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Killing vector fields of locally 
rotationally symmetric Bianchi 
type V spacetime
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The classification of locally rotationally symmetric Bianchi type V spacetime based on its killing 
vector fields is presented in this paper using an algebraic method. In this approach, a Maple algorithm 
is employed to transform the Killing’s equations into a reduced evolutive form. Subsequently, 
the integration of the Killing’s equations is carried out subject to the constraints provided by the 
algorithm. The algorithm demonstrates that there exist fifteen distinct metrics that could potentially 
possess Killing vector fields. Upon solving the Killing equations for all fifteen metrics, it is observed 
that seven out of the fifteen metrics exclusively exhibit the minimum number of Killing vector fields. 
The remaining eight metrics admit a varying number of Killing vector fields, specifically 6, 7, or 10. The 
Kretschmann scalar has been computed for each of the obtained metrics, revealing that all of them 
possess a finite Kretschmann scalar and thus exhibit regular behavior.
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In 1916, Einstein introduced his theory of general relativity (GR), which completely transformed the traditional 
Newtonian notion of force by establishing a purely geometric understanding. As per the principles of GR, the 
idea of gravitational force is explained through the lens of curvature. In this framework, the presence of matter 
within the fabric of spacetime gives rise to curvature, which in turn governs the motion of test particles within 
that geometry. This theory formulates the dynamics of spacetime and associated concepts through a complex, 
non-linear system of equations, known as Einstein’s field equations (EFEs) given by1,

Here, the components of Einstein tensor, Ricci tensor, stress-energy tensor and metric tensor are represented by 
Gpq , Rpq , Tpq and gpq respectively, whereas R is Ricci scalar and k is coupling constant, which couples Einstein’s 
tensor and energy momentum tensor. In terms of physical interpretation, the EFEs provide a description of how 
the distribution of matter is interconnected with the presence of matter and energy within the spacetime. For 
a, b = 0, 1, 2, 3, the EFEs result in a complex system of 10 interdependent, highly non-linear partial differential 
equations. The non-linear nature of these equations presents a significant challenge when it comes to determining 
their exact solutions1. The scarcity of physically significant exact solutions for these equations can be attributed 
to their non-linear nature, as only a few such solutions are found in the existing literature1. However, if we opt 
to define the arbitrary stress-energy tensor using the EFEs (1.1), it follows that any metric chosen will corre-
spond to a solution of these equations. Nevertheless, it should be noted that not all solutions of this nature are 
meaningful since the corresponding energy-momentum tensor may exhibit highly non-physical characteristics. 
Hence, to obtain solutions that are physically relevant, certain restrictions would be expected to be fulfilled by 
the spacetime metric gpq representing those solutions. These constraints are formulated in relation to Killing 
vector fields (KVFs)1.

In the field of GR, various symmetries are extensively examined, which hold significant importance within 
the subject. Amongst these symmetries, the most fundamental one is characterized by a KVF. The presence of 
KVFs play a crucial role in the realm of spacetime physics as it preserves the spacetime metric and give rise to 
specific conservation laws2. In addition to KVFs, other notable symmetries in GR that are both well-known and 

(1.1)Gpq = Rpq −
1

2
Rgpq = kTpq.
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of physical significance include Ricci collineations (RCs), which preserve the Ricci tensor; curvature collinea-
tions (CCs), which preserve the curvature tensor and matter collineations (MCs), which preserve the energy-
momentum tensor. These symmetries are characterized by the condition that the Lie derivative of the metric, 
Ricci tensor, energy-momentum tensor, and Riemann tensor along the symmetry vector field is zero2. In simpler 
terms, a KVF corresponds to a smooth vector field that preserve the metric of a spacetime metric. Mathemati-
cally η is said to be a KVF if,

Furthermore, it is worth noting that a Lie derivative can also preserve a spacetime metric, although with the pos-
sibility of introducing a conformal factor multiplied by the metric itself. This type of symmetry is characterized 
by a conformal Killing vector field (CKVF). Mathematically, a vector field η is considered a CKVF if it fulfills the 
conformal Killing equation given by,

where, α represents a real-valued function. The vector field η transforms into a KVF when α in Eq. (1.3) is equal 
to zero. Furthermore, when α in Eq. (1.3) is a constant, the vector field η defines a homothetic vector field. If we 
replace gpq with Rpq in Eq. (1.3), it defines a conformal Ricci collineation, which reduces to an RC when α = 0 . 
If we consider the case when gpq is replaced by Rpq and α is an arbitrary constant in Eq. (1.3), the vector field η 
transforms into a homothetic Ricci collineation. Similarly, by replacing gpq with Tpq in Eq. (1.3), we can define a 
conformal matter collineation. The primary objective of this paper is to examine and discuss Killing vector fields. 
As a result, our discussion will be centered exclusively on KVFs. KVFs can be identified as solutions to Killing’s 
Equation (1.2), which represents a system of 10 interconnected first-order partial differential equations. These 
equations are formulated in terms of four unknown functions that depend on four variables. When expressed 
in a coordinate system, the Killing equations take on a more convenient form, which can be stated as follows2,

Within a 4-dimensional spacetime geometry, the maximum number of Killing vector fields is 10 when the 
spacetime metric is either flat or possesses constant curvature. Nevertheless, in the case of a non-flat spacetime 
geometry, it is anticipated that there will be less than or equal to seven Killing vector fields.

In order to emphasize the significance of Killing vector fields and their connections to other widely recognized 
symmetries, we provide a brief overview of recent literature. Bokhari et al. conducted a classification of spheri-
cally symmetric static spacetimes based on their Killing vector fields3,4. The authors, extended their research 
to explore the symmetry classification problem encompassing both RCs and CCs in the context of spherically 
symmetric spacetimes. Through their investigation, they established relationships between KVFs, RCs, and 
CCs5,6. In7, Moopanar and Maharaj explored conformal Killing vector fields of spherical spacetimes. A notable 
and extensive study conducted by Hussain et al. in 2019 focused on non-static spherically symmetric spacetimes 
and their conformal Ricci collineations8.

In 2003, Bokhari et al. extended the concept of Killing vector fields to provide a comprehensive classification 
of curvature collineations in cylindrically symmetric spacetimes9,10. Bokhari et al. extended their research on 
KVFs to explore matter collineations within a specific metric that exhibits static cylindrical symmetry11. In 2008, 
Bokhari et al. examined Killing symmetry of circularly symmetric static metric in three dimensions12. Feroze 
et al. carried out the classification of plane symmetric spacetimes by isometries13. Ziad presented the classifica-
tion of static plane symmetric spacetime via their KVFs14. In 2004, Sharif investigated the symmetries of the 
energy-momentum tensor in static spacetimes with cylindrical symmetry15. In 2007, Shabbir et al. conducted 
a classification of static spacetimes with cylindrical symmetry based on their homothetic vector fields16. Ali 
and Feroze17 achieved a comprehensive classification of static spacetimes with cylindrical symmetry based on 
conservation laws.

In this paper, we have classified LRS Bianchi type V spacetimes according to their Killing vector fields using 
the Rif tree approach. This approach utilizes the Rif algorithm, which is an algorithmic framework developed 
using the Exterior package in the Maple plate form. The Rif algorithm consists of a set of commands that facilitate 
the classification process. This algorithm presents a comprehensive set of conditions that encompass all possible 
constraints on the metric functions. The graphical representation is portrayed as a tree, known as a Rif tree, where 
each branch represents specific conditions on the metric functions that determine whether the spacetime can 
possess Killing vector fields. Subsequently, one must solve the set of Killing’s equations, considering the condi-
tions specified by the branches of the Rif tree, in order to obtain the explicit form of the Killing vector fields. 
Here we have obtained Killing algebras of dimension 4, 6, 7 and 10.

Classification of LRS Bianchi type V spacetime
The metric of LRS Bianchi type is given as18:

This metric possesses the following four minimum KVFs:

(1.2)Lηgpq = 0.

(1.3)Lηgpq = 2α(xa)gpq,

(1.4)Lηgpq = gprη
r
,q + grqη

r
,p + gpq,rη

r
= 0

(2.1)ds2 = −dt2 + a(t)2dx2 + e2mxb(t)2[dy2 + dz2].
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The coefficients of the above metric are used in the definition of KVFs to obtain the set of Killing equations 
given below:

X(1) =∂y

X(2) =∂z

X(3) =z∂y − y∂z

X(4) =∂x −my∂y −mz∂z

(2.2)η0,t =0

(2.3)η0,x − a2η1,t =0

(2.4)η0,y − e2mxb2η2,t =0

(2.5)η0,z − e2mxb2η3,t =0

(2.6)a′η0 + aη1,x =0

(2.7)a2η1,y + e2mxb2η2,x =0

(2.8)a2η1,z + e2mxb2η3,x =0

(2.9)b′η0 +mbη1 + bη2,y =0

(2.10)η2,z + η3,y =0

Figure 1.   Rif Tree
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In order to find the explicit form of KVFs, we need to solve these equations. Due to their non-linearity, these 
equations cannot be integrated directly without imposing some conditions on a(t) and b(t). For this purpose, we 
analyze these equations by Rif algorithm and as a result, we obtain the Rif tree given in Fig. 1. The expressions 
for nodes of the tree (pivots) are given in (2.12).

Using the conditions of each branch, we have solved Eqs. (2.2)–(2.11) that yield Killing algebras of dimensions 
4, 6, 7 and 10. In branches 1, 2, 3, 4, 5, 6 and 14, we have obtained only four KVFs. In the forthcoming sections, 
we summarize the results of remaining branches based on the dimension of the obtained Killing algebras.

Six KVFs
This section contains metrics admitting six KVFs, four minimum and two additional ones. These metrics, along 
with their additional KVFs are presented in Tables 1 and 2.

Seven KVFs
In this section, we present some metrics with seven KVFs. These metrics, along with their additional three KVFs 
are given in Table 3.

Ten KVFs
There is only one metric, given by branch 13, that possesses ten KVFs. This metric is presented in Table 4 along 
with the solution of Killing equations and additional six KVFs.

Summary and discussion
In this paper, Killing vector fields have been calculated for LRS Bianchi type V spacetime. First we have used the 
metric of this spacetime in the definition of KVFs in order to obtain the set of ten Killing equations. A Maple algo-
rithm, known as Rif algorithm was used to obtain a Rif tree along with the restrictions on the metric functions 
a(t) and b(t) under which the system of Killing equations has a solution. The algorithm gives fifteen different met-
rics which admit Killing vector fields of different dimensions. Solving Killing equations for all these metrics, we 
have observed that these metrics posses 4, 6, 7 or 10 dimensional Killing algebras. The Lie algebra for all the met-
rics possessing six KVFs is given by [X1,X3] = X2 , [X1,X4] = −X1 , [X1,X5] = X3 , [X1,X6] = X4, [X3,X5] = X6 , 

(2.11)b′η0 +mbη1 + bη3,z =0

(2.12)

p1 = b′ p2 = ba′ − b′a

p3 = a′′a′ − a′′′a p4 = a′[mb− b′a][mb+ b′a]

p5 = m2a′b3 + b′′b′ba3 − (b′)3a3 p6 = −m2(a′)2b2 − a′′(b′)2a3 + (a′)2(b′)2a2

p7 = a′′ p8 = [mb− b′a][mb+ b′a]

p9 = b′′b− (b′)2 p10 = b′′

p11 = b′′b′ − b′′′b p12 = m2b2 + b′′ba2 − (b′)2a2

p13 = a′

Table 1.   Metrics Admitting Six KVFs.

Branch No. Metric Solution of killing equations Additional KVFs

9 b′ �= 0 , ba′ − b′a = 0 η0 = 0 , η1 = −c1
z
m + c2

y
m + c3 X(5) = − z

m ∂x + yz∂y

b′′ �= 0 and b′b′′ − bb′′′ �= 0 η2 = c2

(

z2−y2

2
+ e−2mx

2m2

)

+ c1yz +
( z2−y2

2
− e−2mx

2m2

)

∂z

+c4z − c3my + c5

η3 = c1

(

z2−y2

2
− e−2mx

2m2

)

− c2yz − c4y X(6) =
y
m ∂x

−mc3z + c6 +
( z2−y2

2
+ e−2mx

2m2

)

∂y − yz∂z

10 a(t) = b(t) = k2e
k1 t + k3e

−k1 t η0 = 0 , η1 = −c1
z
m + c2

y
m −

c3
m

X(5) = − z
m ∂x + yz∂y

where k1  = 0 and η2 = c2

(

z2−y2

2
+ e−2mx

2m2

)

+ c1yz + c4z +
( z2−y2

2
− e−2mx

2m2

)

∂z

m2 + 4k21k2k3 �= 0 +c3y + c5

η3 = c1

(

z2−y2

2
− e−2mx

2m2

)

− c2yz − c4y X(6) =
y
m ∂x

+c3z + c6 +
( z2−y2

2
+ e−2mx

2m2

)

∂y − yz∂z
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[X3,X6] = −X5 , [X4,X5] = −X5 , [X4,X6] = −X6, [X5,X6] = −X5. Similarly, the Lie algebra for the metric 
admitting ten KVFs is obtained as [X1,X5] = X6 , [X1,X6] = X8 , [X1,X9] = X4 , [X1,X10] = X3, [X2,X5] = X8 , 
[X2,X7] = X8 , [X2,X9] = X3 , [X2,X10] = −X4, [X3,X5] = X3 , [X3,X6] = X7 , [X3,X7] = −X6 , [X3,X9] = −X10, 
[X3,X10] = X9,[X4,X9] = −X9,[X3,X10] = −X10,[X5,X6] = −X9, [X5,X7] = −X10 , [X5,X8] = X5 , [X5,X8] = X5

,[X5,X10] = X5, [X6,X7] = −X3 , [X6,X9] = X5 , [X7,X10] = X5.

Table 2.   Metrics Admitting Six KVFs.

Branch No. Metric Solution of killing equations Additional KVFs

11 a(t) = b(t) = k2e
k1t + k3e

−k1 t η0 = 0 , η1 = −c1
z
m + c2

y
m + c3 X(5) = − z

m ∂x + yz∂y

where k1  = 0 and η2 = c2

(

z2−y2

2
+ e−2mx

2m2

)

+ c1yz + c4z +
( z2−y2

2
− e−2mx

2m2

)

∂z

m2 + 4k21k2k3 = 0 −c3my + c5

η3 = c1

(

z2−y2

2
− e−2mx

2m2

)

− c2yz − c4y X(6) =
y
m ∂x

−c3mz + c6 +
( z2−y2

2
+ e−2mx

2m2

)

∂y − yz∂z

12 a(t) = b(t) = k1t + k2 η0 = 0 , η1 = −c1
z
m + c2

y
m + c3 X(5) = − z

m ∂x + yz∂y

where k1  = 0 and η2 = c2

(

z2−y2

2
+ e−2mx

2m2

)

+ c1yz + c4z +
( z2−y2

2
− e−2mx

2m2

)

∂z

m  = ±k1 −c3my + c5

η3 = c1

(

z2−y2

2
− e−2mx

2m2

)

− c2yz − c4y X(6) =
y
m ∂x

−c3mz + c6 +
( z2−y2

2
+ e−2mx

2m2

)

∂y − yz∂z

Table 3.   Metrics Admitting Seven KVFs.

Branch No. Metric Solution of killing equations Additional KVFs

7 a(t) = k1 and b(t) = ek2t, η0 = c1k2z
m2−k22

−
c2k2y

m2−k22
+ c3 X(5) =

k2z
m2−k22

∂t −
mz

m2−k22
∂x

where k1  = 0 , k2  = 0 η1 = −
c1mz
m2−k22

+
c2my

m2−k22
+ c4 +yz∂y −

1
2

[

(y2 − z2)+ e−2(k2 t+mx)

m2−k22

]

∂z

and m  = ±k1k2 η2 = c2
2
(z2 − y2)+ c1yz + c5z − c3k2y X(6) = −

k2y

m2−k22
∂t +

my

m2−k22
∂x

−mc4y +
c2e

−2k2 t e−2mx

2(m2−k22 )
+ c6 − 1

2

[

(y2 − z2)− e−2(k2 t+mx)

m2−k22

]

∂y − yz∂z

η3 = −c2yz +
c1
2
(z2 − y2)− c5y X(7) = ∂t − k2y∂y − k2z∂z

−
c1e

−2k2 t e−2mx

2(m2−k22 )
− c3k2z −mc4z + c7

8 a(t) = k1t + k2 and b(t) = a
m
k1 , η0 = ek1x

[

c1z + c2y + c3k1

]

X(5) = zek1x∂t −
zek1x

a ∂x + e(k1−2m)x∂z

where m  = k1 and k1  = 0 η1 = −ek1x

a

[

c1z + c2y + c3k1

]

+ c4 X(6) = yek1x∂t −
yek1x

a ∂x + e(k1−2m)x∂y

η2 = c5z + c2e
(k1−2m)x

∫

dt
b2

−mc4y + c6 X(7) = k1e
k1x∂t −

k1e
k1x

a ∂x

η3 = −c5y + c1e
(k1−2m)x

∫

dt
b2

−mc4z + c7

15 a(t) = constant η0 = c1 , η1 = c2z
m −

c3y
m −

c4
m

X(5) = ∂t

and b(t) = constant η2 = c3
2m2

[

−
k22
k21
e−2mx −m2y2 +m2z2

]

X(6) =
z
m ∂x + yz∂y

+c2yz + c4y + c5z + c6 + 1

2m2

[ k22
k21
e−2mx −m2y2 +m2z2

]

∂z

η3 = c2
2m2

[ k22
k21
e−2mx −m2y2 +m2z2

]

X(7) = −
y
m ∂x −

1

2m2

[ k22
k21
e−2mx

−c3yz + c4z − c5y + c7 +m2y2 −m2z2
]

∂y − yz∂z
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The structure of Lie algebra for the metrics with seven KVFs is different from each other and it is presented 
in the following table:

Branch Lie algebra of metrics with seven KVFs

7 [X1,X3] = −X2 , [X1,X4] = −X1 , [X1,X6] = X7 , [X1,X7] = −X1, [X2,X3] = X1,

[X2,X4] = −X2 , [X2,X6] = X3 , [X2,X7] = −X2, [X3,X5] = X6 , [X3,X6] = X5,

[X4,X5] = X5 , [X4,X6] = X7, [X5,X6] = X5 , [X5,X7] = X5 , [X6,X7] = X7

8 [X1,X6] = X7 , [X2,X5] = X7 , [X3,X5] = X6 , [X3,X6] = X5, [X4,X5] = X5,

[X4,X6] = X6 , [X4,X7] = X7 , [X5,X6] = X3, [X5,X7] = X2 , [X6,X7] = X1

15 [X1,X6] = X3 , [X1,X7] = X4 , [X2,X6] = X4 , [X2,X7] = X3, [X3,X6] = X7,

[X3,X7] = X6 , [X4,X6] = −X6 , [X4,X7] = −X7, [X6,X7] = X3

In order to add some physical implications, we find the source of matter for the obtained metrics and discuss 
their physical significance. It is well known that different forms of energy momentum tensor correspond to 
different matters. For example, Tab for a perfect fluid is of the form Tab = (ρ + p)uaub + pgab, where ρ , p and 
ua signifies energy density, pressure and the four velocity vector respectively. The four velocity vector ua for the 
LRS Bianchi type V metric gets the form ua = (1, 0, 0, 0) and hence Tab gives a perfect fluid if the non-diagonal 
component T01 of energy-momentum tensor vanishes. Thus the metrics given by branches 8, 11, 12, 13 and 
15 during our classification represent perfect fluid. For metrics of branches 8 and 13, the density and pressure 
become zero, giving vacuum solutions. The metric of branch 11 yields ρ = 3k21 and p = −3k21. As ρ > 0, it shows 
that the metric is physically realistic. Moreover, the values of ρ and p satisfy all the energy conditions except 

the strong energy condition. For the metric of branch 12, the values of ρ and p are obtained as ρ =
3(k21−m2)

(k1t+k2)2
 

and p = −
k21−m2

(k1t+k2)2
 . Here ρ > 0 provided that k21 > m2 and under this condition all the energy conditions are 

identically satisfied. Finally, for the metric obtained in branch 15, we have ρ = − 3m2

k2
 , p = m2

k2
 . As ρ < 0 , so this 

metric is an unrealistic metric.
In addition to the physical significance of the metrics discussed above, we also discuss the singularity of the 

obtained metrics. For this purpose, we calculate the Kretschmann scalar K = RabcdRabcd for all the obtained 
metrics, where Rabcd is the Riemann tensor. A spacetime is said to be regular (non-singular) when its associated 
Kretschmann scalar possesses a finite value. Here, we check the singularity of the metrics which have more than 
four KVFs.

For the metric of branch 7, the obtained value of K is given by:

Here the value of K is clearly finite and positive. So this metric has no singularity.
The Kretschmann scalar K becomes zero for the metrics associated with branches 8 and 13, indicating that 

these two metrics exhibit regularity.
The metric associated with branch 9 yields the value of K as:

Similar to the branch 7 metric, the metric of this branch is also regular, featuring a positive (finite) Kretschmann 
scalar.

The Kretschmann scalar K for the metrics corresponding to branches 10 and 11 is expressed as:

K =
12

k41

(

k22k
2
1 −m2

)2

K =
12

a(t)4

[(

m2
− a′2

)2
+ a2a′′2

]

Table 4.   Metric Admitting Ten KVFs.

Branch No. Metric Solution of killing equations Additional KVFs

13 a(t) = b(t) = mt + k2, η0 = emx
[

c1m
2(y2 + z2)+ c2y + c3z + c4

]

X(5) =
[

m2emx(y2 + z2)+ e−mx
]

∂t

where m  = 0 +c1e
−mx

− 1
a

[

m2emx(y2 + z2)− e−mx
]

∂x

η1 = −emx
[

c1m
2 y2+z2

a(t) + y
(

c2
a(t) −

c5e
−mx

m

)

− 2m
a ye−mx∂y −

2m
a ze−mx∂z

+z
(

c3
a(t) +

c6e
−mx

m

)

+
c4
a(t)

]

+
c1
a(t) e

−mx + c7 X(6) = yemx∂t −
y
a e

mx∂x −
e−mx

ma ∂y

η2 = −
2c1me−mx

a(t) y − c2e
−mx

ma(t) +
c5
2m2

[

e−2mx X(7) = zemx∂t −
z
a e

mx∂x −
e−mx

ma ∂z

−m2y2 +m2z2
]

+ c6yz −mc7y + c8z + c9 X(8) = ∂t −
emx

a ∂x

η3 = −
2c1me−mx

a(t) z − c3e
−mx

ma(t) − c5yz +
c6
2m2

[

− e−2mx X(9) =
y
m ∂x +

1

2m2

[

e−2mx

−m2y2 +m2z2
]

−mc7z − c8y + c10 −m2y2 +m2z2
]

∂y − yz∂z

X(10) = − z
m ∂x + yz∂y

− 1

2m2

[

e−2mx +m2y2 −m2z2
]

∂z
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It can be seen that the metrics of these branches are regular, having finite value of K.
In case of branch 12, the value of K is determined to be:

which is evidently positive and finite, indicating a metric that is regular.
The value of K for branch 15 gets the form:

that demonstrates the absence of singularity in the metric.

Data availibility
The data sets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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