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Cross‑correlations 
between currents and tunnel 
magnetoresistance in interacting 
double quantum dot‑Majorana wire 
system
Kacper Wrześniewski * & Ireneusz Weymann 

We theoretically investigate the spin and charge transport properties of a double quantum dot coupled 
to distinct edges of the nanowire hosting Majorana zero‑energy modes. The focus is on the analysis of 
the currents flowing through the left and right junctions and their cross‑correlations. We show that the 
system reveals very different transport properties depending on the detuning protocol of the quantum 
dot energy levels. For the symmetric detuning, the current dependencies reveal only two maxima 
associated with resonant tunneling, and currents in the left and right arms of the system reveal weak 
positive cross‑correlations. On the other hand, for antisymmetric detuning, the flow of electrons 
into drains is maximized and strongly correlated in one bias voltage direction, while for the opposite 
bias direction a spin blockade is predicted. Furthermore, we observe a suppression of the current 
cross‑correlations at a highly symmetric detuning point, indicating the involvement of the Majorana 
zero‑energy modes in the transport processes. To gain insight into the role of the spin polarization of 
the Majorana edge states, we analyze the spin‑dependent transport characteristics by considering the 
relationship between the spin canting angle, which describes the coupling of the Majorana modes to 
the spin of the quantum dots, and the magnetic configurations of the ferromagnetic drains. Moreover, 
we examine the non‑local zero bias anomaly in the differential conductance, detailed analysis of which 
revealed a specific operational mode of the device that can facilitate the identification of the Majorana 
presence in the quantum dot‑Majorana wire system. Finally, we also consider the transport properties 
in different magnetic configurations of the system and discuss the behavior of the associated tunnel 
magnetoresistance.

The Majorana zero-energy modes (MZM) are quasiparticles that can emerge at the ends of a topological super-
conducting  nanowire1,2. Such a nanowire provides an implementation of the Kitaev  chain3 and, thus, its edge 
modes reveal a non-trivial  topology4,5. Recently, there have been many theoretical and experimental  efforts6–11 to 
deepen the knowledge and provide a better understanding of the behavior of Majorana quasiparticles in solid state 
systems, stimulated by promising perspectives for future applications in topological quantum  computation4,12,13. 
Moreover, in-depth studies of systems hosting Majorana modes may also provide interesting results for the 
manipulation of topological states, for spintronic applications or for identifying hallmarks of Majorana states 
and other correlations in these hybrid devices. On the other hand, by being their own antiparticles and by pos-
sessing high robustness against external perturbations, Majorana zero-energy modes are also very fascinating 
from the perspective of fundamental  physics14. Therefore, providing further insight into the behavior of these 
exotic quasiparticles, predicted by Ettore Majorana almost a century  ago15, is of vital importance.

A very interesting and advantageous aspect of research in this field comprises the studies of the influence 
of MZMs on the transport properties of low-dimensional hybrid systems, such as quantum dots connected to 
topological superconducting  nanowires16–18. It has been shown that Majorana modes can leak into attached 
quantum dots, giving rise to fractional values of the conductance through the  system19–23. In fact, combining 
quantum dots with Majorana wires, allows one to explore the interplay between various phenomena exhibited by 
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quantum dot  systems24–35 with topologically-protected states. Interestingly, the chains of coupled quantum dots 
proximitized by an s-wave superconductor have been proposed for the implementation of the Kitaev chain in a 
tunable bottom-up  fashion36–38. This has been very recently demonstrated experimentally in a device comprising 
double and triple quantum  dots39–41. Moreover, it turns out that attaching quantum dots to the ends of Majorana 
chain can provide further means to control and explore the properties of the Majorana bound  states42,43. From 
this perspective, it is crucial to provide further insight into the transport behavior of hybrid Majorana-quantum 
dot systems.

In this work we therefore focus on the analysis of the non-equilibrium transport properties of a double quan-
tum dot-Majorana wire device, which is schematically displayed in Fig. 1. In particular, we study the current, 
differential conductance and cross-correlations between transport processes through the opposite edges of the 
system. Recent theoretical and experimental studies have shown that the current fluctuations and cross-correla-
tions can reveal additional signatures of the presence of MZM in the  system44–53. It is also important to note that 
similar models as studied in this paper have already been considered, however, mostly assuming noninteracting 
quantum dots, indicating that the analysis of fluctuations and, specifically, current cross-correlations provides 
extra insight into the Majorana  physics16,44–46. Here, we extend these studies by taking into account interaction 
effects in the two quantum dots connected through Majorana wire and additionally attached to ferromagnetic 
 leads54–56, with an endeavor to understand the role of the Coulomb repulsion in hybridization of MZM and 
quantum dot  states57 and its impact on transport characteristics. Moreover, we also examine the magnetoresistive 
properties of the system by exploiting ferromagnetic drains and resolving transport for wide range of the canting 
angle describing the spin-polarization of the Majorana edge  states58. Interestingly, exploring the spin-selective 
transport characteristics have proved to be very useful in the context of Majorana  polarization53,59–63 or Majo-
rana  spintronics64. Furthermore, ferromagnetic contacts turned out to be crucial for detecting entanglement in 
a similar system with normal superconductor instead of a topological  one65–67.

All this indicates that it is important to provide further understanding of nonequilibrium transport through 
hybrid Majorana-double quantum dot systems, especially when on-dot correlations are taken into account and 
the tunneling processes are spin-dependent. Our work addresses this problem by using the real-time diagram-
matic  technique68–71. In particular, we identify regions of enhanced current cross-correlations, depending on 
particular detuning of quantum dot energy levels and value of the spin canting angle. While for antisymmetric 
detuning, there is a general suppression of cross-correlations, for symmetric detuning we observe a suppression 
of positive correlations and development of negative ones, which happens at low bias voltages as the spin cant-
ing angle is increased. Moreover, we also examine the behavior of the zero-bias anomaly due to the presence of 
Majorana zero-energy modes and show that, depending on the quantum dot detuning and the system’s magnetic 
configuration, it can exhibit either a strong dependence or this dependence is very weak. Finally, we predict an 
enhanced magnetoresistance of the system, which changes sign as the spin canting angle is varied. Our work thus 
reveals further signatures of Majorana quasiparticles in the spin-selective transport characteristics, especially in 
the current cross-correlations and the tunnel magnetoresistance of the system.
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Figure 1.  Schematic of the considered Majorana-double quantum dot system. It consists of two quantum 
dots coupled to opposite Majorana edge states of the common nanowire (with matrix elements VML and VMR ), 
described by γL and γR , and weakly coupled to ferromagnetic leads with couplings ŴL and ŴR , for the left and 
right side, respectively. The nanowire is assumed to be grounded, while the bias voltage V is applied to the 
ferromagnetic electrodes. The quantum dots’ energy levels are denoted by εL and εR , while U stands for on-dot 
Coulomb correlations.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7815  | https://doi.org/10.1038/s41598-024-58344-9

www.nature.com/scientificreports/

Results
We consider a double quantum dot system, in which the dots are coupled through the edges of the superconduct-
ing topological nanowire hosting Majorana zero-energy modes. Each quantum dot is further attached to its own 
ferromagnetic lead. The bias voltage is applied between the metallic leads and the nanowire, which is assumed 
to be grounded. The schematic of the system is shown in Fig. 1.

Model
The double quantum dot coupled to topological superconducting wire hosting Majorana zero-energy modes at 
its ends can be modelled by the following low-energy effective Hamiltonian

Here, the first term describes the double quantum dot-Majorana  subsystem72–74

where the level occupation is expressed as ni = n↑i + n↓i = d†↑id↑i + d†↓id↓i , with d†σ i ( dσ i ) being the fermionic 
creation (annihilation) operator of an electron with spin σ in the i = L/R quantum dot. The on-site Coulomb 
interaction is denoted by U (assumed to be the same for each dot), while the energy of the electron on the 
quantum dot is denoted by εi . The operators γL and γR correspond to the Majorana quasiparticles at the edges 
of the wire. These operators satisfy γi = γ

†
i  . The third term of HDQD−M describes the coupling between each 

quantum dot and topological superconductor, where VMi is the corresponding tunnel matrix element modu-
lated by the function of the spin canting angle θ58. In the following, we assume symmetric coupling values 
VML = |VMR| = VM . Finally, the last term describes the overlap amplitude εM between the two Majorana fer-
mions at the opposite ends of the wire.

The quantum dots are coupled to external ferromagnetic leads described by reservoirs of non-interacting 
quasiparticles

where c†ikσ(cikσ ) is the creation (annihilation) operator of an electron with momentum k , spin σ and energy εikσ 
in the left ( i = L ) and right ( i = R ) lead. Finally, the last term of the system Hamiltonian specifies the tunnel 
coupling between the quantum dots and the leads, and is given by

with Vikσ being the corresponding tunnel matrix elements, henceforth assumed to be spin and momentum 
independent, Vikσ ≡ Vi . The dot-lead couplings are expressed as, Ŵσ

i = 2πρiσ |Vi|2 , with ρiσ being the spin-
dependent density of states of ferromagnetic electrode i. The spin-dependent coupling strengths can be con-
veniently expressed by introducing spin polarization of magnetic leads, given by pi = (ρi+ − ρi−)/(ρi+ + ρi−) , 
as Ŵ±

i = Ŵi(1± pi) , where σ = ± denotes the majority/minority-spin subband. In the following, we assume 
Ŵi = (Ŵ+

i + Ŵ−
i )/2 , ŴL = ŴR ≡ Ŵ , and equal spin polarization of the ferromagnetic electrodes pL = pR ≡ p . 

In calculations we set p = 0.5 . Furthermore, it is assumed that the system is biased by applying equal potential 
to both leads µL = µR = eV  , while the nanowire remains grounded, see Fig. 1.

To study the nonequilibrium currents and their correlations we use the real-time diagrammatic  technique68–71, 
which is described in greater detail in the Methods section. We calculate the total current as a sum of the currents 
flowing through the left and right ferromagnetic junctions

and find the differential conductance from

On the other hand, the zero-frequency cross-correlations between the left and right currents are obtained from

with δIi(t) = Îi(t)− �Îi� and Îi being the current operator describing tunneling between the dot and lead i.

(1)H = HDQD−M +HLeads +HTun.

HDQD−M =
∑

i=L,R

(

εini + Ud†↑id↑id
†
↓id↓i

)

+
√
2VML

[

cos(θ/2)
(

d†↑LγL + γLd↑L
)

+ sin(θ/2)
(

d†↓LγL + γLd↓L
)]

−
√
2VMR

[

cos(θ/2)
(

d†↑RγR + γRd↑R
)

+ sin(θ/2)
(

d†↓RγR + γRd↓R
)]

+ 2iεMγLγR,

(2)HLeads =
∑

i=L,R

∑

kσ

εikσ c
†
ikσ cikσ ,

(3)HTun =
∑

i=L,R

∑

kσ

Vikσ

(

c†ikσ diσ +H.c.
)

,

(4)I = IL + IR

(5)G = dI

dV
.

(6)SLR =
∫ ∞

−∞
dt�δIL(t)δIR(0)+ δIR(0)δIL(t)�,
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Due to the spin polarization of Majorana modes in topological nanowire, the current flow is strongly depend-
ent on the mutual alignment of magnetic moments of ferromagnetic leads. To quantify this effect, we also evaluate 
the tunnel mangetoresistance (TMR), which can be defined in the following  way75

where IP(AP) is the current flowing through both junctions when magnetic moments of the leads are aligned in 
parallel (antiparallel). Here, we note that due to the Majorana-dot coupling dependent on the spin canting angle, 
the parallel configuration (P) is assumed to be aligned along the z-axis of the quantization axis pointing the 
positive direction, while the antiparallel configuration (AP) has the left moment aligned in the opposite direc-
tion. More detailed expressions for the introduced quantities, formulated withing the real-time diagrammatic 
framework, are presented in the further section which describes the method.

In order to determine the transport properties, one has to find the eigenenergies and eigenvalues of the Majo-
rana wire-double quantum dot Hamiltonian decoupled from the ferromagnetic leads, HDQD−M|χ� = εχ |χ� . The 
local states of this Hamiltonian can be denoted as, |χL,χR,χM� , where χL/R = {0,↑,↓, d} , standing for empty, 
singly-occupied with spin-up/spin-down electron and doubly occupied level of quantum dot i, and χM = {0, 1} . 
In general, due to large Hilbert space, for arbitrary model parameters, the above eigensystem needs to be solved 
numerically, as the eigenstates are complex functions of parameters. Nevertheless, to gain some insight into 
the behavior of the system, it is still possible to obtain the eigenenergies for εM = 0 . The relevant eigenener-
gies εχ ≡ ε

α,β
l  , with α,β = ± and l = 1, 2, 3, 4 , are presented in Table 1. It turns out that the eigenspectrum 

is independent of the spin canting angle θ . However, one needs to keep in mind that the magnetotransport 
properties of the system are sensitive to variation of this parameter, as the weights of spin components of the 
relevant states depend on θ . We note that in the case of εM = 0 all eigenstates with given eigenenergies εχ are 
two-fold degenerate.

In the following, we present and discuss the numerical results on the current, differential conductance, 
cross-correlations and TMR as a function of the bias voltage and position of the quantum dot energy levels. 
Since this position can be changed by the gate voltage, the figures will effectively present the bias and gate volt-
age scans of the system transport properties. Moreover, we will distinguish two different schemes for tuning the 
positions of the quantum dots energy levels, depending on whether εL = εR or εL = −εR . The first scheme will 
be referred to as symmetric gate detuning, while the second one as antisymmetric gate detuning. Such gating 
protocols will allow us to analyze the transport properties in the two antipodal detuning configurations, where 
the quantitative and qualitative differences are maximally embossed. We also note that similar considerations 
have been performed for quantum dots coupled to conventional superconductors, which implement nanoscale 
Cooper pair  splitters76,77.

The case of symmetric gate detuning
In this section we assume that applied scheme of gate detuning is symmetric, i.e. ε ≡ εL = εR , while the param-
eter δ = 2ε + U  describes detuning from the particle-hole symmetric point of orbital energy level, ε = −U/2 . 
Additionally, the magnetic moments of ferromagnetic electrodes are assumed to form the parallel alignment. 
Figure 2 displays the dependencies of the absolute value of the current (a–c), the differential conductance (d–f) 
and the current cross-correlations (g–i) as a function of applied bias voltage V and level detuning δ for selected 
values of θ.

The results are presented in three columns for different values of the spin canting angle θ . We start the 
analysis of charge transport through the considered system by examining the obtained dependencies for θ = 0 . 
For eV = 0 , the current does not flow through the system, however, the differential conductance clearly reveals 
a strong zero-bias peak associated with the Majorana modes leaking into the quantum dots. We note that the 
basic dependencies of the zero-bias anomaly on various model parameters have recently been studied in a hybrid 
Majorana system with one quantum dot coupled to ferromagnetic  leads53. However, in the case of the double 
quantum dot-Majorana device considered here, we have the opportunity to study the behavior of a non-local 
zero-bias anomaly revealed in magnetotransport properties, which will be comprehensively discussed later on.

The general current dependence is antisymmetric with respect to the reversal of the bias voltage and detuning, 
I(δ, eV) = −I(−δ,−eV) and assuming θ = 0 . The main features revealed in the current-voltage spectra are the 
two maxima of the absolute current present for δ/U = ±1 , which are due to resonant position of quantum dot 
and Majorana levels. Let us focus on the case of δ/U = 1 detuning, while the opposite case of δ/U = −1 can be 

(7)TMR = IP − IAP

IAP
,

Table 1.  The eigenenergies εχ ≡ ε
α,β

l  of the Hamiltonian HDQD−M . Each eigenenergy is two-fold degenerate 
and the parameters α,β = ±.

Eigenenergy εα,β
l

�1 = �2 =

ε
α,β
1

= 1

2

(

εL + εR + α
√
�1 + β�2

)

ε2
L
+ ε2

R
+ 8V

2
M 2

√

ε2
L
+ 4V

2
M

√

ε2
R
+ 4V

2
M

ε
α,β
2

= 1

2

(

3εL + εR + U + α
√
�1 + β�2

)

ε2
R
+ (εL + U)2 + 8V

2
M 2

√

(εL + U)2 + 4V
2
M

√

ε2
R
+ 4V

2
M

ε
α,β
3

= 1

2

(

εL + 3εR + U + α
√
�1 + β�2

)

ε2
L
+ (εR + U)2 + 8V

2
M 2

√

(εR + U)2 + 4V
2
M

√

ε2
L
+ 4V

2
M

ε
α,β
4

= 1

2

(

3εL + 3εR + 2U + α
√
�1 + β�2

)

(εL + U)2 + (εR + U)2 + 8V
2
M 2

√

(εL + U)2 + 4V
2
M

√

(εR + U)2 + 4V
2
M
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explained by similar reasoning, but considering different eigenstates. The current in the low bias voltage region 
is then facilitated by the two-fold degenerate ground state of energy ε−,+

1  , described by the many-body states 
w h i c h  c an  b e  approx i m at e l y  e x pre s s e d  a s  |χ� ≈ 1

2 | ↑, 0, 1� +
1
2 |0,↑, 1� +

1√
2
|0, 0, 0� an d 

|χ ′� ≈ 1
2 | ↑, 0, 0� +

1
2 |0,↑, 0� +

1√
2
|0, 0, 1� . When the applied bias voltage is increased above |eV/U | � 0.2 , 

another excited state enters the transport window, which is associated with appearance of the consecutive step 
in the current-voltage characteristics. This threshold voltage is exactly equal to the difference between ε−,+

1  and 
ε
−,−
1  , which is equal to 2VM . For reversed bias voltage, however, the current remains blocked by a quantum dot 

spin configuration opposite to the Majorana state. More specifically, the double quantum dot-Majorana system 
is then trapped in states |χ� ≈ 1√

2
(| ↓, 0, 0� + |0,↓, 0�) and |χ ′� ≈ 1√

2
(| ↓, 0, 1� + |0,↓, 1�) of approximately equal 

probability.
Further valuable transport properties are exposed in the current cross-correlations (g–i). In general, for the 

regimes where considerable current is flowing for δ/U ≈ ±1 , we predict positive but rather small values of SLR . 
Importantly, for exact detuning of δ/U = ±1 , the cross-correlations are fully suppressed, SLR = 0 . This suppres-
sion has been suggested as a specific feature that can distinguish presence of Majorana zero-energy modes from 
the Andreev bound  states45. Such uncorrelated transport is enabled by the degeneracy of non-local zero-energy 
states, which is a consequence of tuning and assumed vanishing overlap between the Majorana edge states, i.e. 
εM = 0.

Additionally, we observe two parallel, antidiagonal regions of strong negative cross-correlations. These regions 
spread in the δ − eV  parameter space along the lines eV = δ/2+ 1/2 and eV = δ/2− 1/2 . The values of eV and 
δ associated with these lines set the energy levels of both sides of the device in such a configuration that enables 
tunneling processes in opposite directions in the left and right junctions.

Finally, we show that all discussed transport quantities are decreased as the spin canting angle θ is increased 
in the range from 0 to π . We recall that for θ = 0 , the Majorana mode couples only to spin-up component of the 
electrons occupying quantum dots and this direction is aligned with parallel configuration of the ferromagnetic 

Figure 2.  The absolute value of the current [(a)–(c)], the differential conductance [(d)–(f)] and the current-
current cross-correlations [(g)–(h)] as a function of symmetric detuning δ and applied voltage eV for different 
values of spin canting angle θ indicated above the top panels. The parameters are: U ≡ 1 used as the energy unit, 
VM = 0.1 , Ŵ = 0.01 , p = 0.5 , T = 0.02 and εM = 0 . The current is normalized by I0 = eŴ/� , while cross-
correlations by S0 = e2Ŵ/�.
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leads. As the angle is increased, the spin polarization of the edge state is shifted to opposite direction resulting in 
a decrease of the current and the remaining transport quantities. Interestingly, θ = π/2 is the angle that gives rise 
to identical results to those in the case of antiparallel configuration of ferromagnetic leads, as for this angle the 
spin polarization is orthogonal to ferromagnetic moments. For θ = π , the Majorana mode couples completely to 
opposite spin component compared to the case of θ = 0 . In this configuration the currents and other quantities 
reveal the lowest values due to the bottleneck resulting from high spin polarization of electrons in direction of 
minority-spin band in the ferromagnetic leads.

Interestingly, only negative cross-correlations in low-bias region are noticeably amplified. This can be 
understood by examining thermal charge fluctuations in this regime. For θ = 0 , fluctuating charges are highly 
spin-polarized due to alignment of Majorana spin polarization with magnetic moments of both the electrodes. 
Particles of opposite spins rarely contribute to this characteristic. However, in extreme case when θ = π , the 
population of particles with spin in opposite-to-Majorana direction is increased due to single electron tunneling 
processes between the ferromagnetic lead and quantum dot according to the spin-dependent couplings Ŵ±

i  . Given 
the fact that those anti-aligned electrons are not coupled to the nanowire edge state, eventually these have to 
tunnel back into the same electrode due to the fluctuations. Such condition significantly increases the amplitude 
of correlated tunneling events in opposite directions between the left and right leads, resulting in considerable 
negative cross-correlations.

The case of antisymmetric gate detuning
We now focus on the analysis of transport in the case of antisymmetric gate detuning of quantum dots expressed 
by ε ≡ −εL = εR and study the corresponding δ and V dependencies. We note that a similar protocol of detun-
ing was proposed for quantum dot devices coupled to superconducting electrode in the splitter  geometry76,77, 
where the energy conservation ( εL + εR = 0 ) gives rise to an efficient transport and maximized current flowing 
through the system. Figure 3 presents the dependencies of the current (a–c), the differential conductance (d–f) 
and the current cross-correlations (g–i) as a function of eV and antisymmetric level detuning δ.

Figure 3.  The absolute value of the current [(a)–(c)], the differential conductance [(d)–(f)] and the current-
current cross-correlations [(g)–(h)] as a function of antisymmetric detuning δ = 2ε + U ( ε ≡ −εL = εR ) 
and applied voltage eV for different values of spin canting angle θ indicated above the top panels. The other 
parameters are the same as as in Fig. 2.
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Qualitatively, the transport characteristics are very different when compared to the symmetric detuning case. 
First of all, the current mainly flows in one direction, i.e. for negative bias voltage when particles tunnel from 
nanowire toward the ferromagnetic drains, while in the opposite direction there is a spin blockade in a wide range 
of detuning and applied bias voltage that suppresses the transport. However, for eV < 0 , the absolute current is 
much higher than in previously considered case, and this regime is significantly wider in the parameter space 
forming a triangular shape, while for symmetric detuning only narrow resonances were present. The region of 
enhanced current for negative bias voltage is defined by eV = −|δ/2− 1/2| . Moreover, we note that in the case 
of antisymmetric detuning, the expressions for eigenenergies in Table 1 are simpler as leading terms contributing 
to eigenenergies cancel when εL = −εR . In this regime, in total 8 states contribute to transport processes with 
approximately equal probabilities, which results in considerably higher absolute value of the current compared 
to the case of symmetric detuning where fewer states were relevant. These states are linear combinations of local 
states with double quantum dots occupied by spin-up electrons. Because the spin of tunneling electrons is then 
aligned with the Majorana polarization, the corresponding large current is observed. On the other hand, for 
positive bias voltage, the current becomes suppressed due to the fact that the occupation of spin-down double 
dot states becomes enhanced, which is misaligned with the Majorana polarization.

Two important features associated with Majorana physics are also present in the results shown in Fig. 3. Again, 
we find zero-bias anomaly in the differential conductance [see Fig. 3d–f] and the current cross-correlations are 
suppressed in very narrow range of detuning δ/U = 1 . Here, the valley with SLR = 0 is extremely narrow when 
compared with symmetric detuning case and it may be harder to explore in tunnel-spectroscopic experiments. 
We remind that for δ/U = 1 we have ε = −εL = εR = 0 . A small shift from δ/U = 1 results in splitting of orbital 
energy levels and putting the system away from highly degenerate point responsible for uncorrelated transport. 
Away from δ/U = 1 , the cross-correlations reveal very high positive values for the whole range of parameters 
where current is maximized, while in this detuning protocol the negative values are generally very small for a 
few detuning points.

We also note that generally the manipulation of the spin canting angle θ affects the transport characteristics 
quantitatively in a similar way as in the case of symmetric detuning discussed earlier. As the angle θ is increased, 
there is a significant decrease of the differential conductance and current cross-correlations, while the qualita-
tive features discussed in this section remain intact. However, there are also some differences, especially at low 
bias voltages. While in the case of symmetric detuning there was an enhancement of negative cross-correlations 
at low bias, no such feature is observable in the case when detuning is antisymmetric. Here, the antisymmetric 
level detuning of dots shifts the charge fluctuations to one side of the device effectively suppressing left-right 
anti-correlated processes independently of spin canting angle θ.

Zero‑bias anomaly
The zero-bias anomaly in the differential conductance, attributed to the presence of zero-energy modes, is 
regarded as a fingerprint of Majorana physics. However, in nanoscale systems, the origin of the peak may vary, 
and may possibly arise from the presence of Andreev bound states. It is essential to identify behaviors associated 
with this phenomenon that enable the experimental differentiation of the source of the conductance peak in a 
convenient and reliable manner.

The influence of the leads’ spin polarization, the strength of coupling to the Majorana wire, and the overlap 
between the two edges of the nanowire have all been previously analyzed for systems consisting of a single 
quantum  dot53. Those results are quantitatively relevant to the system under consideration in this study. How-
ever, the ability to tune the spin polarization of Majorana modes and examine the conductance of both left and 
right junctions provides additional insight into magnetotransport and can aid in identifying Majorana physics.

Figure 4 presents the bias voltage dependence of the differential conductance in the parallel 
(

GP
)

 and antipar-
allel 

(

GAP
)

 magnetic configurations of the system. Additionally, we show the contribution to the conductance 
from the left 

(

GAP
L

)

 junction in antiparallel configuration, while we notice that GAP
R = GAP − GAP

L  and, therefore, 
we do not show it. The presented curves are evaluated for several values of the spin canting angle θ and for three 
representative gate detunings, corresponding to both symmetric and antisymmetric protocols.

First of all, it is important to note that in the parallel configuration, the differential conductance strongly 
depends on θ for all detunings. This dependence also holds for all conductance peaks, including the zero-bias 
anomaly. Interestingly, in the antiparallel configuration the total conductance GAP is unaffected by variation of 
spin canting angle in symmetric detuning, see Fig. 4d,e. The change of the Majorana spin polarization results in 
an increased conductance in one junction, while it is counterbalanced by a proportional decrease in the opposite 
junction, thereby conserving the total conductance of the device. The behavior of the differential conductance 
associated with the current through the left junction is presented in the third row of Fig. 4. Nevertheless, the θ 
dependence is most interesting in the case of antisymmetric detuning, see Fig. 4f. The zero-bias peak remains 
unaffected by variations in the spin canting angle, while other conductance peaks arising at higher voltages are 
evidently modified. Magnetotransport measurements in this operating mode of the device can facilitate the 
identification of Majorana presence with high likelihood, as other zero-bias phenomena of different origins are 
not consistent with the discussed behavior, i.e. conductance of singlet Andreev bound state would be strongly 
affected by magnetic configuration of the drains and their polarization, especially in the antiparallel alignment.

Tunnel magnetoresistance
Finally, let us examine the behavior of the tunnel magnetoresistance for both detuning schemes and for different 
values of the angle θ . The bias and gate voltage dependence of the TMR is shown in Fig. 5, while Fig. 6 presents 
the bias voltage dependence of TMR for selected values corresponding to the cross-sections of the density 
plots shown in Fig. 5. We recall that we find the TMR from the currents flowing in the parallel and antiparallel 
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configurations, cf. Eq. (7). Moreover, it is necessary to stress that by considering the Majorana-dot coupling 
depending on the spin canting angle θ , the spin symmetry is broken and one needs to be careful with identifying 
the possible magnetic configurations for the TMR measurements.

First of all, one can note that the general dependency of the TMR on δ/U  and eV/U is antisymmetric, like-
wise earlier discussed quantities. Assuming that we start with the angle θ = 0 in the parallel configuration, for 
which the leads’ magnetic moments point in the same direction as the Majorana mode polarization, the TMR 
has generally positive and highest values for both detuning schemes, see Fig. 5a–b. For symmetric detuning, in 
a wide range of detuning and bias voltage, we observe a constant value of the TMR, TMR ≈ 0.5 , see also the left 
column of Fig. 6. On the other hand, there are two minima, where negative cross-correlations are present [cf. 
Fig. 2], where TMR is suppressed, which indicates that transport hardly depends on the magnetic configuration of 
the system. As the angle θ is increased, the TMR monotonically goes down towards negative values for θ > π/2 . 
For the exact value of θ = π/2 , we observe no TMR in the whole range of parameter space, as this configuration 
sets the Majorana state polarization in orthogonal direction with respect to the leads’ magnetic moments. As a 
consequence, IP = IAP and, thus, TMR = 0.

When the detuning of the dots levels is antisymmetric, the TMR reveals more compelling features. Inter-
estingly, the magnetoresistance dependence is not mirror symmetric with respect to vertical line at δ/U = 1 , 
contrary to the other quantities discussed earlier for this detuning scheme, see Fig. 3. Here, it is important to 
recognize that for antisymmetric detuning there are two possible non-identical antiparallel configurations, which 
differ in alignment of leads’ magnetic moments with respect to Majorana polarization. For the obtained results, 
we assumed that the right quantum dot is coupled to ferromagnetic lead with magnetic moment pointing in 
positive direction of z-axis, while the left quantum dot is coupled to ferromagnetic lead with magnetic moment 
in opposite direction. The results for opposite antiparallel configuration would reveal similar dependencies as 
presented here, but mirror symmetric with respect to the vertical line at δ/U = 1 . Interestingly, for the consid-
ered case of antiparallel configuration, in the detuning regime δ/U � 0 , there is an area with suppressed TMR, 
TMR ≈ 0 . This behavior is not affected by variations of the spin canting angle θ , see Fig. 6b. However, clearly, 
in the detuning range, for which the quantum dot coupled to the electrode with opposite direction of mag-
netic moment to the spin polarization of Majorana edge mode has high values of orbital level ( δ/U � 2 and in 

Figure 4.  The bias voltage dependence of the differential conductance for selected values of the quantum dot 
level positions and different values of the spin canting angle θ , as indicated. The first (second) row presents GP 
(

GAP
)

 , while the third row shows GAP
L

 . The other parameters are the same as in Fig. 2.
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consequence εR � 0 ), the strongly polarized current is flowing through the other side (left) of the device. Such 
scenario generates high TMR upon switching the magnetic configuration, which approaches TMR → 3/2 , see 
Fig. 6h. This regime is very fragile to the variation of θ and as this angle is increased, we observe monotonic 
decrease of the TMR and, eventually, negative values for θ > π/2 . Finally, it is important to note that the highest 
variability of the TMR is in the transport regimes when generally small current is flowing through the system.

Discussion
We have analyzed the charge and spin transport properties of the double quantum dot-Majorana nanowire system 
by means of the real-time diagrammatic technique. The calculations were performed in a perturbative manner 
taking into account the first-order tunneling processes in the coupling to normal leads. We determined the cur-
rents, the associated differential conductance and current cross-correlations for a wide parameter space in both 
the linear and nonlinear response regimes. Additionally, we considered the magnetoresistive properties of the 
system by analyzing the tunnel magnetoresistance associated with a relative change of the magnetic moments 
of the leads. Whenever possible we have also indicated the eigenstates and eigenenergies of the effective double 
dot-Majorana Hamiltonian responsible for the observed behavior.

In our considerations we focused on two different quantum dot level detuning scenarios. In the case of sym-
metric detuning, we found that significant currents flow mostly in two transport regimes, namely, where the 
quantum dot levels are in resonance with the respective chemical potentials of the leads, which takes place for 
detuning parameter δ/U = ± 1 . Interestingly, for exact values of δ/U = ± 1 , the system exhibits suppressed 
cross-correlations, which are however magnified in the regime around the resonance points. We demonstrated 
that while these cross-correlations become diminished as the spin canting angle is increased, negative current 
cross-correlations develop at low bias voltage for detunings between the two resonant values. On the other hand, 
for antisymmetric detuning, we generally observe higher values of absolute current for negatively biased system. 
Additionally, strong positive current cross-correlations are revealed, indicating highly correlated character of 
transport in this regime. For positive bias voltage, a spin blockade is formed, which is responsible for the strong 
current blockade. These features become suppressed with increasing the spin canting angle. Furthermore, we 
conducted a comprehensive analysis of the dependence of the zero-bias anomaly in the differential conductance 

Figure 5.  The tunnel magnetoresistance for symmetric (left column) and antisymmertric (right column) 
detuning as a function of δ and applied bias voltage eV for different values of the spin canting angle θ , as 
indicated. The parameters are the same as in Fig. 2.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7815  | https://doi.org/10.1038/s41598-024-58344-9

www.nature.com/scientificreports/

on the spin canting angle and proposed magnetotransport measurements that can aid in identifying whether the 
origin of this phenomenon is associated with the Majorana physics.

Finally, the behavior of the TMR and the influence of relation between magnetic configurations of the leads 
and the spin canting angle were discussed. We showed that for symmetric detuning, the system reveals moder-
ate magnetoresistive properties mainly because of highly polarized currents due to spin structure of Majorana 
edge states. However, for antisymmetric detuning, we found a transport regime, in which the TMR can achieve 
considerable values TMR → 3/2 . Moreover, it can be conveniently controlled in wide range of values by tuning 
the spin canting angle via magnetic field or quantum dots’ gate voltages. Such property gives further insight into 
the spin polarization of Majorana edge state.

Methods
In order to find the current and the corresponding current cross-correlations, we use the real-time diagram-
matic technique in the first-order perturbation approximation with respect to the tunnel coupling between the 
quantum dots and the corresponding  leads68–71. The evaluation of diagrams with the help of diagrammatic rules 
allows one to find the relevant self-energies and build the W matrix. The matrix elements Wχχ ′ quantify the 
transition between the eigenstates |χ� and |χ ′� of the Hamiltonian HDQD−M . Necessary for further calculations, 
in a similar fashion the matrix W̃ is built, where one arbitrary row of W is replaced with vector ( Ŵ,Ŵ, ...,Ŵ ) and 
a matrix WIi is constructed accounting for the number of electrons transferred through i = L/R  junction70,71.

After solving the kinetic equation

where pst is the vector with probabilities pstχ , the current through the i = L/R junction is calculated  from70,71

(8)Wpst = 0,

(9)Ii =
e

�
Tr
{

WIipst
}

.

Figure 6.  Cross-sections of the tunnel magnetoresistance for symmetric (left column) and antisymmertric 
(right column) detuning as a function of applied bias voltage eV for different values of the spin canting angle θ 
and δ . The parameters are the same as in Fig. 2.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7815  | https://doi.org/10.1038/s41598-024-58344-9

www.nature.com/scientificreports/

Finally, the first order diagrammatic expression for current cross-correlation between left and right junctions 
is given  by70,71

The propagator P is determined from W̃P = psteT − 1 . Here, matrix W̃ is build from W , where one row is 
replaced with (Ŵ,Ŵ, ...,Ŵ) , while eT = (1, 1, ..., 1).
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