the data types may vary 
considerably. However, in order to accurately characterize this variability on the individual level, repeated chal-
lenges may be necessary in the same individuals to disentangle technical and biological sources of variation. In 
our study, the physiological representation of the personalized models showed good agreement between plasma 
glucose and interstitial glucose, however, the data used here originate from controlled conditions of an OGTT. 
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Therefore, the similarity between the models estimated from the different data types observed in our work may 
not extend to other scenarios and populations.

Conclusions
The use of interstitial glucose data from CGM was evaluated and compared with conventional plasma glucose 
from an OGTT in the calibration of personalized E-DES models in individuals with overweight or obesity. 
Results indicated comparable model fits, and parameter estimates between CGM and plasma glucose. A slightly 
lower estimate of insulin secretion was observed in the case of CGM glucose, due to the difference in dynamics 
compared to plasma glucose. Nonetheless, the model-based measure of insulin sensitivity and glucose-dependent 
insulin secretion were validated by well-established measures of metabolic health such as the Matsuda index 
and the insulinogenic index after calibration on both data types. Finally, more personalized models were found 
to be practically identifiable when calibrated on CGM glucose compared to plasma glucose, likely due to the 
higher sampling frequency of CGM. The use of non-invasive CGM data in dynamic modeling of the glucose-
insulin system has the potential to advance precision nutrition as well as diabetes prevention and management. 
However, it is important to note that our findings are derived from data obtained through a conventional OGTT 
including plasma insulin measurements. Therefore, the applicability of these results to data from less controlled 
experimental settings may be limited. Finally, care must be taken when replacing plasma glucose measurements 
with CGM glucose in PBMMs as it may influence model interpretation.

Data availability
Data from the PERSON Study are unsuitable for public deposition due to ethical restriction and privacy of 
participant data. Data are available to researchers meeting the criteria for access to confidential data. Gabby 
Hul on behalf of the data management team of the department of Human Biology may be contacted at g.hul@
maastrichtuniversity.nl to request the PERSON Study data.
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