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Repurposing non‑pharmacological 
interventions for Alzheimer’s 
disease through link prediction 
on biomedical literature
Yongkang Xiao 1,13, Yu Hou 2,13, Huixue Zhou 1, Gayo Diallo 3, Marcelo Fiszman 4,5, 
Julian Wolfson 6, Li Zhou 7, Halil Kilicoglu 8, You Chen 9, Chang Su 10, Hua Xu 11, 
William G. Mantyh 12 & Rui Zhang 2*

Non‑pharmaceutical interventions (NPI) have great potential to improve cognitive function but 
limited investigation to discover NPI repurposing for Alzheimer’s Disease (AD). This is the first study to 
develop an innovative framework to extract and represent NPI information from biomedical literature 
in a knowledge graph (KG), and train link prediction models to repurpose novel NPIs for AD prevention. 
We constructed a comprehensive KG, called ADInt, by extracting NPI information from biomedical 
literature. We used the previously‑created SuppKG and NPI lexicon to identify NPI entities. Four KG 
embedding models (i.e., TransE, RotatE, DistMult and ComplEX) and two novel graph convolutional 
network models (i.e., R‑GCN and CompGCN) were trained and compared to learn the representation of 
ADInt. Models were evaluated and compared on two test sets (time slice and clinical trial ground truth) 
and the best performing model was used to predict novel NPIs for AD. Discovery patterns were applied 
to generate mechanistic pathways for high scoring candidates. The ADInt has 162,212 nodes and 
1,017,284 edges. R‑GCN performed best in time slice (MR = 5.2054, Hits@10 = 0.8496) and clinical trial 
ground truth (MR = 3.4996, Hits@10 = 0.9192) test sets. After evaluation by domain experts, 10 novel 
dietary supplements and 10 complementary and integrative health were proposed from the score 
table calculated by R‑GCN. Among proposed novel NPIs, we found plausible mechanistic pathways for 
photodynamic therapy and Choerospondias axillaris to prevent AD, and validated psychotherapy and 
manual therapy techniques using real‑world data analysis. The proposed framework shows potential 
for discovering new NPIs for AD prevention and understanding their mechanistic pathways.

Alzheimer’s disease (AD) and related dementias (ADRD) are chronic and multifactorial neurodegenerative 
disorders that affect cognition, behavior, functional ability and memory of affected  individuals1. As of 2020, the 
worldwide prevalence of ADRD was approximately 50 million, and this number is expected to increase to 152 
million by  20502. The high prevalence of ADRD has significant economic, medical, and social consequences 
for society. In 2019, the global economic burden of ADRD was estimated to be $2.8 trillion, and this burden is 
projected to increase to $16.9 trillion by  20503. Despite significant advances in our understanding of the etiology 
and drug targets of AD/ADRD, effective prevention and treatment of these conditions remains elusive. Several 
medications, including  lecanemab4 and  aducanumab5, are thought to reduce the pathological progression of 
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disease processes, but their efficacy is limited and they carry significant side  effects6. This suggests that our 
understanding of the pathogenesis of ADRD is incomplete, and novel unbiased approaches are needed to dis-
cover new therapies.

AD is a complex and multifactorial disorder that poses significant challenges to drug discovery research. 
Despite significant progress in this field, there remains an unmet need for effective treatments, prevention, or 
interventions to slow down the progression of  AD7. Pharmacological interventions (PI) have demonstrated 
improvements in cognitive function, albeit with adverse side effects such as nausea, weight loss, leg cramps, and 
increased mortality  risk8,9. On the other hand, non-pharmacological interventions (NPI) including  sleep10,11, 
 diet12, dietary supplements (DS)13, aerobic  exercise14,  aromatherapy15, light  therapy16 and cognitive  training17 are 
widely used by healthcare consumers to enhance their well-being and manage symptoms. Caloric restriction is 
one of the most well-known methods to prolong healthy life and stave off age-related diseases; emerging evidence 
suggests that caloric restriction prevents AD in animal  models18, that aging is associated with a decline in vital 
nutrients such as  taurine19, and that supplementation of the deficient nutrient reverses age-associated disease. 
Thus, NPIs represent a promising, versatile, and potentially cost-effective approach to improve outcomes and 
quality of life for patients with  dementia20. Recent studies have demonstrated that certain NPIs may be protec-
tive against cognitive decline in individuals with cognitive  impairment21. For example, aerobic exercise has been 
shown to benefit various aspects of cognition, including the stabilization of Mini-Mental State Examination 
(MMSE) scores, as well as improvements in attention, memory, and  recognition22,23. Cognitive decline may also 
be attenuated by factors such as improved nutrition, appropriate DS, mental exercise, and social  activities24. 
Notably, multimodal NPIs have shown promise in improving cognitive  function25,26. However, a comprehensive 
understanding of the effects of NPI, as well as the potential synergistic effects of PI and NPI for AD/ADRD, 
remains lacking.

Traditionally, new interventions have been developed based on plausible mechanistic hypotheses gener-
ated by researchers. However, as the number of potential interventions grows, the intervention discovery and 
development process faces a bottleneck due to the limits on individual human capacity to evaluate potential 
hypotheses. In recent years, the computational synthesis of existing data on drugs and diseases has emerged as 
a promising approach for discovering new therapeutic potentials of existing drugs and identifying treatments 
for refractory diseases, a practice commonly referred to as drug  repurposing27. Text mining is a popular data 
mining approach for drug repurposing due to the rapidly increasing volume of biomedical and pharmaceutical 
research literature. A vast number of semantic relations between biomedical entities can now be extracted from 
this literature. Knowledge graphs (KGs), which are heterogeneous networks, can be utilized to store, manage 
and represent these semantic relations. In biomedical knowledge graphs (BKGs), nodes signify biomedical 
entities, and edges represent the relationships between two  entities28. BKGs can provide solutions to practical 
problems in the biomedical domain. Link prediction (LP) for KGs (also known as KG completion) is the task 
of inferring missing or potential relations between entities in a  KG29. The LP for Semantic MEDLINE Database 
(SemMedDB)30 has been found to be effective for drug repurposing for COVID-1931.

To address the current lack of research exploring novel NPIs for AD, we first created a comprehensive BKG, 
named ADInt, encompassing numerous NPIs related to AD. Then we trained and evaluated various LP strategies 
(e.g., embedding-based, neural network based models) on the ADInt. The best-performing model was further 
utilized to predict NPIs that may have the potential to prevent AD. The NPIs include natural products (e.g., DS) 
and complementary and integrative health (CIH). Subsequently, discovery  patterns32 were employed to generate 
mechanism pathways for NPI candidates with high scores (i.e., high likelihood), and these pathways are evaluated 
by domain experts. To further support our findings, we performed real-world data (RWD) analysis to reveal the 
association between candidate NPIs and ADRD. Our contribution includes creating a novel NPI resource and 
developing an innovative framework to predict NPIs that may potentially be repurposed for AD prevention. To 
our best of knowledge, this is the first study to discover NPIs for AD. The developed ADInt and the framework 
can be applied to NPI discovery for other diseases.

Methods
The complete workflow is depicted in Fig. 1. To investigate the association between NPIs and AD, we initially 
conducted preprocessing and integration of biomedical triples extracted from SemMedDB and  SuppKG33. Sub-
sequently, we employed several graph representation models to derive the embedding information of ADInt. 
Ultimately, we selected the most effective model for generating hypotheses regarding and NPIs for AD and further 
evaluated them through the discovery patterns and RWD analysis.

Materials
SemMedDB30 is a repository of semantic triples extracted from PubMed abstracts and titles using the SemRep 
 program34. We obtained triples from the PREDICTION table of SemMedDB and the source sentences and text 
of triples from the SENTENCE and PREDICATION_AUX tables. This allowed us to supplement SuppKG with a 
broader range of information related to interventions for AD beyond the dietary supplement domain. It contains 
knowledge containing general medicine and related information to ADRD.

Our prior  study33 found that the current Unified Medical Language System (UMLS)35 does not have sufficient 
coverage of DSs, which is an important category of NPIs. This also limits the representation of supplements in the 
SemMedDS. Thus, we developed the  SuppKG33, a KG that focuses on DS. SuppKG comprises 56,635 nodes and 
595,222 directed edges, including 2928 DS-specific nodes and 164,738 edges. The nodes in SuppKG are identi-
fied by the Concept Unique Identifiers (CUIs) in UMLS, while the predicates in UMLS Semantic Network label 
the edges. To easily distinguish the DS-specific nodes, a letter "D" was added before the CUI representing the 
concept of DS. For example, "DC0633482" was used to indicate that "myrtol" (CUI: C0633482) is a DS concept.
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SuppKG contains information and triples about DS contained in  iDISK36 and its extensions, which may not 
exist in the SemMedDB database. Thus, we integrate SuppKG with SemMedDB to get a comprehensive coverage 
of DS representation and link to other general medical knowledge.

To validate hypotheses arising from ADInt, we used Electronic Health Record (EHR) data obtained from the 
University of Minnesota (UMN) Clinical Data Repository Ethical approval for this study was obtained from the 
UMN Institutional Review Board and informed consent was obtained from all subjects and their legal guard-
ians. The cohort under investigation comprised 10,844 individuals who had been diagnosed with mild cognitive 
impairment (MCI), among whom 978 subsequently received diagnoses of ADRD during the period spanning 
from 2001 to 2018.  Individuals with MCI and ADRD were identified via the International Classification of Dis-
eases (ICD) codes 331.83, 294.9, G31.84, and F09 (for MCI), and 290.40, 290.41, 331.0, 331.11, 331.19, 331.82, 
G30.0, G30.1, G30.8, G30.9, G31.01, G31.09, G31.83, F01.50, and F01.51 (for ADRD). For the MCI cohort, indi-
viduals were required to possess at least one documented diagnosis of MCI and an absence of ADRD diagnoses. 
The ADRD cohort encompassed individuals meeting the following criteria: (1) receipt of an ADRD diagnosis, 
(2) documentation of a prior MCI diagnosis preceding the ADRD diagnosis, and (3) a minimum interval of six 
months between the initial MCI diagnosis and subsequent ADRD diagnosis.

Figure 1.  Diagram illustrating the workflow of the methodology.
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Preprocessing and integration
To enhance the representation of nodes and relations in the KG, we perform preprocessing before integrat-
ing SuppKG and SemMedDB for filtering out generic, uninformative and incorrect triples. The preprocessing 
includes three  steps31:

(1) Filtering triples by rules. First, we removed nodes in the graph that represented generic concepts by referenc-
ing the GENERIC_CONCEPT table provided by the SemMedDB database. This table contained concepts 
such as "Disease" and "Cells," which are known to be too broad to be useful for knowledge discovery. Addi-
tionally, concepts with semantic groups that were not likely to be useful for predicting interventions for 
AD were eliminated, such as "Activities & Behaviors," and "Concepts & Ideas". Finally, only relations that 
were deemed relevant for LP were kept, including AFFECTS, CAUSES, COEXISTS WITH, PREVENTS, 
TREATS, etc.

(2) Removing high-degree concepts and uninformative semantic relations. High-degree concepts in the KG 
may be too general to be useful for knowledge discovery due to their broad associations with many other 
concepts. To address this issue, we first computed the out-degree ( kini  ) and in-degree ( kouti  ) of each node 
in the KG. Next, we calculated a log likelihood measure known as G237 for each triple, which quantifies the 
strength of the relationship between the nodes in the triple. The G2 formula is given by:

where nijk is the item i, j, k in the observation table (OT) containing observed frequencies of a triple, mijk is the 
item i, j, k in the expectation table (ET) describing the expected values assuming independence of terms in triples, 
and T =

∑

nijk . Finally, we normalized kini  , kouti  and G2 and summed them up together to get a final score for 
each triple. A higher score indicates that the triple is less specific and informative. Consequently, we filtered out 
some higher-scoring triples to manage the size of the KG to approximately 1.8 M triples, which can be processed 
by our GPU in a reasonable amount of time.

(3) Further removing incorrect triples by a trained PubMedBert model. The triples extracted from the SemMedDB 
database through SemRep may contain false positives, as the semantics expressed by the triples may differ 
or be contrary to the content of their source sentences. To address this issue, we utilized a PubMedBert 
binary classification model that was fine-tuned in our previous work to evaluate the correctness of the 
triples by referencing their source  sentences31. The F1 score of this model was 0.854, with a recall of 0.895 
and a precision of 0.816.

After preprocessing, we integrated the resulting triples from both sources. For DS concept nodes in 
SemMedDB triples, we added the letter D before their CUIs to match the identifiers in SuppKG. As the subject 
and object entities of the integrated triples are identified by UMLS CUIs and their predicates come from the 
UMLS Semantic Network, we added new triples to SuppKG that did not overlap with its existing triples, without 
mapping concepts or integrating ontologies. The resulting integrated KG, named ADInt, was obtained.

NPI nodes identification
We trained and evaluated different approaches to identify nodes representing DS and CIH concepts in ADInt. 
In SuppKG, DS concept nodes are denoted by a special mark, a letter D added before their CUI. This mark was 
retained during the integration of SuppKG and SemMedDB triples, allowing us to easily identify these nodes 
as DS concepts. Unlike DS nodes, nodes describing CIH concepts cannot be identified directly from the KG. 
To overcome this limitation, we developed a list of CIH concepts, known as the CIH concepts list or  CIHLex38.

Link prediction models training and evaluation
A KG can be represented as a labeled directed multi-graph KG = (E,R,G) , where E denotes the set of nodes repre-
senting entities, R denotes the set of edges representing relations, and G ⊆ E × R × E is a set of triples 〈h, r, t〉,  
where h represents the head entity, r represents the relation, and t represents the tail entity. Despite the vast 
amounts of information contained in KGs, they are often incomplete due to various factors, such as noise, miss-
ing data, and sparsity. Thus, link prediction (LP) methods seek to infer new triples that may not be explicitly 
represented in the KG, but which can be logically deduced from the existing ones. The objective of LP aims to 
predict the most probable entity or relation that completes (h, r, ?) (tail prediction), (h, ?, t) (edge prediction), 
or (?, r, t) (head prediction). LP for KGs can be represented as a ranking task, which aims to learn a prediction 
function that assigns higher scores to true triples and lower scores to false triples. To perform LP on our KG, we 
explored four KG embedding models  (TransE39,  RotatE40,  DistMult41 and  ComplEX42) and two graph convolu-
tional network models (R-GCN43 and  CompGCN44).

TransE39 is a simple and effective model for LP, particularly for modeling one-to-one relations. In TransE, a 
triple (h, r, t) is represented as a translation from the embedding of the head entity h to the embedding of the 
tail entity t, with the relation r acting as the translation vector in the embedding space. This formulation implies 
that if a triple (h, r, t) exists, the embedding of entity h plus the representation of relation r should be close to the 
embedding of entity t. The TransE score function measures the plausibility of a triple and is defined as follows

G2 = 2
∑

i,j,k

nijk × log

(

nijk

mijk

)

,mijk =

∑

i njk ×
∑

j nik ×
∑

k nij

T2
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where h, r, t ∈ R
d is the embedding of h, r and t. Unlike TransE, The  RotatE40 model converts each relation to 

a rotation from a head entity to a tail entity in a complex vector space and the score function can be defined as

where ○ is a Hadamard product.
DistMult41 is the most basic semantic matching models, and its scoring function can be defined as

The drawback of DistMult is that it only works on symmetric relations, that is, the scores of (h,r,t) and (t,r,h) 
calculated by DistMult are the same. It may cause problems in our KG, for example the triple (Bariatric Surgery, 
TREATS, Alzheimer’s) and the triple (Alzheimer’s, TREATS, Bariatric Surgery) should have inconsistent scores. 
To address this limitation,  ComplEX42 has been proposed as an extension of DistMult. ComplEX uses a complex 
vector space and is capable of modeling asymmetric relations. Specifically, head and tail embeddings of the same 
entity are represented as complex conjugates, which enables (h, r, t) and (t, r, h) to be distinguished. This allows 
ComplEX to provide consistent scores for both symmetric and asymmetric relations. The scoring function of 
ComplEX can be defined as follows

where Re (·) is a real part of a complex vector.
GCNs are a neural network approach for processing graph-structured  data45. However, most existing GCNs 

are designed for simple undirected graphs and cannot handle the multiple types of nodes and directed links 
that exist in our KG. To address this challenge, we explored special graph convolutional neural network models 
that can handle heterogeneous graphs. Specifically, we evaluated two models: Relational Graph Convolutional 
Network (R-GCN)43 and  CompGCN44. Based on the architectures of GCNs, R-GCNs consider each different 
relation and perform feature fusion to participate in updating the hidden states of  nodes43. The propagation 
model for calculating the forward-pass update of a node in R-GCNs can be defined as

where x(l)i ⊖ ǫRd(l) is the hidden state of i-th nodes in the l-th layer of the neural network; R is the set of rela-
tions and N r

i  denotes the neighbor set of i-th node under relation rǫR ; W (l)
r  and W (l)

0   are the learnable weight 
matrix under relation r and self-loop weight matrix in the l-th layer respectively; ci,r is a normalization constant 
that can either be learned or chosen in advance. Using R-GCNs for LP tasks can be regarded as a process of 
encoding and decoding: an R-GCN producing latent feature vectors of entities and a tensor factorization model 
exploiting these vectors to predict edges. Taking the DistMult decomposition as an example, the score of a triple 
(h, r, t) is calculated  as43

Thus, to make the model score observable triples higher than negative triples, the loss function can be defined 
 as43

where T  is the set of all triples (including positive and negative triples); ω is the number of negative triples; 
∣

∣ε̂
∣

∣ 
is the number of edges; l(.) is the logistic sigmoid function; and y is an indicator, where y = 1 means triple is 
positive, otherwise negative.

CompGCN44 is another extended version of GCN for heterogeneous graphs, which systematically leverages 
entity-relation composition operations and jointly learning latent feature vector representations for both nodes 
and edges in the graph. Different from R-GCNs, CompGCN performs a composition operation Ф over each 
edge in the neighbor of central node through the embedding of edges and nodes. The update equation of nodes 
embedding in CompGCN can be defined  as44

where x(l)j  and y(l)k  are the hidden state of neighboring j-th node and its k-th relation respectively in the l-th layer, 

and W (l)
�(k) is a relation-type specific parameter, which can be used for direction specific weights. According to 

whether the edge is the original edge, inverse edge or self-loop edge, W (l)
�(k) will correspond to different weight 

matrices. φ(.) is used to aggregate two vectors of the same size, which can be  Subtraction39,  Multiplication41, 

s(h, r, t) = ||h+ r − t||

s(h, r, t) = ||h ◦ r − t||

s(h, r, t) = hT rt
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(

hT rt
)

x
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,
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∣
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x
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or Circular-correlation46. After updating the node embeddings, we can also update the relation embedding as 
 follows44

where Wk
rel is a weight matrix that projects all relations to the same embedding space as nodes, which allows 

them to be used in the next layer. Similar to R-GCNs LP model, we select a tensor factorization model (convE) 
to calculate the score of triples. And the same standard binary cross entropy loss function is applied to training 
the convolutional networks.

The hyperparameters for TransE, RotatE, DistMult, and ComplEX were tuned using a grid search on the 
validation set for each prediction model. We adjusted the following parameters: learning rate {0.01, 0.001}, 
number of hidden dimensions {100, 200, 400}, and regularization coefficient {1*10–6, 1*10–9}. The mini-batch 
size was set to {250, 1000}. In the case of R-GCN and CompGCN, we conducted tuning on the learning rate 
{0.01, 0.001}, number of hidden dimensions {100, 200}, number of GCN layers {1, 2}, and maintained a mini-
batch size of {250, 500, 1000}. For R-GCN, we applied a dropout layer with a rate of 0.2 to the GCN encoder to 
prevent overfitting and introduced l2 regularization to the link prediction decoder with a penalty of 0.01. For 
CompGCN, regularization for the GCN encoder involved a feature dropout rate of 0.1 and a dropout rate of 0.3 
after each layer, and the convE decoder employed dropout rates of 0.3 for hidden layer outputs and features. The 
composition operation employed was circular-correlation. For all models, negative samples were generated by 
randomly corrupting the heads or tails of positive triples at a 1:20 ratio during the training process.

All work was conducted using Python scripts. The implementation of the TransE, RotatE, DistMult, and 
ComplEX models was carried out with the DGL-KE 0.1.0.dev0  package47 package. Both R-GCN and CompGCN 
models were constructed using the torch 1.13.148 and DGL 1.0.149 packages. We describe training and evaluation 
details in the following tasks.

Open LBD task
The open discovery approach is specifically aimed at generating innovative hypotheses. Given a head node, the 
system produces associated tail nodes, thereby facilitating the identification of previously unexplored triple 
 relationships50. To evaluate the effectiveness of our LP model, we utilized two evaluation methods.

The first one is Time  Slicing51. This evaluation approach involves partitioning the KG at a specific time and 
using the data prior to this time to train the model, and subsequently testing the model on the data following 
this time to determine if the links formed after the partitioning time can be accurately predicted. Specifically, 
in our work, we ordered the triples chronologically and divided the KG into training, validation, and testing 
sets in an 8:1:1 ratio, where the date of publication of the paper mentioning the triple is used as its time, and the 
partitioning times were set as April 2020 and April 2021, respectively. To evaluate the model performance, we 
compute ranking-based metrics for each model: mean rank (MR), mean reciprocal rank (MRR), and Hits@k 
(k = 1, 3, and 10)39. Specifically, for each true triple in the testing set, we generated a batch of negative samples by 
randomly replacing the head or tail nodes while ensuring that these negative samples do not exist in our graph, 
i.e., we employed corruption with filtering. We then used the trained model to calculate the scores for the true 
triple and its negative samples, and obtained the ranks of the true triples to calculate the metrics of MR, MRR, 
and Hits@k. MR represents the average rank assigned to the true triples in the test set:

where T is all triples in the test set, and rank(t) is the position of the triple t in the sorted list of t and its negative 
sample.

MRR is the average inverse rank of all true triples in the test set:

Hits@k is the percentage of triples in which the true triple appears in the top k ranked triples:

where I is an indicator function. I[rank(t) ≤ k] is equal to 1 if t is ranked between 1 and k, 0 otherwise.
In the second evaluation approach, we utilized clinical trial data from ClinicalTrials.gov as a benchmark for 

predicting potential interventions for AD. Our approach was based on the assumption that interventions under 
investigation for AD have the potential to be repurposed for other indications. Specifically, we obtained a list of 
interventions utilized in AD clinical trials registered after April 21, 2020, by conducting a search for the term 
"Alzheimer" and restricting the results to interventional studies as of November 4, 2022. We excluded control 
interventions labeled as "placebo," resulting in a total of 671 interventions. We processed these interventions using 
MetaMap with the UMLS 2022AA release to identify relevant UMLS concepts, resulting in 1606 concepts. The 
CUIs of these concepts were subsequently used as head nodes, with "PREVENTS" serving as the relations and 
the "C0002395" (CUI of AD concept) as tail nodes, creating a series of triples for testing. Finally, we employed 
these newly generated triples based on clinical trial data as another test set to evaluate each trained model.

y
(l+1)

k = Wk
rely

(l)
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Closed LBD task
The closed discovery method strives to identify the connections between the given head and tail nodes in order 
to evaluate a specific  hypothesis50. Although the KG embedding and graph neural network models only provide 
node and edge representations, patterns from closed discovery were used to infer possible mechanisms for the 
repurposed interventions. To uncover potential logical connections between concepts in a network, we employed 
a closed discovery approach by combining sequences of relation  types32. For DS, The discovery patterns we 
focused on were:

InterventionA-INHIBITS|INTERACTS_WITH-ConceptB AND
ConceptB-AFFECTS|CAUSES|PREDISPOSES|ASSOCIATED-Alzheimer’s disease AND
NOT (InterventionA-PREVENTS-Alzheimer’s disease)

where InterventionA is a node whose type is DS; ConceptB can be any concept; | indicates logical OR; and 
for Alzheimer’s disease, we focus on the node with CUI C0002395. To analyze the repurposing potential of CIH 
interventions, we encountered a challenge due to the UMLS semantic types of most CIHs being “topp” (Thera-
peutic or Preventive Procedure) or “dora” (Daily or Recreational Activity). As these types do not have INHIBIT or 
INTERACT_WITH relationships to other concepts in the UMLS Semantic Network, and the number of possible 
paths is not extensive, we did not constrain the predicates in the patterns. The discovery patterns for CIH were:

InterventionB—(any predicate)-ConceptB AND
ConceptB-(any predicate)-Alzheimer’s disease AND
NOT (InterventionB-PREVENTS-Alzheimer’s disease

where InterventionB is a node whose type is CIH. We visualized the network structure using ChiPlot (https:// 
www. chipl ot. online/).

Evaluation through RWD analysis
To further support our results, we performed RWD analysis for our predicted non-pharmacological interven-
tions. The DS were identified from the structured medication orders and unstructured clinical notes; and the CIH 
were identified from the structured Current Procedural Terminology (CPT) codes. Through Power Analysis (see 
Supplementary Fig. S1 online), we determined that achieving more than 80% statistical power requires a sample 
size of approximately 1000 individuals, with over 20% of them receiving treatment with either DS or CIH. Upon 
examination of the dataset, it was revealed that only psychotherapy (42.9%) and manual therapy techniques 
(28.2%) met this criterion. Subsequently, each 60-day interval following MCI diagnosis was utilized as a time 
series, extending until the final visit recorded within a ten-year timeframe. Exposure groups for ADRD patients 
were established based on the utilization of CIHs (Psychotherapy and Manual therapy techniques) by MCI 
patients. Kaplan–Meier plots were employed to visually represent the unadjusted probability of ADRD within the 
exposed group. To assess the impact of CIHs on ADRD incidence, a multivariate-adjusted Cox regression model 
was utilized. The initial model was adjusted for age and sex, while the second model incorporated additional 
covariates such as delirium, mental retardation, aphasia, depression, anxiety, bipolar disorder, hypertension, 
hyperlipidemia, vitamin B12 deficiency, and cardiovascular diseases, all of which are known to be associated 
with ADRD. Furthermore, a case–control dataset was constructed from the MCI patient cohort, with patients 
eventually diagnosed with ADRD serving as cases. Fisher’s exact test was then employed to evaluate statistically 
significant differences between patients who utilized the predicted DS and those who did not. All analyses were 
performed using Python 3.9 with the lifelines 0.27, scipy 1.10, and matplotlib 3.7 packages.

Ethics declarations
All methods were carried out in accordance with the relevant guidelines and regulations.

Table 1.  The frequency and the proportion of relation types in ADInt.

Relations Counts (%) Relations Counts (%)

COEXISTS_WITH 332,428 (32.68) DISRUPTS 23,238 (2.28)

INTERACTS_WITH 209,448 (20.59) AUGMENTS 21,912 (2.15)

AFFECTS 96,803 (9.52) PRODUCES 21,825 (2.15)

TREATS 90,812 (8.93) PREDISPOSES 13,509 (1.33)

CAUSES 76,235 (7.49) PREVENTS 12,258 (1.20)

ASSOCIATED_WITH 46,126 (4.53) COMPLICATES 3519 (0.35)

INHIBITS 39,155 (3.85) MANIFESTATION_OF 1926 (0.19)

STIMULATES 28,090 (2.76)

TOTAL 1,017,284 (100.00)

https://www.chiplot.online/
https://www.chiplot.online/
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Results
ADInt statistics
ADInt encompasses 162,212 entities across 113 UMLS semantic types, which after further identification include 
25,604 Drugs, 16,474 Diseases, 46,060 Genes and Proteins, 2525 DS, and 128 CIH. Furthermore, ADInt comprises 
1,017,284 triples, capturing 15 distinct relation types. Detailed statistics can be found in Table 1.

Performance of LP models
Table 2 presents the performance obtained by various LP methods using the metrics MR, MRR, and Hits@
k39. A well-performing model should exhibit a low MR score and high MRR and Hit@k scores. The results 
demonstrate that the R-GCN model outperforms the other models in all metrics, followed by the TransE and 
CompGCN model.

Additionally, Table 3 reports evaluation results of the trained models on the Clinical Trials dataset. The find-
ings show that the R-GCN model performs best in four of the five indicators (Hit@1 is lower than the TransE 
model and ranks second). In this case, some metrics of the RotatE model (Hits@3, Hits@10 and MR) are better 
than TransE. Collectively, from both evaluation results presented in Tables 2 and 3, the R-GCN model exhibits 
the best performance. Thus, we used the R-GCN for further knowledge discovery of NPIs on AD prevention.

For open LBD tasks, Fig. 2 displays the Precision-Recall and Receiver Operating Characteristic (ROC) curves 
for the six models under both time slicing and clinical trials testing conditions. In the time slicing evaluation, the 
RGCN model stood out by achieving the highest Area Under the ROC Curve (AUROC) of 0.74 and the highest 
Area Under the Precision-Recall Curve (AUPR) of 0.74. Similarly, in the clinical trials evaluation, it maintained 
superior performance with the highest AUROC of 0.79 and an AUPR of 0.80.

Embedding representation of the ADInt KG
Subsequently, we utilized t-SNE (t-distributed stochastic neighbor embedding)52 to obtain the two-dimensional 
projection of the learned node representations. t-SNE is a technique that reduces high-dimensional data to 
low-dimensional data while preserving the distribution properties of the original data. Moreover, it expresses 
the similarity between concepts through the proximity between nodes. As depicted in Fig. 3, nodes with similar 
types tend to be grouped together, particularly the DS nodes.

Discovered NPIs for AD prevention
We utilized the embedding information obtained from R-GCN to compute the score of each candidate triple. 
Specifically, we designated the tail node of these corrupted triples as C0002395 (AD) and the edge as {PRE-
VENTS}. We then attempted to construct different triples by using all NPIs nodes in the graph as head nodes 
and calculated their score using the R-GCN model. Our focus was solely on the discovery of novel triples; thus, 
we excluded triples that already existed in ADInt. For novel triples, a higher score indicated a higher probability 
of being closely related to the true relationship. We categorized the triples into two groups based on the type of 
the head node, including DS and CIH, to discover novel NPIs for AD. After evaluation by experts, the top 10 
predicted novel candidates for AD are presented in Table 4.

Figure 4 displays the network structure of the top-ranked predicted results. The network highlights three 
pathways that include a set of interesting findings, which will be further discussed in the following sections. 

Table 2.  The metrics of link prediction results for different models on integrated KG, ADInt, by time slicing 
evaluation. The best values for each metric are in [bold].

TransE RotatE DistMult ComplEX RGCN CompGCN

Hits@1 0.1770 0.1786 0.1109 0.1062 0.2656 0.1520

Hits@3 0.3242 0.3055 0.2586 0.2467 0.5058 0.3227

Hits@10 0.5996 0.5340 0.5921 0.5854 0.8496 0.6585

MRR 0.3109 0.2987 0.2547 0.2479 0.4390 0.3033

MR 8.8607 10.1095 9.2785 9.3799 5.2054 7.8198

Table 3.  The metrics of link prediction results for different models on integrated KG, ADInt, by clinical trials 
dataset evaluation. The best values for each metric are in [bold].

TransE RotatE DistMult ComplEX RGCN CompGCN

Hits@1 0.5580 0.4545 0.2405 0.2143 0.4859 0.3144

Hits@3 0.6294 0.6320 0.3752 0.3058 0.7071 0.4152

Hits@10 0.7621 0.8107 0.5391 0.4537 0.9192 0.6944

MRR 0.6258 0.5768 0.3543 0.3084 0.6273 0.4206

MR 5.4165 5.2284 9.9905 11.5660 3.4996 7.6504
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Figure 2.  Precision-Recall curves and Receiver Operating Characteristic (ROC) curves of the models in time 
slicing testing and clinical trials testing.

Figure 3.  Visualization of nodes in ADInt dimensionally reduced by t-SNE algorithm and shown in a two-
dimensional space. Different types of nodes are represented by different colors. Yellow: Molecular. Green: Drugs. 
Red: Disorders. Blue: DS (dietary supplement). Purple: CIH (complementary and integrative health). Gray: 
others.
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Specifically, this pathway reveals potential mechanisms through which CIH and DS may influence the risk of AD, 
and suggests potential targets for therapeutic interventions. The identified associations and pathways represent 
a promising direction for future research into the prevention of AD.

Evaluation of novel NPIs for AD prevention through RWD analysis
The study cohort comprised 10,844 patients diagnosed with MCI, among whom 978 were subsequently diagnosed 
with ADRD. Among the 978 patients with ADRD, 276 reported receiving Psychotherapy, while 875 MCI patients 
without ADRD reported the same intervention. Fisher’s exact test was employed to examine the potential associa-
tion between Psychotherapy and ADRD diagnosis, revealing a statistically significant difference in Psychotherapy 
usage between the ADRD and non-ADRD groups (p-value < 0.001). Figure 5a presents Kaplan–Meier survival 

Table 4.  Top 10 proposed entities for different categories with predicate PREVENTS.

Dietary Supplement (DS) Probability(s) for DS Complementary and Integrated Health (CIH) Probability(s) for CIH

1 Desmodii herba 0.9759 Mindfulness relaxation 1.0000

2 Tamaris 0.7372 Massage therapy 0.7309

3 Glucomannan 0.6030 Cold therapy 0.4104

4 bidens pilosa 0.4859 Interpersonal psychotherapy 0.4062

5 Lutein 0.4819 Photodynamic therapy 0.3790

6 Millet (as grain, fiber) 0.4699 Myofascial release 0.2458

7 Artichoke 0.4641 Guided imagery 0.2455

8 Damask rose 0.4303 Art therapy 0.2210

9 Caryophyllus aromaticus 0.3942 Manual lymphatic drainage 0.1751

10 Shark liver oil 0.3060 Laughter therapy 0.1017

Figure 4.  Top-ranked predicted results of ADInt-based exploration.
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plots for the MCI cohort, illustrating the probability of non-progression from MCI to ADRD over time. Notice-
able discrepancies between the curves suggest that increased involvement in Psychotherapy may correlate with 
reduced risk of ADRD development (p-value = 0.007). Upon adjustment for age and sex in the multivariate analy-
sis, individuals who received psychotherapy had a lower rate of progression to ADRD compared to those who did 
not (Hazard Ratio (HR) 0.78, 95% Confidence Interval (CI) 0.57–1.06) (Fig. 5b). This association persisted even 
after controlling for various comorbidities associated with ADRD (HR 0.79, 95% CI 0.58–1.07). However, it did 
not reach statistical significance at the conventional 0.05 level. The comorbidities include delirium, intellectual 
disability, aphasia, depression, anxiety, bipolar disorder, hypertension, hyperlipidemia, vitamin B12 deficiency, 
and cardiovascular disease (Fig. 5c).

Additionally, among the 978 patients diagnosed with ADRD, 411 reported receiving Manual therapy tech-
niques, while 1402 MCI patients without ADRD reported the same intervention. Fisher’s exact test demonstrated 
a statistically significant difference in the utilization of Manual therapy techniques between the ADRD and 
non-ADRD groups (p < 0.001). Kaplan–Meier survival analysis suggested that increased involvement in manual 
therapy techniques may be linked to reduced risk of ADRD development (p-value = 0.1) (Fig. 6a). After adjusting 
for age and sex in the multivariate analysis, individuals who received Manual therapy techniques had a lower rate 
of progression to ADRD compared to those who did not (HR 0.81, 95% CI 0.53–1.24) (Fig. 6b). This association 
remained robust after accounting for various comorbidities associated with ADRD (HR 0.81, 95% CI 0.53–1.23), 
but was not statistically significant at the 0.05 level (Fig. 6c).

Discussion
In this study, we trained and compared various LP methods on the task of knowledge discovery. The R-GCN 
model has demonstrated superior performance over other models on both the time slicing and clinical trials test 
sets (see Tables 2, 3). Notably, TransE exhibited the second-best overall performance in ranking-based metrics, 
which is consistent with our prior  work31 demonstrating that relatively simple TransE outperformed other KG 
embedding methods (RotatE, DistMult, ComplEX) on the extended SemMedDB. We speculate that the poor 

Figure 5.  RWD analysis results for Psychotherapy: (a) The Kaplan–Meier survival plots for the MCI cohort, (b) 
multivariate-adjusted Cox regression model for ADRD (adjusted for age and sex), (c) multivariate-adjusted Cox 
regression model for ADRD (adjusted for age, sex and disease likely to cause ADRD).
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performance of DistMult and ComplEX is due to their preference for high-degree entities, which we removed 
during the data preprocessing  stage53. We believe that the reason for RotatE’s underperformance is similar, as our 
filtered KG emphasizes simple relations. Although RotatE addresses some of the limitations of TransE in handling 
multiple and symmetric relations by introducing complex  spaces40, our findings suggest that this approach may 
not be appropriate for our KG. The superior performance of R-GCN suggests that the neighborhood aggrega-
tion operation of the graph convolution network is useful for learning graph  representations54. However, we 
found that another graph convolutional network-based model, CompGCN, had a mediocre performance. We 
hypothesize that CompGCN’s reliance on linear transformations for relation embeddings does not suit our  KG55. 
Additionally, our evaluation of R-GCN on the Clinical Trials dataset outperformed its performance on the time 
slicing evaluation. These results demonstrate that R-GCN is adept at distinguishing which subjects are feasible for 
preventing AD. It is worth noting that while our experiments confirm R-GCN as the optimal LP model, metrics 
such as MR, MRR, and Hits@k only reflect the model’s ability to predict interventions being trialed or known 
interventions. Indeed, models with low metrics may still produce valuable  results31. Nevertheless, these metrics 
can inform model selection for NPI repurposing.

We used discovery patterns to generate mechanistic pathways for high-scoring triples predicted by the R-GCN 
model through the Neo4J platform. Photodynamic therapy (PDT) is a clinically used approach for treating or 
preventing various medical conditions, ranging from age-related macular degeneration to malignant tumors 
such as prostate cancer patients. PDT involves the use of light and a photosensitizing chemical substance along 
with molecular oxygen to elicit cell  death56. Recently, PDT has been proposed as a potential therapeutic option 
for  AD56. The precise mechanism of how PDT can provide therapeutic benefits for AD remains elusive, and the 
practical use of PDT for treatment or prevention of AD is basically non-existent given that tissue must be directly 
exposed to light, which is not feasible when dealing with the entire brain. However, this finding provides theoreti-
cal support for treating AD through modulation of the immune system. For instance, a study evaluating the use 
of PDT with 5-aminolevulinic acid on mice has reported that it affects the immune  response57. The study found 
that there was a significant reduction in the mRNA expression of interleukin-22 (IL-22), a cytokine produced by 
several immune cells that is associated with inflammation. Converging evidence has demonstrated that immune/

Figure 6.  RWD analysis results for manual therapy techniques: (a) The Kaplan–Meier survival plots for 
the MCI cohort, (b) multivariate-adjusted Cox regression model for ADRD (adjusted for age and sex), (c) 
multivariate-adjusted Cox regression model for ADRD (adjusted for age, sex and disease likely to cause ADRD).



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8693  | https://doi.org/10.1038/s41598-024-58604-8

www.nature.com/scientificreports/

inflammation response plays a crucial role in the initiation and regulation of  AD58. Thus, our PDT finding, while 
based on a therapy that has major practical limitations for treating AD, highlights immune mechanisms for 
preventing and treating AD. It should be noted that this is a preliminary finding based on a limited number of 
studies, and more research is needed to confirm these results.

Choerospondias axillaris, commonly known as Nepali hog plum, is a fruit that is approximately three centim-
eters long with sour flesh and yellow skin. Plums and other yellow-skinned fruits, such as papayas, tangerines, 
and oranges, are high in ß-cryptoxanthin, an antioxidant. A recent  study59 found an inverse association between 
serum β-cryptoxanthin levels and the incidence of AD and all-cause dementias in individuals who consumed 
yellow-skinned fruits. Specifically, an increase of 8.6 micromole/liter in serum β-cryptoxanthin levels was asso-
ciated with a 14% decreased risk of AD. To propose a potential mechanism for this protection, we examined 
the patterns between Choerospondias axillaris and AD. In a  study60, it was found that Choerospondias axillaris 
inhibits both TNF protein and interleukin-6. These two inflammation mediators are well-known inducers of 
AD, as demonstrated in previous  studies61,62. Specifically, interleukin-6 has been linked to the pathogenesis of 
AD, while tumor necrosis factor-α has been proposed as a potent therapeutic target for AD. Lutein, a carotenoid 
also found in Choerospondias axillas, is also found as a protective intervention. This finding corroborates prior 
reports that demonstrated an inverse association between lutein intake and dementia  occurrence62. Furthermore, 
increased lutein intake has been associated with lower levels of AD neuropathology  postmortem63. Overall, 
Choerospondias axillaris and other yellow-pigmented fruits may act as protectors by reducing the levels of pro-
inflammatory cytokines crucially implicated in AD. Finally, it is interesting to note that some of our findings 
(from Table 4) may have clinical impact in the prevention of AD and have not been published as such in the 
biomedical literature. For example, glucomannan and millet are dietary fibers (prebiotics) that modulate the gut 
microbiome, which has been discussed to have beneficial effects in the prevention of cognitive  decline64. Some 
other interventions in Table 4 have not been discussed at all as preventive for AD (i.e. Interpersonal psychother-
apy, mindfulness relaxation, and myofascial release), but are of clinical relevance. Interpersonal psychotherapy 
and manual lymphatic drainage, as identified in our predicted results, fall under the categories of psychotherapy 
and manual therapy techniques, respectively, and RWD analysis revealed their potential to reduce the risk of 
developing ADRD. The results from the Kaplan–Meier survival analysis indicate that both psychotherapy and 
manual therapy techniques may contribute to lowering the risk of ADRD. However, these findings did not 
reach statistical significance, suggesting the need for additional studies to more conclusively determine their 
effects. Furthermore, the observational nature of our RWD does not allow us to rule out the possibility that the 
observed differences between groups receiving and not receiving particular interventions is due to unmeasured 
confounding.  Constrained by the capacity of the local EHR, a power analysis and review of the dataset revealed 
that only the sample sizes for psychotherapy and manual therapy techniques met the requirements for sufficient 
statistical power. Thus, in the future studies, we will leverage multi-site larger EHR data to examine and analyze 
other NPIs, potentially gaining broader insights into ADRD prevention.

There are several possibilities for future improvements to our approach. Firstly, we augmented SuppKG with 
triples extracted from the SemMedDB database, indicating that all triples in our ADInt were obtained through 
literature-based discovery. In order to further enhance our knowledge graph, we can merge it with other com-
prehensive biomedical databases and biological networks, such as DrugBank and  KEGG65. This will enable 
us to expand the scope of our analysis and identify additional relevant interventions. Secondly, in addition to 
knowledge graph embedding and graph neural network models, other methods such as link prediction based on 
language models have also demonstrated promising results on LP tasks. These methods could also be explored 
in future studies on drug repurposing. Lastly, since the determination of the plausibility of an intervention and 
its pathways to AD is a labor-intensive process, only the top 10 of each scoring table were evaluated by experts. 
However, in future work, larger samples could be considered if the necessary resources are available.

Conclusions
Our analysis emphasizes the growing importance and popularity of studying NPIs in the context of disease 
management. By demonstrating the efficacy of our approach in revealing intricate relationships between bio-
medical entities, particularly NPI entities, and diseases of interest, we provide plausible mechanistic explana-
tions for these associations. Notably, our contributions in this field include creating valuable NPI resources and 
developing an innovative framework to predict NPIs that may potentially be repurposed for AD. To the best of 
our knowledge, this is the first study that specifically aims to discover NPIs for AD. Furthermore, the versatility 
and adaptability of our approach enable its application to NPI discovery for a wide range of other diseases. Our 
proposed approach also holds significant potential in addressing various clinical questions, such as the discovery 
of drug adverse reactions and drug-drug interactions, further emphasizing the importance and applicability of 
our research in the broader biomedical field.

Data availability
ADInt knowledge graph data is available in the following google drive: https:// github. com/ zhang- infor mat-
ics/ ADInt. The complete SemMedDB database can be accessed directly on https:// lhncbc. nlm. nih. gov/ ii/ tools/ 
SemRep_ SemMe dDB_ SKR. html.

Code availability
The code used for data preprocessing, model training, result evaluation and visualization in this study is available 
in the following repositories: https:// github. com/ YKXia0/ LBD_ AD.

https://github.com/zhang-informatics/ADInt
https://github.com/zhang-informatics/ADInt
https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR.html
https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR.html
https://github.com/YKXia0/LBD_AD
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