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Spintronic virtual neural 
network by a voltage controlled 
ferromagnet for associative 
memory
Tomohiro Taniguchi 1* & Yusuke Imai 2

Recently, an associative memory operation by a virtual oscillator network, consisting of a single 
spintronic oscillator, was examined to solve issues in conventional, real oscillators-based neural 
networks such as inhomogeneities between the oscillators. However, the spintronic oscillator still 
carries issues dissipating large amount of energy because it is driven by electric current. Here, we 
propose to use a single ferromagnet manipulated by voltage-controlled magnetic anisotropy (VCMA) 
effect as a fundamental element in a virtual neural network, which will contribute to significantly 
reducing the Joule heating caused by electric current. Instead of the oscillation in oscillator networks, 
magnetization relaxation dynamics were used for the associative memory operation. The associative 
memory operation for alphabet patterns is successfully demonstrated by giving correspondences 
between the colors in a pattern recognition task and the sign of a perpendicular magnetic anisotropy 
coefficient, which could be either positive or negative via the VCMA effect.

Emulating associative memory operation in the human brain by electrical devices has been investigated since 
the  1970s1–3. Several models inspired by neural and/or synaptic activities, such as the Hopfield  model4, and 
their experimental implementations have been  developed5–14. For example, the associative memory operation 
was recently achieved by using nanometer-scale ferromagnetic memory as  synapses15. The associative memory 
operation has also been examined by another model, called coupled oscillator  networks16–21, where several oscil-
lators are mutually coupled through interactions and play the role of neurons. The basic idea in these models is 
to find a correspondence between targets and outputs from devices. For example, when one tries to associate a 
two-colored (black and white) pattern from memories, a correspondence between white (black) color and firing 
(non-firing) neuron should be  given4. When we perform the same phenomena using oscillator networks, a corre-
spondence between white (black) color and in-phase (anti-phase) synchronization of the oscillators is  required20.

Another effort made recently for associative memory operation is to build a virtual oscillator  network22 con-
sisting of a spintronic oscillator, called spin-torque oscillator (STO)23, where output from a single STO is divided 
into N parts and treated as outputs from N oscillators. The key point of the  model22 is that these outputs virtually 
interact among each other by using time-multiplexing method. As revealed in Ref.24, the operation principle of 
the virtual oscillator network is similar to a feedforward neural network, rather than the conventional, instanta-
neously coupled oscillator  networks16–20. The virtual oscillator network solved several issues in the conventional 
oscillator  networks22, such as unstable operation due to inhomogeneity in the oscillators. However, an STO often 
dissipates large amount of energy because magnetization dynamics is driven by electric current. Therefore, it 
would be of great interest if we can build a similar system with different spintronics devices. A candidate is a 
ferromagnet manipulated by voltage-controlled magnetic anisotropy (VCMA) effect, where an application of 
voltage modulates electrons states near the ferromagnetic/nonmagnetic interface and changes magnetization 
 direction25–30. Since the magnetization manipulation by the VCMA effect does not require electric current in 
principle, except charging and discharging the capacitor and reading, a significant reduction of the operation 
power is expected. It is, however, unclear how to develop a virtual network by employing VCMA device and 
perform associative memory operation.
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In this work, we propose an algorithm for an associative memory operation by manipulating VCMA effect 
in a single ferromagnet. Two stable states of the magnetization, controlled by the VCMA effect, are used as out-
puts of neurons in a virtual neural network. In this sense, the present model is similar to the original associative 
memory operation by neural  networks4. The present system, however, consists of a single device, which is the 
different aspect from the conventional neural networks. In addition, the present system is also different from 
the virtual oscillator  network24. This is because the algorithm developed here requires the relaxed state of the 
magnetization only for the computation, while the virtual oscillator network requires long-time memories of 
the phase during the magnetization oscillation in an STO. Therefore, the present algorithm is simpler than that 
of the virtual oscillator  network22. We also demonstrate the associative memory operation of alphabet patterns. 
The applicability of the algorithm to other devices is also discussed.

Results
In the following, we provide a description of a virtual neural network based on VCMA device after reviewing the 
associative memory operation by conventional neural and oscillator networks for comparison.

The associative memory operation studied in this work belongs to a pattern recognition of a black-and-white 
pattern, which is schematically shown in Fig. 1a. We have a pattern, called a “pattern to be recognized”, and aim 
to associate the most resembled pattern with a stored set of patterns, called “memorized patterns”.

Associative memory operation by conventional neural or oscillator networks
Here, we briefly review the associative memory operation by neural or oscillator networks studied previously 
to clarify the difference between the past and present works. We divide patterns into N pixels and also prepare 
neural or oscillator networks consisting of N neurons, as schematically shown in Fig. 1b. An activity of the ith 
neuron is related to the color (white or black) of the pattern, as mentioned below.

First, we need to generate a pattern to be recognized on this network, where a corresponding human activity 
is to see the pattern to be recognized and input it into the brain; see Fig. 1a. For this purpose, we give interac-
tions between neurons or oscillators, which between the ith and jth neurons or oscillators ( i, j = 1, 2, · · · ,N ) 
is proportional to a weight w(1)

ij  . In this work, we use the Hebbian rule for the weight, where w(1)
ij  is defined as

Here, ξRi = +(−)1 when the color of the ith pixel in the pattern to be recognized is white (black). Note that the 
weight is unchanged even if all of the black and white colors are swapped. Therefore, two patterns in which all 
of the black and white colors are opposite should be regarded as the same pattern. In the neural networks, the 
output xi from the ith neuron is affected by the other neurons through the interaction. Then, we determine a 
threshold so that the output xi becomes a digital value, xi = 0 or 1. In other words, we introduce a step function 
�[

∑N
j=1 w

(1)
ij xj + bi] [ bi is a bias term and �(x) = 0(1) for x < (>)0 ] as an activation function and determine 

the output from the ith neuron. In the oscillator network, on the other hand, the oscillators are mutually coupled 
through the interactions. As a result, the phase difference between the ith and 1st oscillators, �ψi = ψi − ψ1 
with the phase ψi of the ith oscillator, often saturates to either in-phase ( �ψi = 0◦ ) or anti-phase ( �ψi = 180◦ ), 
where, for convention, we define �ψ1 = 0◦ to define the origin of the phases. Thus, in both the neural and oscil-
lator networks, the output from the ith neuron becomes one of two possible values. When the threshold and/or 
the interaction strengths of these models are appropriately determined, one-to-one correspondence between the 
colors (black or white) of the pattern to be recognized and the outputs from the neural ( xi = 0 or 1) or oscillator 
( �ψi = 0◦ or 180◦ ) networks is obtained. In this way, the pattern to be recognized is generated on the network.

Second, we need to find the most resembled from the memorized patterns. For this purpose, the interaction 
strengths are switched to different values, which are proportional to

(1)w
(1)
ij = ξRi ξ

R
j .
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Figure 1.  (a) Schematic illustration for definitions of association and patterns in this work. A human 
memorizes a set of patterns, called “memorized patterns”, such as alphabets A, B, C, etc. When a pattern, called 
“pattern to be recognized”, is inputted, the human tries to find the most resembled pattern from the memorized 
pattern and outputs an answer. This pattern recognition is an associative memory operation examined in this 
work. (b) Schematic illustration of an example of a correspondence between a black-and-white pattern and 
the conventional neural network for associative memory operations. The pattern is divided into N pixels, and 
the white (black) color is related to a firing (non-firing) neuron, whose output is 1 (0). The neurons are fully 
connected to each other, and their interaction strength is proportional to weight wij.
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where Nm is the number of memorized patterns. The parameter ξmi  is +(−)1 when the color of the ith pixel in 
the mth memorized pattern is white (black). Then, the outputs ( xi ) from neurons in the neural network or the 
phase differences ( �ψi ) in the oscillator network change to those of the memorized patterns most resembling 
the pattern to be recognized. As a result, the most resembled pattern appears on the network. It means that the 
association of the pattern is achieved.

Manipulation method of VCMA devices
Before explaining the basic idea of the associative memory operation by a single ferromagnet, let us explain how 
to manipulate the output from the ferromagnetic device using the VCMA effect. We consider a ferromagnetic 
multilayer consisting of two ferromagnetic metals and one insulating barrier shown in Fig. 2a, where the top 
and bottom ferromagnets correspond to free and reference layers. The unit vector pointing in the direction 
of the magnetization is denoted as m , where we use the macrospin assumption, which has been validated by 
 experiments28. The structure is basically the same with the STO, however, the thickness of the insulating barrier 
is relatively thick. Accordingly, while electric current flows in the STO and cause the Joule heating, the electric 
current, and thus the heating, are absent in the present system in principle. In the STO, the electric current carries 
spin-angular momentum and transfers it from one ferromagnet to the other, causing spin-transfer  torque31,32 and 
driving magnetization  oscillation23. In the present system, on the other hand, an application of electric voltage 
modulates magnetic anisotropy  energy25–30. For example, the magnetic energy density of a cylinder-shaped fer-
romagnet consisting of the first-order magnetic anisotropy is given by

where Ku is the net magnetic anisotropy energy coefficient consisted of shape magnetic anisotropy energy, inter-
facial magnetic anisotropy  energy33–35, and so on. Importantly, the value of Ku can be manipulated by the VCMA 
effect and can be either positive or negative, depending on the sign and magnitude of the applied  voltage28. When 
Ku is positive (negative), the energy density E is minimized when the angle θ(= cos−1 mz) of the magnetization 
direction measured from the perpendicular (z) axis is 0◦ and 180◦ ( 90◦)28, as schematically shown in Fig. 2b. 
When the value of Ku is changed by the VCMA effect, the magnetization changes its direction to minimize the 
energy density; see “Methods” for analytical solution of the Landau-Lifshitz-Gilbert (LLG) equation, as well as 
Fig. 2c showing an example of the relaxation dynamics of the magnetization for Ku > 0 . The magnetization state 
corresponding to θ = 0◦, 180◦ ( 90◦ ) is called a perpendicularly (in-plane) magnetized state. The change of the 
magnetization direction can be experimentally measured through magnetoresistance effect. Accordingly, we can 
generate digital output (perpendicular or in-plane) from the VCMA device by changing the sign of Ku . If we can 
give a correspondence between the sign of Ku and, for example, black-and-while colors in a pattern, an associative 
memory operation will be possible by manipulating the VCMA device. For example, in the associative memory 
operation of black-and-white color patterns using an oscillator  network20,24, �ψi = 0◦ ( 180◦ ), or equivalently 
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Figure 2.  (a) Schematic illustration of a ferromagnetic/insulating barrier/ferromagnetic trilayer system with 
an applied voltage V. The unit vector pointing in the direction of the magnetization in the free layer is denoted 
as m , while the tilted angle of the magnetization from the perpendicular (z) direction is θ . (b) Schematic 
illustration of the energy density given by Eq. (3). The solid (dotted) line corresponds to the case of Ku > (<)0 . 
The red and blue triangles indicate the angle θ minimizing the energy density, which is θ = 0◦ for Ku > 0 and 
90◦ for Ku < 0 . Note that the angle θ = 180◦ also minimizes the energy when Ku > 0 . For simplicity, however, 
we focus on the region of 0◦ ≤ θ ≤ 90◦ , as explained in the main text. (c) An example of relaxation dynamics of 
the magnetization, where Ku > 0 . Since the LLG equation conserves the norm of the magnetization ( |m| = 1 ), 
the change of the magnetization direction can be represented as a line on a unit sphere, as shown. The initial 
state of the magnetization is set to be m(t = 0) = (sin 80◦, 0, cos 80◦) and is indicated by the blue circle. The 
relaxation dynamics was evaluated by numerically solving the LLG equation, Eq. (7), where γ = 1.764× 107 
rad/(Oe s), α = 0.05 , and HK = 2Ku/M = 2.0 kOe. Since Ku is positive, the magnetization finally relaxes to the 
state θ = 0◦ , or equivalently, mz = +1 , indicated by the red circle. When Ku is negative, the magnetization will 
relax to the state θ = 90◦.
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cos�ψi = +1 ( −1 ), means that the color of the ith pixel is white (black). Bearing this in mind, in this work, we 
define the correspondence between the color and the magnetization state by parameters as

where c1 = sign(1− 2 sin θ1) . Accordingly, when the magnetization reaches to an energetically stable (perpen-
dicular or in-plane, depending on the sign of Ku ) state, C1 is always +1 , and Ci ( i ≥ 2 ) is +1 ( −1 ) when the color 
(black or white) of the ith pixel is the same with (opposite to) the 1st pixel. In this work, for convention, we 
define that the 1st pixel is always white, and correspondingly, define C1 to be +1 . Note that the definition of the 
correspondence between the angles and colors is not unique. For example, another possible definition is that 
the color of the ith pixel is white (black) when θi = 0◦ ( 90◦ ). In this case, the color of the 1st pixel is not fixed to 
white. Such arbitrariness of the definition of the color does not affect the association because the patterns should 
be regarded as the same even when all of the black and white pixels are swapped. In addition, for convenience, 
we assume that θ relaxes to 0◦ only when Ku > 0 , in the following (see also “Methods” for analytical solution of 
the LLG equation).

At the end of this subsection, we give two comments on the relation between the present system and previous 
works. First, comment can be made as to the possibility to extend the present system to analogue-output systems. 
While the activation function initially used in the neural network was a step  function4 generating digital outputs, 
various kinds of activation functions, generating analogue outputs, such as hyperbolic tangent, sigmoid, and 
rectified linear unit (ReLU) functions, have been proposed and used in the studies of neural  networks36. Such 
systems have been of great interest from both fundamental and practical viewpoints. In addition, in oscillator 
networks, interactions between oscillators sometimes result in phase differences �ψi which are neither in-phase 
nor anti-phase20. For simplicity, however, the present work focuses on the digital outputs from ferromagnets 
only. An extension to analogue outputs will be possible if we, for example, add higher-order terms of magnetic 
anisotropy (see “Methods” for analogue output from VCMA devices). In fact, physical reservoir computing 
was studied previously by using VCMA device with second-order magnetic anisotropy energy, where analogue 
outputs were used for recognition task of time-dependent inputs,37. There is also an interesting proposal for 
an associative memory operation of colored patterns by an array of  STOs21. Second, we note that there is a 
VCMA device applicable to oscillator networks. Recently, a parametric oscillation of the magnetization by using 
microwave VCMA effect was found in Ref.38. Thus, one might consider to replace an STO in the virtual oscil-
lator  network22,24 with this parametric oscillator and develop an oscillator network. However, the fact that an 
external magnetic field is necessary for this parametric  oscillator38 suggests that such method is unsuitable for 
practical application. Non-uniqueness of the oscillation phase in this parametric oscillator will also be an issue 
to determine outputs  uniquely39. These issues should be solved if one develops an idea of implementing VCMA 
devices to oscillator networks.

Associative memory operation by virtual network
Now let us explain how to perform the associative memory operation by a single VCMA device. Similar to the 
virtual oscillator network by an  STO24, the associative memory operation by the virtual network consists of 
three steps. Each step consists of applying voltage N times, and therefore, totally the voltages should be applied 
3N times.

First, we apply random voltage N times, where the duration time of the voltage should be sufficiently longer 
than the relaxation time of the magnetization to the energetically stable state (see also “Methods” for the analyti-
cal solution of the LLG equation and numerical methods). The ith ( i = 1, 2, · · · ,N ) voltage determines the sign 
of Ku (positive or negative) through the VCMA effect. The magnetization relaxes to the perpendicular θ(1)i = 0◦ 
[in-plane θ(1)i = 90◦ ] state when Ku is positive (negative), as schematically shown in Fig. 3a. Recall that the 
magnetization angle θ(1)i  ( i = 1, 2, · · · ,N ) can be measured through magnetoresistance effect. This angle θ(1)i  is 
regarded as an output from the ith virtual neuron during the first step. The aim of the first step is to prepare the 
initial states of the N virtual neurons. The color of the ith pixel in this initialized pattern is white (black) when 
the saturated angle of the magnetization is the same with (opposite to) that in the 1st part, as mentioned. The 
values of the saturated angle are also stored in a memory (see also “Methods” for simplification of the first step).

Second, we apply the voltage N times again. The jth ( j = 1, 2, · · · ,N ) voltage is determined so that it makes 
Ku as

where the weight w(1)
ij  is given by Eq. (1). Recall that θ(1)i  obtained in the first step was either 0◦ or 90◦ . Therefore, 

the factor 1− 2 sin θ
(1)
i  in Eq. (5) is +(−)1 when θ(1)i = 0◦ ( 90◦ ). This factor, 1− 2 sin θ

(1)
i  , is similar to the color 

of the ith pixel generated in the first step, as implied from Eq. (4). The coefficient K̃ (1)
u  determines the magnitude 

of the magnetic anisotropy energy during this second step. The numerical factor N is added to the denominator 
to keep the value of K (1)

u,j  realistic (see “Methods” for numerical methods). As a result of the modulation of Ku , 

the angle θ(2)j  during the application of the jth voltage will saturate to either 0◦ or 90◦ , depending on the sign of 

K
(1)
u,j  , as schematically shown in Fig. 3b. This angle θ(2)j  is regarded as an output from the jth virtual neuron during 

(4)Ci =
{

|1− 2 sin θ1| (i = 1)
c1(1− 2 sin θi) (i ≥ 2)

,

(5)K
(1)
u,j =

K̃ (1)
u

N

N
∑

i=1

w
(1)
ji

[

1− 2 sin θ
(1)
i

]

,



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8188  | https://doi.org/10.1038/s41598-024-58556-z

www.nature.com/scientificreports/

the second step. There will be a correspondence between the value of θ(2)j (= 0◦ or 90◦ ) and the color (white or 
black) of the jth pixel in the pattern to be recognized through Eq. (4).

Third, we apply the voltage N times again, which gives the value of Ku as
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Figure 3.  Schematic illustration of three steps for associative memory operation by a single ferromagnet 
manipulated by the VCMA effect. The operation consists of three steps (initialization, generation of a pattern to 
be recognized, and association of the pattern). Each step consists of applications of voltage N times, and thus, 
is divided into N parts. The color of a pixel is white (black) when the saturated magnetization direction in the 
corresponding part is the same with (opposite to) that in the 1st part. (a) In the first step, random voltage is 
applied to the VCMA device N times ( i = 1, 2, · · · ,N ), which changes the sign of Ku either to be positive or 
negative. As a result, the magnetization during the application of the ith voltage relaxes to the perpendicular 
(in-plane) magnetized state when Ku is positive (negative), where θ(1)i = 0◦ ( 90◦ ). (b) In the second step, voltage 
is applied to the VCMA device N times again ( j = 1, 2, · · · ,N ), where Ku ends up having the value giving 
by Eq. (5) with jth voltage. Here, the information of the magnetization state, θ(1)i  , with weight w(1)

ji  , is used to 
determine the jth voltage [or equivalently, K (1)

u,j  ] through Eq. (5). Because w(1)
ji  is determined by the pattern to be 

recognized, the magnetization direction during the application of the jth voltage relaxes to the magnetization 
state θ(2)j  (perpendicular or in-plane) corresponding to the color of the jth pixel in the pattern to be recognized. 
(c) In the third step, voltage is applied to the VCMA device N times again ( k = 1, 2, · · · ,N ), again in which Ku 
results in having the value given by Eq. (6) with kth voltage. Here, the information of the magnetization state, 
θ
(2)
j  , with weight w(2)

kj  , is used to determine the kth voltage [or equivalently, K (2)
u,k ] through Eq. (6). Because w(2)

ji  
is determined by the memorized patterns, the magnetization direction during the application of the kth voltage 
relaxes to the magnetization state (perpendicular or in-plane) corresponding to the color of the kth pixel in the 
most resembled pattern.
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where K̃ (2)
u  determines the magnitude of the magnetic anisotropy energy during this third step, while w(2)

kj  is 
given by Eq. (2). The magnetization during the application of the kth voltage will relax to either 0◦ or 90◦ , which 
corresponds to the color of the kth pixel in the memorized pattern most resembling the pattern to be recognized, 
as schematically shown in Fig. 3c. Then, the association of the pattern is completed.

For experimental researchers, let us provide a description of an experimental procedure more, although the 
main focus of this paper is to provide a theoretical aspect of the associative memory operation. The experimen-
tal equipment necessary to perform the present proposal is mainly the same with those used in typical VCMA 
experiments, i.e., the source meter units, probes, and so on. Applying voltage to adjust Ku to that determined 
by Eq. (5) or (6), the magnetization direction after the relaxation should be estimated through the resistance 
measurement. Memory storing the information on the magnetization direction in the ith ( i = 1, 2, · · · ,N ) part 
during the mth ( m = 1, 2 ) step and determining the voltages in the (m+ 1) th step is necessary. We note that a 
circuit generating an in-plane external magnetic field used in the switching measurement by the VCMA effect 
is unnecessary for the associative memory operation. We also note that complex measurement systems used in 
other spintronic neuromorphic computing, such as arbitrary-wave generator and bias-Tee used in the physical 
reservoir computing by  STOs40, are unnecessary because it is unnecessary to measure, for example, an oscillat-
ing output, in contrast to coupled oscillator networks. In Fig. 3, we assume step-function-like voltage inputs for 
simplicity, which modulate the net perpendicular magnetic anisotropy energy. Recall, however, that only the 
accurate control on the sign of Ku is necessary for the associative memory operation, and, for example, waveform 
of the input voltage does not affect the results of the association. For example, even if there is finite rising time in 
the voltage pulse, it does not prevent the association. Moreover, even if the voltages are discontinuous, i.e., there 
is separation time between ith and (i + 1) th voltages in Fig. 3, the present algorithm works. These are differences 
from the switching experiments utilizing the VCMA effect, where the switching probability is sensitive to the 
form of the voltage  inputs41. It also differs from physical reservoir computing using STOs, where it was found that 
the computational capability depends on the waveform of the  inputs40. In these experiments, an adjustment of 
the waveform in nanosecond regime significantly affects the performance. In contrast, such a careful treatment 
on the inputs is unnecessary in the present proposal. Only the condition required for the associative memory 
operation is that the pulse width of the input is sufficiently longer than the relaxation time of the magnetization 
(see “Methods” for analytical solution of the LLG equation, which discuss the relaxation time).

In contrast with the conventional neural networks for associative memory  operation4, the interaction between 
neurons in the present system is not instantaneous. Rather, we divide output from a single ferromagnet into 
N parts, treat them as outputs from N neurons, and give virtual interactions between them, where an output 
θ
(m)
i  from the ith neuron during the mth step is used in the inputs K (m+1)

u,j  to the jth neuron in the (m+ 1) th 
step. In this sense, the present system is similar to the feedforward neural network. However, the weights in the 
present system are fixed, while those in the conventional feedforward neural networks are often updated during 
deep-learning process. This is the different aspect from the feedforward neural network. Although we apply 
the voltage N times during the first step mentioned above, this procedure might be simplified (see “Methods” 
for simplification of the first step). Therefore, the energy for the operation of the present algorithm is roughly 
proportional to 2N because a single VCMA device is driven 2N times. This energy is comparable with that 
required in the conventional neural and oscillator networks because N neurons or oscillators in these devices 
are driven two times for generating the pattern to be recognized and associating the patterns. Note also that we 
use the relaxation dynamics of the magnetization to energetically stable states. Contrary, in the virtual oscilla-
tor  network24, the oscillation of the magnetization was excited in an STO, and the oscillation phase was used as 
outputs. From this aspect, the VCMA devices might poss the advantage of reducing the computational costs, 
compared with that using an STO, because only the information of the relaxed (final) state ( θ = 0◦ or 90◦ ) is 
necessary for the associative memory operation in the present scheme, while oscillating data for a long time 
should be stored for the virtual oscillator  network22. Note also that the color of each pixel in the present scheme 
is uniquely determined because the angle θ is finally saturated to either sin θ = 0 or sin θ = 1 , depending on the 
sign of Ku . The color in the oscillator network might be, on the other hand,  gray20, i.e., neither black nor white, 
when the phase does not saturate to either 0 or 180◦ . This again is the different aspect between the present system 
and the oscillator networks.

Demonstration of associative memory operation
Here, we demonstrate the associative memory operation by a ferromagnet manipulated by the VCMA effect. In 
the present work, we examine the association of an alphabet pattern from three memorized patterns, “A”, “B”, 
and “C”, shown in Fig. 4a. Each pattern consists of 10(rows)× 6(columns)= 60 pixels. The 1st pixel corresponds 
to the pixel at the upper left. Note that the associative memory operation for more large numbers of memorized 
patterns was examined in our previous  work24. As mentioned there, there had been great efforts focusing on the 
relationship between the maximum number of the memorized patterns and the pixel numbers, and it was found 
that the maximum number is approximately given by N/(2 lnN)7. This equation provides a rough estimation of 
the ability of associative memory operation by any system. Therefore, although we examine associations of simple 
patterns in this work, this equation will restrict the applicability of the present system even to real-world tasks. It 
would be of great interest to overcome this restriction not only for spintronics-based neuromorphic computing 
but also for general computational systems. We would like to keep this issue as a future work.

(6)K
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u
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As explained above, the operation uses the angle θ of the magnetization as output. The relaxation dynamics 
of the magnetization to an energetically stable state is described by the LLG equation,

where γ and α are the gyromagnetic ratio and the Gilbert damping constant, respectively. The magnetic field H 
relates to the energy density, Eq. (3), via H = −∂E/∂(Mm) and is given by H = HKmzez , where

(7)
dm

dt
= −γm×H+ αm×

dm

dt
,
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Figure 4.  (a) Set of memorized patterns. (b) Initializing the patterns, which corresponds to the first step in 
Fig. 3a. The left shows the relaxation dynamics of mz for 60 parts and the right shows the corresponding pattern. 
(c) Generating the pattern to be recognized, which corresponds to the second step in Fig. 3b. The generated 
pattern is the pattern in Fig. 5 with 4 noisy pixels. (d) Associating the most resembled pattern from the set of 
memorized patterns, which corresponds to the third step in Fig. 3c. (e) An example of the pattern obtained after 
the third step (left) and dependence of accuracy on the number of noise (right). In this case, the pattern in the 
left is greatly different from the pattern “A” in (a), and thus, the association is regarded as failure. The left figure 
is obtained by using a figure in Fig. 5 with 26 noisy pixels.
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with the saturation magnetization M. Therefore, Eqs. (5) and (6) appear in the LLG equation as the magnetic 
anisotropy field through Eq. (8). The detailed relationship between HK and Eqs. (5) and (6) in the numerical 
simulations, as well as the values of the parameters, are summarized in Methods for numerical methods. Note 
that Eq. (7) for the present system has an analytical solution for θ ; see “Methods” for analytical solution of the 
LLG equation.

Recall that the associative memory operation by the virtual neural network consists of three steps, and in 
each step, the voltage is applied N times. Therefore, the LLG equation should be solved 3N times (see also a com-
ment in Methods for simplification of the first step). The point to be reminded of in the operation is that Ku , or 
equivalently HK , varies in each part, according to Eqs. (5) and (6) (see also the “Methods” for analytical solution 
of the LLG equation and numerical methods for details). As a result, the solution of Eq. (7) has a correspondence 
to the pixel colors of these patterns.

Figure 4b–d show examples of the three steps explained in the previous subsection, i.e., the initialization, 
the generation of the pattern to be recognized, and the association of the most resemble patterns from the set 
of memorized patterns, respectively. In each figure of Fig. 4b–d, the left shows the time evolution of mz = cos θ 
for N = 60 parts, while the right shows the corresponding pattern, where the color is determined by the final 
value of θ = cos−1 mz . In the first step, the initial state of each pixel is randomly prepared, as shown in Fig. 4b. 
In this step, the angle θ(1)i  is estimated from mz in the ith part and stored. In the second step, the pattern to be 
recognized is generated by using θ(1)i  obtained in the first step and the weight w(1)

ij  , as shown in Fig. 4c. The reason 
why time evolution of mz are almost overlapped, although the initial condition of each part ( j = 1, 2, · · · ,N ) is 
different, will be explained in next subsection. Recall that the angle θ(2)j  estimated from the mz in the jth part is 
stored. In the third step, the association of the most resembled pattern from the set of the memorized patterns 
is performed by using θ(2)j  obtained in the second step and the weight w(2)

ij  . In this example, the pattern to be 
recognized resembles the pattern “A” in Fig. 4a, and its association is successfully achieved, as shown in Fig. 4d.

Although Figs. 4c and 4d show a succeeded case of the association, a failure of an association possibly occurs. 
A possible origin of the failed association is that the pattern to be recognized is greatly different from any of 
the memorized patters (see also “Methods” for noisy patterns and definition of accuracy). Figure 4e shows an 
example of such a failed association, where the pattern obtained after the third step is greatly different from the 
pattern “A”, although the pattern to be recognized is derived from the pattern “A” by swapping the colors of 26 
pixels (see also “Methods” for noisy patterns and definition of accuracy). Note that whether the association is 
succeeded or not depends on the similarity between the pattern to be recognized and one of the memorized 
patterns. We introduce a quantity, named overlap, to quantify this similarity. The overlap between two patterns, 
A and B , means the degree of having the same colors at the same pixel in these patterns. A quantification of 
the overlap can be given by

where ξA = (ξ
A

1 , ξ
A

2 , · · · , ξAN ) is defined from the pixel color of the pattern A [ ξAi = +(−)1 when the ith 
pixel is white (black)]. The overlap becomes 1 when the two patterns are completely identical or their black and 
white colors are completely swapped. For example, the overlaps between the pattern to be recognized and the 
pattern “A”, “B”, and “C” shown in Fig. 4a and c are 56/60, 32/60, and 34/60, respectively. Accordingly, the pattern 
“A” can be regarded as the most resembled pattern, and therefore, the association is regarded to be successful. In 
addition, we introduce a word “noise”. In the present work, we define w(1)

ij  , or equivalently the pattern to be 
recognized by randomly swapping colors of the pattern “A”. In this sense, the pattern “A” is regarded as an original 
(or target) pattern, and the aim of the associative memory operation here is to associate “A” with the pattern to 
be recognized (see also “Methods” for noisy patterns and definition of accuracy). The noise relates to the overlap 
as N

[

1− O

(

ξR , ξA
)]

 , where the symbol A is the index of the original (target) pattern from which the pattern 
to be recognized is defined (thus, A is “A” in this study). For example, the number of the noisy pixels in Fig. 4c 
is 4. The maximum number of noise is N/2 because we regard two patterns to be the same if they are obtained 
by swapping all the black and white colors.

Figure 4e also shows the dependence of an accuracy of the association on the number of noise (see also 
“Methods” for noisy patterns and definition of accuracy). Here, the accuracy is defined as follows. We add noisy 
pixels to the pattern “A” randomly Nn times ( Nn = 10 in the present work). This pattern is used as the pattern 
to be recognized. When the pattern “A” is finally obtained in the third step, we regard this association accurate. 
The quantitative definition of the accuracy in the present work is as follows.

where �ε(x) is a step function which becomes 1 (0) when x ≥ (<)ε (we use ε = 10−3 in this work). The color 
of the jth pixel in the pattern obtained after the third step at the ith trial ( i = 1, 2, · · · ,Nn ) is denoted as CL

i,j  . 
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Similarly, the color of the jth pixel in the pattern A is denoted as CA

j  , where A represents the pattern from 

which the pattern to be recognized is derived. According to Eq. (10), the accuracy becomes 1 when the colors of 
the pattern A and the pattern obtained in the third step are the same with the numerical precision of 10−3 . On 
the other hand, when the difference between colors in any pixels is larger than 10−3 , these pixels are regarded as 
different, and the association of the corresponding pixel is regarded as failure. As the number of such differently 
colored pixels increases, the accuracy decreases. As shown in Fig. 4e, the accuracy falls from 1 when the number 
of noise becomes larger than ∼ 10 and becomes approximately zero when it is close to N/2 = 30 . The role of the 
noisy pixel, or equivalently the overlap, on the accuracy of the associative memory operation will be discussed 
in the next subsection. Recall that two patterns are regarded as the same if all the black and white colors are 
swapped. For such a case, the minus sign in Eq. (10) should be replaced by the plus sign.

Discussion
Now let us discuss the principle of the associative memory operation using a ferromagnet manipulated by the 
VCMA effect. As mentioned above, the associative memory operation by neural or oscillator networks consists 
of two processes. The first one is to generate the pattern to be associated on the network, and the second is to 
associate the pattern most resembled with it from a set of memorized patterns.

First, we explain the operation principle to generate the pattern to be recognized on the virtual neural network 
consisting of a single ferromagnet. Recall that, before trying to generate the pattern to be recognized, we applied 
voltage N times and obtained θ(1)i  . Using this θ(1)i  , Eq. (5) is defined. Then, the digital outputs are obtained from 
the ferromagnet as the angle, θ(2)j = 0◦ or 90◦ , of the magnetization, depending on the sign of K (1)

u,j  . Note that 
Eq. (5) can be regarded as a product of two parts as

Here, the former part, K̃ (1)
u

∑N
i=1 ξ

R
i

[

1− 2 sin θ
(1)
i

]

 , is common throughout the second process generating the 
pattern to be recognized. It indicates that the absolute value of K (1)

u,j  is the same for all of the N parts, and only 

the sign of K (1)
u,j  changes, depending on ξRj  . Accordingly, the sign of K (1)

u,j  is determined by the latter part, ξRj  . 
Therefore, when the color of the jth pixel in the pattern to be recognized is the same with (opposite to) the 1st 
pixel, the sign of K (1)

u,j  is also the same with (opposite to) the 1st pixel. As a result, the outputs θ(2)j  of the second 
process can have a correspondence to the color in the pattern to be recognized. It also reveals the reason why 
the time evolution of mz in Fig. 4c are almost overlapped, although we prepare N different initial conditions (see 
“Methods” for numerical method). This is because the magnitude of K (1)

u,j  , or equivalently HK , determining the 
relaxation time (see “Methods” for analytical solution of the LLG equation) is common for all of the N parts.

Next, an association with the most resembled pattern in the memorized patterns is performed as follows. In 
this case, the factor C(2)

j  can be replaced by ξRj  . When the magnetization in the second step is sufficiently relaxed 
to the energetically stable state determined by Eq. (5) and as a result the pattern to be recognized was appropri-
ately generated, the factor 1− 2 sin θ

(2)
j  becomes c(2)1 ξRj  , where c(2)1 = sign

[

1− 2 sin θ
(2)
1

]

 . This replacement can 
be confirmed by taking into account the assumption that the color of the 1st pixel is white ( ξR1 = +1 ), while θ(2)1  
can be either 0◦ or 90◦ . Therefore, K (2)

u,k becomes

here, we use the following approximation,

where the symbol A corresponds to the one of the indexes ( m = 1, 2, · · · ,Nm ) of the memorized patterns that 
resembles the pattern to be recognized. Equation (13) assumes that the most resembled pattern has a large over-
lap with the pattern to be recognized. When the overlap between the other patterns in the memorized patterns 
and the pattern to be recognized is small, ξmj ξRj  ( j  = A ) becomes either +1 or −1 , and their sum over the pixel 
number ( j = 1, 2, · · · ,N ) will be close to zero. This is the basis of the approximation in Eq. (13). When Eq. (13) 
holds, K (2)

u,k can be further approximated to

where we decomposed the right-hand side into two parts, and the former parts, 
(
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u /Nm
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)

 , is 
common for all parts ( i = 1, 2, · · · ,N ) during the third step. Therefore, the color of the kth pixel is determined 
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by the latter part, ξAk  , which gives the color of the kth pixel to be the color of the most resembled pattern. As a 
result, the association among the patterns is achieved.

The replacement of 1− 2 sin θ
(2)
j  with c(2)1 ξRj  mentioned above uses the assumption that the color of the 1st 

pixel is white ( ξR1 = +1 ). One might consider a different case, where the 1st pixel in the pattern to be recognized 
is black, and thus, ξR1 = −1 . In fact, when we generate the pattern to be recognized by adding noisy pixel to a pat-
tern in the set of memorized patterns, the 1st pixel can be coincidentally black; see “Methods” for noisy patterns 
and definition of accuracy, where 30 examples of the pattern to be recognized are shown. There is also another 
possibility that the color of the 1st pixel in the most resemble pattern is black. These cases, however, do not affect 
the operation principle and the evaluation of the accuracy. For example, when the color of the 1st pixel in the 
pattern to be recognized is black, the pattern generated after the second step becomes a pattern where all of the 
black and white colors are swapped with respect to the pattern to be recognized. Since we regard such patterns 
identical, as mentioned, the second step should be regarded to be succeeded. In addition, for the third step, 
1− 2 sin θ

(2)
j  is replaced by −c

(2)
1 ξRj  , which results in the change of the sign of K (2)

u,k . Then, although the saturated 
angles of all pixels are changed, the colors of the pattern obtained in the third step is unchanged because the 
colors are determined by whether the angles are the same with that of the 1st part or not. Again, since we regard 
two patterns the same if one can be identical to the other by swapping all the black and white colors, the third 
step is also regarded to be succeeded. In addition, it is already mentioned above that the accuracy is evaluated 
by taking into account such a possibility, where all of the black and white colors are swapped.

According to the above discussion, whether the association becomes successful or not depends on whether 
there is only one pattern that has a large overlap with the pattern to be recognized. This is not a specific condition 
for the present system; rather, this has been a common and general issue for associative memory  operation9. As 
shown in Fig. 4e, when a pattern to be recognized includes large noise, the association fails. This is because several 
patterns in memorized patterns have similar overlaps with the pattern to be recognized, and the approximation 
used in Eq. (13) becomes no longer valid. An association will also be difficult when the number of memorized 
patterns is large and there are several patterns having large  overlaps24. It will be of interest as a future work to 
combine the virtual networks with deep learning and improve the success rate of the association.

In the present work, our aim is to focus on the VCMA effect for generating digital output from a ferromagnet. 
The spin-transfer torque  effect31,32 will also be applicable for this scheme. For example, as we change the sign 
of Ku to change the magnetization direction, one can manipulate the magnetization direction via spin-transfer 
torque effect by changing the sign (direction) of electric current. Spin-orbit torque  switching42,43 will also be 
applicable. Contrary to the virtual oscillator network utilizing an STO, such systems do not require the applica-
tion of continuous electric current because once the magnetization switches its direction, the state is maintained 
even after the electric current is turned off. Therefore, it will be of great interest to develop a virtual network 
utilizing the VCMA or spin-transfer (or spin-orbit) torque effects from viewpoint of reducing power consump-
tion compared with the virtual oscillator network based on the  STO22. We also note that the present scheme is 
not limited to spintronics devices. This is also true for a virtual oscillator  network24. The fact that only a single 
device can virtually construct a network will be an interesting option for practical use because, for example, it 
will reduce errors due to inhomogeneities between devices and/or make the system size small.

In conclusion, we proposed a model for the associative memory operation using a ferromagnet manipulated 
by the VCMA effect. The present model is inspired by the virtual oscillator network proposed  recently22, which 
had solved several issues in the conventional oscillator networks. The present model has several advantages, 
compared with the virtual oscillator network. For example, using the VCMA effect will significantly reduce the 
power consumption due to the absence of the Joule heating, contrary to the system using STO, driven by electric 
current, in the virtual oscillator networks. The fact that only the outputs after the magnetization relaxation are 
used for the operation is another advantage, while the virtual oscillator network using the STO requires storing 
long-time data for the oscillation as outputs. The operation does not require external magnetic field in principle, 
which is preferable for practical applications. The applicability of the present model to the associative memory 
operation was confirmed by demonstrating the recognition task of alphabet patterns. The dependence of the 
accuracy in the associative memory operation on the noise in the pattern to be recognized was also evaluated. It 
was also pointed out that the present algorithm is applicable not only to VCMA devices but also to other spin-
tronics devices, such as nonvolatile memories manipulated by spin-transfer (or spin-orbit) torque. Moreover, 
the algorithm will also be applicable to other devices. Therefore, this work bridges spintronics and computing 
science and greatly advances the applicability of spintronics technologies to neuromorphic computing.

Methods
Analytical solution of the LLG equation
For typical VCMA  devices30, both the free and reference layers are perpendicularly magnetized. In this case, 
the experimentally measured quantity obtained through the magnetoresistance effect is the relative angle of 
the magnetizations in two ferromagnets (free and reference layers). The angle is identical to the zenith angle 
θ = cos−1 mz of the magnetization in the free layer when the magnetization in the reference layer points to the 
+z direction, which is the case assumed in this work. The LLG equation for this θ is

Integrating Eq. (15), we find that

(15)
dθ

dt
= −

αγ

1+ α2
HK sin θ cos θ .
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or equivalently,

where θ0 is the initial value of θ , i.e., θ0 = θ(t = 0) . Note that the value of Eq. (16) is not well-defined when θ 
and/or θ0 are 0◦ or 90◦ . This is because the energy density, Eq. (3), has extreme values at these angles; when Ku is 
positive (negative), θ = 0◦ and 90◦ attain local minimum (maximum) and maximum (minimum) of the energy 
density. It means that the gradient of the energy landscape ( ∂E/∂m ), which is proportional to the magnetic field 
and thus, provides torque, at these points is zero. Thus, the magnetization cannot move from these points. In 
reality, any perturbation, such as thermal  fluctuation44, moves the magnetization slightly from these points and 
causes the relaxation dynamics. We also note that t > 0 , or limt→∞ θ(t) = 0◦ ( 90◦ ) for a positive (negative) HK 
when θ < θ0 ( θ > θ0 ), which means that the magnetization relaxes to θ → 0◦ ( θ → 90◦ ). The relaxation time for 
typical spintronic devices is on the order of 1-100 ns, depending on the values of the parameters. Note that, if the 
magnetization relaxes to θ = 0◦ or 90◦ immediately during an application of the ith voltage ( i = 1, 2, · · · ,N − 1 ), 
we can input next voltage. Having this in mind, a ferromagnet with a large damping constant α might be suitable 
for a fast computation because the relaxation time is proportional to α . This point is another difference with the 
virtual oscillator  networks22, where the electric current to sustain the magnetization oscillation is proportional 
to α , and therefore, a small damping constant is preferable for driving an STO with low power consumption.

Throughout the main text, we focused on two states, θ = 0◦ and 90◦ . However, we note that the state θ = 180◦ 
also minimize the energy given by Eq. (3) when Ku > 0 . For simplicity, however, we use θ = 0◦ only as the ener-
getically stable state for Ku > 0 . Let us give a brief comment on this point. In nonvolatile memory applications 
using the VCMA  effect30, a ferromagnet with Ku > 0 in the absence of voltage is used as a memory cell, and 
two stable states, θ = 0◦ and 180◦ , after turning off the voltage are used for storing information. In this memory 
devices, Ku approaches zero with the application of voltage and induces magnetization precession around an 
external magnetic field pointing in an in-plane  direction30. However, such a requirement of an external magnetic 
field is unsuitable for practical applications. In addition, the precession between two states, θ = 0◦ and 180◦ , 
occasionally becomes unstable due to high sensitivity to the voltage pulse shape and  duration41. Therefore, in 
this work, we consider a procedure which does not require the external magnetic field, not to mention preces-
sional dynamics around it. In addition, we assume that the initial state of the magnetization locates near one 
( θ = 0◦ ) of two stable states; Methods for numerical methods. In this case, we can exclude the possibility that the 
magnetization arrives at another stable state, θ = 180◦ . Even if the state θ = 180◦ is realized, we can still gener-
ate digital outputs by using sin θ as output of the system, as in the case of Eq. (4) because sin θ = sin(180◦ − θ) . 
Accordingly, we assume that the system generates digital ( θ = 0◦ or 90◦ ), not triple ( 0◦ , 90◦ , and 180◦ ), outputs. 
Note that, in the present scheme, we need to maintain applying voltage during the operation to keep the relaxed 
state and determine the output from the virtual neurons. This is another different aspect of the present scheme, 
compared with the nonvolatile memory applications, where the magnetization state after turning off the voltage 
is used for memory.

At the end of this subsection, we give a more detailed definition of Ku , or equivalently, HK = 2Ku/M . In 
the present work, we regard Ku as a coefficient for the net perpendicular magnetic anisotropy energy den-
sity, and as mentioned in the main text, it consists of several contributions. Typically, Ku is decomposed as 
Kud = Kbd − 2πM2(Nz − Nx)d + Ki − ηE , where d is the thickness of the ferromagnet. The parameter Kb 
represents the bulk (crystalline) contribution to the perpendicular magnetic anisotropy energy density. The 
coefficient Ni ( i = x, y, z ) is the demagnetization coefficient, and Nx = Ny for the present system because the 
ferromagnet is assumed as a cylinder shape. The term −2πM2(Nz − Nx) represents the contribution from the 
shape magnetic anisotropy energy density. It becomes on the order of 1 T in terms of the demagnetization 
field, −4πM(Nz − Nx) . The parameter Ki represents the interfacial contribution to the perpendicular magnetic 
anisotropy energy  density33–35. It can also reach on the order of 1 T. Accordingly, a ferromagnet can be either 
either perpendicularly or in-plane magnetized, as a result of the competition between the shape and interfacial 
magnetic anisotropy. The last term, −ηE , represents the contribution from the VCMA effect, where η is the 
VCMA coefficient and E = V/dI is an electric field, where V and dI are respectively the applied voltage and the 
thickness of the insulating barrier separating the free and reference layers. The magnitude of the VCMA coef-
ficient reaches on the order of 300 fJ/(Vm)45, which for typical VCMA devices correspond to the order of kilo 
Oersted. Summarizing them, the HK used in the associative memory operation should be regarded as follows. 
We assume that a direct voltage is applied to canel the three contributions, Kbd − 2πM2(Nz − Nx)d + Ki , and 
in addition to it, another voltage, which varies during the associative memory operation, is applied. In other 
words, the perpendicular magnetic anisotropy field HK , used in the numerical simulation (see also “Methods” 
for numerical methods below), should be regarded as a remaining part of the perpendicular magnetic anisotropy 
field after cancelling the other contributions, (2Kb/M)− 4πM(Nz − Nx)+ [2Ki/(Md)] , by the VCMA effect.

Analogue output from VCMA devices
When the energy density is given as Eq. (3), its extreme values always locate at θ = 0◦ and 90◦ only. If we include, 
however, additional terms, extreme values appear at different angles. An example of such an additional factor is 
an external magnetic field Happl whose direction is tilted from the z axis with angle θH . In this case, the energy 
density has an additional term, −MHappl cos(θ − θH ) (we assume that the magnetic field is applied in the xz 

(16)t = −
1+ α2

γαHK
ln

tan θ

tan θ0
,

(17)θ(t) = tan−1
[

e−αγHKt/(1+α2) tan θ0

]
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plane, for simplicity). The angle θ minimizing the total energy density locates in the region of 0◦ < θ < θH 
( θH < θ < 90◦ ) when Ku is positive (negative), and its value changes continuously as Happl and/or θH changes 
continuously. Thus, analogue outputs will be generated if we use such an external magnetic field as inputs.

For practical applications, however, it is preferable to manipulate VCMA devices without using an external 
magnetic field. Another additional term, which enables us to generate analogue outputs from VCMA devices, 
is higher-order magnetic anisotropy energy. The existence of such magnetic anisotropy has been confirmed 
 experimentally46,47. The energy density in the presence of the second-order magnetic anisotropy energy is given 
by

where we rewrite Ku in Eq. (3) as Ku1 while Ku2 is the coefficient of the second-order magnetic anisotropy energy 
density. We notice that the energy density is minimized at the angle

with HK1 = 2Ku1/M and HK2 = 4Ku2/M when two conditions, HK1 < 0 and |HK1| < HK2 , are simultaneously 
satisfied. While the dependence of Ku1 on the voltage has been extensively  studied30, the dependence of Ku2 on 
the voltage is still  unclear46,47. Equation (19) indicates that the stable angle varies continuously as the values of Ku1 
and/or Ku2 are varied continuously by appropriated applications of the voltage. Therefore, it is possible to produce 
analogue outputs when Ku2 is finite and two conditions mentioned above are satisfied. In fact, the VCMA device 
with energy density, Eq. (18), was proven to be applicable to physical reservoir  computing37, where analogue 
outputs were used for machine learning.

Simplification of the first step
The associative memory operation by the virtual network consists of three steps, and in each step, inputs, which 
was magnetic field in Refs.22,24 and is voltage in this work, are injected repeatedly into the system N times. 
Therefore, 3N inputs in total are necessary for the operation. However, it might be possible to simplify the first 
step because of the following reason.

As discussed around Eq. (11), the generation of the pattern to be recognized on the network is achieved 
because K (1)

u,j  is regarded as a product of two parts and the former part on the right-hand side in Eq. (11) is com-
mon for all ( j = 1, 2, · · · ,N ) parts during the second step. It is clear in Eq. (11) that the angle θ(1)i  in the first 
step is used in this common part. Therefore, even if we replace θ(1)i  with something different, such as a constant, 
the conclusion that the sign of K (1)

u,j  is determined by ξRi  in Eq. (11) still holds. Accordingly, it will be possible to 
simplify, or even skip, the first step. This is because the first step simply corresponds to preparing the initial states 
of neurons in the conventional neural networks, which ideally does not affect the association. However, note 
also that we performed the LLG simulation N times in the first step to emphasize the similarity between the 
present system and the feedforward neural networks. In addition, if 

∑N
i=1 ξ

R
i

[

1− 2 sin θ
(1)
i

]

 in Eq. (11) coinci-

dentally becomes zero due to the randomness of the voltage input during the first step, K (1)
u,j  becomes zero. In this 

case, an energetically stable state is not determined uniquely, and the generation of the pattern to be recognized 
fails. Even when K (1)

u,j  remains finite, if it is close to zero, a long time is necessary to saturate the magnetization 
to a relaxed state. These cases should be avoided not only for this case but also for the second and third steps.

Numerical methods
Here, we describe the numerical methods for solving Eq. (7). Although the analytical solution of Eq. (7) is easily 
obtained, as shown in Eq. (17), we numerically solved Eq. (7) with the fourth-order Runge-Kutta method with 
time increment �t = 0.1 ps. This is because, if one is interested in performing similar simulations with more 
complex systems, obtaining analytical solution cannot always be guaranteed; therefore, we developed a code for 
solving the LLG equation numerically.

As mentioned in the main text, the associative memory operation consists of three steps, and in each step, 
the voltage should be applied N times to obtain the output from N virtual neurons. Therefore, we solve the LLG 
equation 3N times. In each calculation, the initial state of the magnetization was prepared by adding the effect 
of thermal fluctuation to the LLG equation, Eq. (7) and solving it with the initial condition m = +ez . This is 
because, before the process of voltage application, the magnetization direction is close to an energetically stable 
stat, still however, slightly oscillates due to the thermal activation. A similar method for preparing natural initial 
states at finite temperature was examined in Ref.48. The effect of thermal fluctuation can be included in the LLG 
equation by adding random magnetic field h to the magnetic field. The Cartesian component hℓ ( ℓ = x, y, z ) of 
the random field obeys the fluctuation-dissipation  theorem44,

where V is the volume of the free layer, while the temperature T is set to be 300 K. We set V to be π × 502 × 1 
nm3 , where 50 nm and 1 nm are typical radius and thickness of the ferromagnet used in VCMA  devices30. The 

(18)E = Ku1 sin
2 θ + Ku2 sin

4 θ ,

(19)θ = cos−1

(

±

√

1−
|HK1|
HK2

)

,

(20)�hk(t)hℓ(t′)� =
2αkBT

γMV
δkℓδ(t − t ′),
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other parameters are γ = 1.764× 107 rad/(Oe s), α = 0.05 , and M = 1000 emu/cm3 . In the numerical simula-
tion, we added

to the LLG equation for preparing the initial state. White noise ξa(t) is obtained from two uniformly distributed 
random numbers, ζa and ζb ( 0 < ζa, ζb < 1 ), by the Box-Muller transformation, ξa =

√
−2 ln ζa sin(2πζb) and 

ξb =
√
−2 ln ζa cos(2πζb) . The value of HK in the absence of the voltage application is assumed to be 2.0 kOe. 

Accordingly, the initial states locate near the perpendicularly magnetized state, m = +ez ( θ = 0◦ ). Note that the 
thermal fluctuation was added to the LLG equation only for the sake of preparing the initial states. During the 
relaxation process, the random torque was absent, for simplicity. We believe that it does not cause any serious 
change in our conclusion if HK is sufficiently large. This is because the relaxed state is uniquely determined by 
the sign of HK ( Ku ), and the thermal fluctuation only gives a small oscillation around the stable state. Recall that 
when Ku > (<)0 , or equivalently HK > (<)0 , θ = 0◦ ( 90◦ ) is stable while θ = 90◦ ( 0◦ ) is the most unstable state. 
Therefore, even in the presence of the thermal fluctuation, it is highly unlikely that the magnetization stays near 
θ = 90◦ ( 0◦ ) when HK > (<)0 . This is another difference with the virtual oscillator  network22, where a long-time 
memory of the magnetization oscillation should be stored for computation. In this case, the long-time memory 
includes large noise because the phase of the magnetization is always affected by the thermal  fluctuation49. From 
this perspective, using a relaxed state of the magnetization simply leads to a reliable operation compared with 
using a long-time memory of an oscillation.

Next, let us explain how to give the value of HK in Eq. (7) for each step. For the first step, HK for each part 
( i = 1, 2, · · · ,N = 60 ) is given as HK,i = HK,0ζ

′
i  , where HK0 = 2.0 kOe and ζ ′i = 2ζi − 1 with the uniform ran-

dom number 0 < ζi < 1 ., i.e., −1 < ζ ′i < 1 . When HK,i > (<)0 , θ(1)i  saturates to 0◦ ( 90◦ ). For the second and 
third steps, HK for each part is 2K (1,2)

u,i /M , where K (1)
u,i  and K (2)

u,i  were introduced in Eqs. (5) and (6). Here, we used 
2K̃

(1)
u,i /M = 2K̃

(2)
u,i /M = 2.0 kOe. In relation to this, we give a comment on the numerical factor N in the denomi-

nators of Eqs. (5) nd (6). Recall that w(1)
ij  and w(2)

ij  are ±1 , and C(1)
i  and C(2)

j  are also ±1 after the magnetization 

relaxation. Thus, the sums of w(1)
ji

[

1− 2 sin θ
(1)
i

]

 with respect to i = 1, 2, · · · ,N  in Eq. (5) and/or 

w
(2)
kj

[

1− 2 sin θ
(2)
j

]

 with respect to j = 1, 2, · · · ,N in Eq. (6) can be on the order of N at the largest. Accordingly, 
without the numerical factor N in Eqs. (5) and (6), the value of Ku , or equivalently HK , can become large as the 
pixel number N increases. However, as mentioned above, the maximum value of the modulation of the perpen-
dicular magnetic anisotropy in terms of magnetic field currently in consideration is on the order of kilo Oersted. 
Therefore, we added the numerical factor N to the denominators of Eqs. (5) and (6) to keep the value of HK 
realistic, even in the case of the large N.

We should simultaneously note that the value of HK possibly becomes significantly small. An example is 
already mentioned above for the simplification of the initial state, where the overlap between the initial state 
and the pattern to be recognized is small, and as a result, K (1)

u,j  becomes close to zero. A similar thing might hap-
pen for K (2)

u,k used in the second step. In these cases, a long time is necessary to obtain the saturated value of the 
magnetization angle θ . In the present numerical simulation, we solve the LLG equation for each part in each 
step for 1 µ s and estimate the angle θ . When HK is close to zero, θ at t = 1 µ s might differ from the saturated 
value determined by the sign of HK ( Ku ). This fact might affect the estimation of accuracy because the accuracy 
depends on the value of θ through CL

i,j  in Eq. (10).

Noisy patterns and definition of accuracy
As mentioned in the main text, we add noisy pixels to the pattern “A” in the set of memorized patterns in Fig. 4a 
and prepare the patterns to be recognized. Figure 5 show examples of these patterns to be recognized, where 
the number of the noisy pixels varies from 1 to 30. Recall that 30 pixels is the maximum number of the noisy 
pixels, N/2. Note that the pattern with 4 noisy pixel is the same with that used in Fig. 4c. The pattern with 26 
noisy pixels is used as the pattern to be recognized, from which the pattern in Fig. 4e is obtained after perform-
ing the third step.

We should note that the definition of the accuracy is not unique. An association is regarded as successful 
when pattern “A” is completely obtained in the third step. To generalize this definition, we introduce symbols R , 
A , and B , where R represents the pattern to be recognized, while A and B represent the patterns in the set of 
the memorized patterns. We assume that pattern R is obtained by adding noise to the pattern A . Therefore, in 
our definition, the association is accurate when pattern A is finally generated from pattern R . However, when 
the number of noise becomes large, pattern R might become similar to pattern B . In other words, the overlap 
between R and B might become larger than that between R and A . In such a case, the pattern finally obtained 
after the third step will be B . Even when the overlap between R and A is still larger than that between R and 
B , the pattern obtained after the third step might be B , depending on the number of noise. According to our 
definition of the accuracy, we regard these associations inaccurate because pattern R is derived from pattern 
A by adding noise. One might, however, regard these associations of pattern B accurate because nevertheless 
a pattern in the set of the memorized patterns is finally obtained. In such a case, a different definition of the 
accuracy is necessary. In the present work, we use the definition mentioned above because noise reduction (or 

(21)hℓ(t) =

√

2αkBT

γMV�t
ξℓ(t),
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pattern recovery) remains a challenging aspect of the associative memory operation, and our aim is to associate 
pattern R with the pattern from which it is derived, i.e., the pattern A.
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Figure 5.  Examples of patterns to be recognized, where the number of noisy pixels increases from 1 (upper left) 
to 30 (lower right).
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