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A case study on the relationship 
between risk assessment 
of scientific research projects 
and related factors under the Naive 
Bayesian algorithm
Xuying Dong  & Wanlin Qiu *

This paper delves into the nuanced dynamics influencing the outcomes of risk assessment (RA) in 
scientific research projects (SRPs), employing the Naive Bayes algorithm. The methodology involves 
the selection of diverse SRPs cases, gathering data encompassing project scale, budget investment, 
team experience, and other pertinent factors. The paper advances the application of the Naive 
Bayes algorithm by introducing enhancements, specifically integrating the Tree-augmented Naive 
Bayes (TANB) model. This augmentation serves to estimate risk probabilities for different research 
projects, shedding light on the intricate interplay and contributions of various factors to the RA 
process. The findings underscore the efficacy of the TANB algorithm, demonstrating commendable 
accuracy (average accuracy 89.2%) in RA for SRPs. Notably, budget investment (regression coefficient: 
0.68, P < 0.05) and team experience (regression coefficient: 0.51, P < 0.05) emerge as significant 
determinants obviously influencing RA outcomes. Conversely, the impact of project size (regression 
coefficient: 0.31, P < 0.05) is relatively modest. This paper furnishes a concrete reference framework 
for project managers, facilitating informed decision-making in SRPs. By comprehensively analyzing 
the influence of various factors on RA, the paper not only contributes empirical insights to project 
decision-making but also elucidates the intricate relationships between different factors. The research 
advocates for heightened attention to budget investment and team experience when formulating 
risk management strategies. This strategic focus is posited to enhance the precision of RAs and the 
scientific foundation of decision-making processes.

Keywords Naive Bayesian algorithm, Scientific research projects, Risk assessment, Factor analysis, 
Probability estimation, Decision support, Data-driven decision-making

Scientific research projects (SRPs) stand as pivotal drivers of technological advancement and societal progress 
in the contemporary  landscape1–3. The dynamism of SRP success hinges on a multitude of internal and external 
 factors4. Central to effective project management, Risk assessment (RA) in SRPs plays a critical role in identifying 
and quantifying potential risks. This process not only aids project managers in formulating strategic decision-
making approaches but also enhances the overall success rate and benefits of projects. In a recent contribution, 
 Salahuddin5 provides essential numerical techniques indispensable for conducting RAs in SRPs. Building on this 
foundation, Awais and  Salahuddin6 delve into the assessment of risk factors within SRPs, notably introducing 
the consideration of activation energy through an exploration of the radioactive magnetohydrodynamic model. 
Further expanding the scope, Awais and  Salahuddin7 undertake a study on the natural convection of coupled 
stress fluids. However, RA of SRPs confronts a myriad of challenges, underscoring the critical need for novel 
 methodologies8. Primarily, the intricate nature of SRPs renders precise RA exceptionally complex and challeng-
ing. The project’s multifaceted dimensions, encompassing technology, resources, and personnel, are intricately 
interwoven, posing a formidable challenge for traditional assessment methods to comprehensively capture all 
potential  risks9. Furthermore, the intricate and diverse interdependencies among various project factors contrib-
ute to the complexity of these relationships, thereby limiting the efficacy of conventional  methods10–12. Traditional 
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approaches often focus solely on the individual impact of diverse factors, overlooking the nuanced relationships 
that exist between them—an inherent limitation in the realm of RA for  SRPs13–15.

The pursuit of a methodology capable of effectively assessing project risks while elucidating the intricate 
interplay of different factors has emerged as a focal point in SRPs  management16–18. This approach necessitates 
a holistic consideration of multiple factors, their quantification in contributing to project risks, and the revela-
tion of their correlations. Such an approach enables project managers to more precisely predict and respond to 
risks. Marx-Stoelting et al.19, current approaches for the assessment of environmental and human health risks 
due to exposure to chemical substances have served their purpose reasonably well. Additionally, Awais et al.20 
highlights the significance of enthalpy changes in SRPs risk considerations, while Awais et al.21 delve into the 
comprehensive exploration of risk factors in Eyring-Powell fluid flow in magnetohydrodynamics, particularly 
addressing viscous dissipation and activation energy effects. The Naive Bayesian algorithm, recognized for its 
prowess in probability and statistics, has yielded substantial results in information retrieval and data mining in 
recent  years22. Leveraging its advantages in classification and probability estimation, the algorithm presents a 
novel approach for RA of  SRPs23. Integrating probability analysis into RA enables a more precise estimation of 
project risks by utilizing existing project data and harnessing the capabilities of the Naive Bayesian algorithms. 
This method facilitates a quantitative, statistical analysis of various factors, effectively navigating the intricate 
relationships between them, thereby enhancing the comprehensiveness and accuracy of RA for SRPs.

This paper seeks to employ the Naive Bayesian algorithm to estimate the probability of risks by carefully 
selecting distinct research project cases and analyzing multidimensional data, encompassing project scale, budget 
investment, and team experience. Concurrently, Multiple Linear Regression (MLR) analysis is applied to quantify 
the influence of these factors on the assessment results. The paper places particular emphasis on exploring the 
intricate interrelationships between different factors, aiming to provide a more specific and accurate reference 
framework for decision-making in SRPs management.

This paper introduces several innovations and contributions to the field of RA for SRPs:

• Comprehensive Consideration of Key Factors: Unlike traditional research that focuses on a single factor, 
this paper comprehensively considers multiple key factors, such as project size, budget investment, and team 
experience. This holistic analysis enhances the realism and thoroughness of RA for SRPs.

• Introduction of Tree-Enhanced Naive Bayes Model: The naive Bayes algorithm is introduced and further 
improved through the proposal of a tree-enhanced naive Bayes model. This algorithm exhibits unique advan-
tages in handling uncertainty and complexity, thereby enhancing its applicability and accuracy in the RA of 
scientific and technological projects.

• Empirical Validation: The effectiveness of the proposed method is not only discussed theoretically but also 
validated through empirical cases. The analysis of actual cases provides practical support and verification, 
enhancing the credibility of the research results.

• Application of MLR Analysis: The paper employs MLR analysis to delve into the impact of various factors 
on RA. This quantitative analysis method adds specificity and operability to the research, offering a practical 
decision-making basis for scientific and technological project management.

• Discovery of New Connections and Interactions: The paper uncovers novel connections and interactions, 
such as the compensatory role of team experience for budget-related risks and the impact of the interac-
tion between project size and budget investment on RA results. These insights provide new perspectives for 
decision-making in technology projects, contributing significantly to the field of RA for SRPs in terms of 
both importance and practical value.

The paper is structured as follows: “Introduction” briefly outlines the significance of RA for SRPs. Exist-
ing challenges within current research are addressed, and the paper’s core objectives are elucidated. A distinct 
emphasis is placed on the innovative aspects of this research compared to similar studies. The organizational 
structure of the paper is succinctly introduced, providing a brief overview of each section’s content. “Literature 
review” provides a comprehensive review of relevant theories and methodologies in the domain of RA for 
SRPs. The current research landscape is systematically examined, highlighting the existing status and potential 
gaps. Shortcomings in previous research are analyzed, laying the groundwork for the paper’s motivation and 
unique contributions. “Research methodology” delves into the detailed methodologies employed in the paper, 
encompassing data collection, screening criteria, preprocessing steps, and more. The tree-enhanced naive Bayes 
model is introduced, elucidating specific steps and the purpose behind MLR analysis. “Results and discussion” 
unfolds the results and discussions based on selected empirical cases. The representativeness and diversity of 
these cases are expounded upon. An in-depth analysis of each factor’s impact and interaction in the context of 
RA is presented, offering valuable insights. “Discussion” succinctly summarizes the entire research endeavor. 
Potential directions for further research and suggestions for improvement are proposed, providing a thoughtful 
conclusion to the paper.

Literature review
A review of RA for SRPs
In recent years, the advancement of SRPs management has led to the evolution of various RA methods tailored 
for SRPs. The escalating complexity of these projects poses a challenge for traditional methods, often falling 
short in comprehensively considering the intricate interplay among multiple factors and yielding incomplete 
assessment outcomes. Scholars, recognizing the pivotal role of factors such as project scale, budget investment, 
and team experience in influencing project risks, have endeavored to explore these dynamics from diverse 
perspectives. Siyal et al.24 pioneered the development and testing of a model geared towards detecting SRPs 
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risks. Chen et al.25 underscored the significance of visual management in SRPs risk management, emphasizing 
its importance in understanding and mitigating project risks. Zhao et al.26 introduced a classic approach based 
on cumulative prospect theory, offering an optional method to elucidate researchers’ psychological behaviors. 
Their study demonstrated the enhanced rationality achieved by utilizing the entropy weight method to derive 
attribute weight information under Pythagorean fuzzy sets. This approach was then applied to RA for SRPs, 
showcasing a model grounded in the proposed methodology. Suresh and  Dillibabu27 proposed an innovative 
hybrid fuzzy-based machine learning mechanism tailored for RA in software projects. This hybrid scheme 
facilitated the identification and ranking of major software project risks, thereby supporting decision-making 
throughout the software project lifecycle. Akhavan et al.28 introduced a Bayesian network modeling framework 
adept at capturing project risks by calculating the uncertainty of project net present value. This model provided 
an effective means for analyzing risk scenarios and their impact on project success, particularly applicable in 
evaluating risks for innovative projects that had undergone feasibility studies.

A review of factors affecting SRPs
Within the realm of SRPs management, the assessment and proficient management of project risks stand as 
imperative components. Consequently, a range of studies has been conducted to explore diverse methods and 
models aimed at enhancing the comprehension and decision support associated with project risks. Guan et al.29 
introduced a new risk interdependence network model based on Monte Carlo simulation to support decision-
makers in more effectively assessing project risks and planning risk management actions. They integrated inter-
pretive structural modeling methods into the model to develop a hierarchical project risk interdependence 
network based on identified risks and their causal relationships. Vujović et al.30 provided a new method for 
research in project management through careful analysis of risk management in SRPs. To confirm the hypothesis, 
the study focused on educational organizations and outlined specific project management solutions in business 
systems, thereby improving the business and achieving positive business outcomes. Muñoz-La Rivera et al.31 
described and classified the 100 identified factors based on the dimensions and aspects of the project, assessed 
their impact, and determined whether they were shaping or directly affecting the occurrence of research project 
accidents. These factors and their descriptions and classifications made significant contributions to improving 
the security creation of the system and generating training and awareness materials, fostering the development 
of a robust security culture within organizations. Nguyen et al. concentrated on the pivotal risk factors inher-
ent in design-build projects within the construction industry. Effective identification and management of these 
factors enhanced project success and foster confidence among owners and contractors in adopting the design-
build  approach32. Their study offers valuable insights into RA in project management and the adoption of new 
contract forms. Nguyen and Le delineated risk factors influencing the quality of 20 civil engineering projects 
during the construction  phase33. The top five risks identified encompass poor raw material quality, insufficient 
worker skills, deficient design documents and drawings, geographical challenges at construction sites, and inad-
equate capabilities of main contractors and subcontractors. Meanwhile, Nguyen and Phu Pham concentrated 
on office building projects in Ho Chi Minh City, Vietnam, to pinpoint key risk factors during the construction 
 phase34. These factors were classified into five groups based on their likelihood and impact: financial, manage-
ment, schedule, construction, and environmental. Findings revealed that critical factors affecting office building 
projects encompassed both natural elements (e.g., prolonged rainfall, storms, and climate impacts) and human 
factors (e.g., unstable soil, safety behavior, owner-initiated design changes), with schedule-related risks exerting 
the most significant influence during the construction phase of Ho Chi Minh City’s office building projects. This 
provides construction and project management practitioners with fresh insights into risk management, aiding 
in the comprehensive identification, mitigation, and management of risk factors in office building projects.

Summary
While existing research has made notable strides in RA for SRPs, certain limitations persist. These studies limi-
tations in quantifying the degree of influence of various factors and analyzing their interrelationships, thereby 
falling short of offering specific and actionable recommendations. Traditional methods, due to their inherent 
limitations, struggle to precisely quantify risk degrees and often overlook the intricate interplay among multiple 
factors. Consequently, there is an urgent need for a comprehensive method capable of quantifying the impact 
of diverse factors and revealing their correlations. In response to this exigency, this paper introduces the TANB 
model. The unique advantages of this algorithm in the RA of scientific and technological projects have been fully 
realized. Tailored to address the characteristics of uncertainty and complexity, the model represents a significant 
leap forward in enhancing applicability and accuracy. In comparison with traditional methods, the TANB model 
exhibits greater flexibility and a heightened ability to capture dependencies between features, thereby elevating 
the overall performance of RA. This innovative method emerges as a more potent and reliable tool in the realm 
of scientific and technological project management, furnishing decision-makers with more comprehensive and 
accurate support for RA.

Research methodology
This paper centers on the latest iteration of ISO 31000, delving into the project risk management process and 
scrutinizing the RA for SRPs and their intricate interplay with associated factors. ISO 31000, an international 
risk management standard, endeavors to furnish businesses, organizations, and individuals with a standardized 
set of risk management principles and guidelines, defining best practices and establishing a common framework. 
The paper unfolds in distinct phases aligned with ISO 31000:
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• Risk Identification: Employing data collection and preparation, a spectrum of factors related to project size, 
budget investment, team member experience, project duration, and technical difficulty were identified.

• RA: Utilizing the Naive Bayes algorithm, the paper conducts RA for SRPs, estimating the probability distribu-
tion of various factors influencing RA results.

• Risk Response: The application of the Naive Bayes model is positioned as a means to respond to risks, facili-
tating the formulation of apt risk response strategies based on calculated probabilities.

• Monitoring and Control: Through meticulous data collection, model training, and verification, the paper 
illustrates the steps involved in monitoring and controlling both data and models. Regular monitoring of 
identified risks and responses allows for adjustments when necessary.

• Communication and Reporting: Maintaining effective communication throughout the project lifecycle 
ensures that stakeholders comprehend the status of project risks. Transparent reporting on discussions and 
outcomes contributes to an informed project environment.

Data collection and preparation
In this paper, a meticulous approach is undertaken to select representative research project cases, adhering to 
stringent screening criteria. Additionally, a thorough review of existing literature is conducted and tailored to 
the practical requirements of SRPs management. According to Nguyen et al., these factors play a pivotal role in 
influencing the RA outcomes of  SRPs35. Furthermore, research by He et al. underscored the significant impact 
of team members’ experience on project  success36. Therefore, in alignment with our research objectives and 
supported by the literature, this paper identifies variables such as project scale, budget investment, team mem-
ber experience, project duration, and technical difficulty as the focal themes. To ensure the universality and 
scientific rigor of our findings, the paper adheres to stringent selection criteria during the project case selection 
process. After preliminary screening of SRPs completed in the past 5 years, considering factors such as project 
diversity, implementation scales, and achieved outcomes, five representative projects spanning diverse fields, 
including engineering, medicine, and information technology, are ultimately selected. These project cases are 
chosen based on their capacity to represent various scales and types of SRPs, each possessing a typical risk man-
agement process, thereby offering robust and comprehensive data support for our study. The subsequent phase 
involves detailed data collection on each chosen project, encompassing diverse dimensions such as project scale, 
budget investment, team member experience, project cycle, and technical difficulty. The collected data undergo 
meticulous preprocessing to ensure data quality and reliability. The preprocessing steps comprised data cleaning, 
addressing missing values, handling outliers, culminating in the creation of a self-constructed dataset. The dataset 
encompasses over 500 SRPs across diverse disciplines and fields, ensuring statistically significant and universal 
outcomes. Particular emphasis is placed on ensuring dataset diversity, incorporating projects of varying scales, 
budgets, and team experience levels. This comprehensive coverage ensures the representativeness and credibility 
of the study on RA in SRPs. New influencing factors are introduced to expand the research scope, including 
project management quality (such as time management and communication efficiency), historical success rate, 
industry dynamics, and market demand. Detailed definitions and quantifications are provided for each new 
variable to facilitate comprehensive data processing and analysis. For project management quality, considera-
tion is given to time management accuracy and communication frequency and quality among team members. 
Historical success rate is determined by reviewing past project records and outcomes. Industry dynamics are 
assessed by consulting the latest scientific literature and patent information. Market demand is gauged through 
market research and user demand surveys. The introduction of these variables enriches the understanding of 
RA in SRPs and opens up avenues for further research exploration.

At the same time, the collected data are integrated and coded in order to apply Naive Bayes algorithm and 
MLR analysis. For cases involving qualitative data, this paper uses appropriate coding methods to convert it into 
quantitative data for processing in the model. For example, for the qualitative feature of team member experience, 
numerical values are used to represent different experience levels, such as 0 representing beginners, 0 representing 
intermediate, and 2 representing advanced. The following is a specific sample data set example (Table 1). It shows 
the processed structured data, and the values in the table represent the specific characteristics of each project.

Establishment of naive Bayesian model
The Naive Bayesian algorithm, a probabilistic and statistical classification method renowned for its effective-
ness in analyzing and predicting multi-dimensional data, is employed in this paper to conduct the RA for SRPs. 
The application of the Naive Bayesian algorithm to RA for SRPs aims to discern the influence of various factors 
on the outcomes of RA. The Naive Bayesian algorithm, depicted in Fig. 1, operates on the principles of Bayes-
ian theorem, utilizing posterior probability calculations for classification tasks. The fundamental concept of 

Table 1.  Example of dataset encoding.

Project name Field Project scale Budget investment Team member experience Project cycle Technical difficulty

Project A Engineering 100 500 2 12 3

Project B Medicine 50 300 1 8 2

Project C Information technology 200 800 2 18 4

Project D Engineering 150 600 3 15 3

Project E Medicine 80 450 2 10 2



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8244  | https://doi.org/10.1038/s41598-024-58341-y

www.nature.com/scientificreports/

this algorithm hinges on the assumption of independence among different features, embodying the “naivety” 
hypothesis. In the context of RA for SRPs, the Naive Bayesian algorithm is instrumental in estimating the prob-
ability distribution of diverse factors affecting the RA results, thereby enhancing the precision of risk estimates. 
In the Naive Bayesian model, the initial step involves the computation of posterior probabilities for each factor, 
considering the given RA result conditions. Subsequently, the category with the highest posterior probability is 
selected as the predictive outcome.

In Fig. 1, the data collection process encompasses vital project details such as project scale, budget investment, 
team member experience, project cycle, technical difficulty, and RA results. This meticulous collection ensures 
the integrity and precision of the dataset. Subsequently, the gathered data undergoes integration and encoding 
to convert qualitative data into quantitative form, facilitating model processing and analysis. Tailored to specific 
requirements, relevant features are chosen for model construction, accompanied by essential preprocessing steps 
like standardization and normalization. The dataset is then partitioned into training and testing sets, with the 
model trained on the former and its performance verified on the latter. Leveraging the training data, a Naive 
Bayesian model is developed to estimate probability distribution parameters for various features across distinct 
categories. Ultimately, the trained model is employed to predict new project features, yielding RA results.

Naive Bayesian models, in this context, are deployed to forecast diverse project risk levels. Let X symbolize 
the feature vector, encompassing project scale, budget investment, team member experience, project cycle, and 
technical difficulty. The objective is to predict the project’s risk level, denoted as Y. Y assumes discrete values 
representing distinct risk levels. Applying the Bayesian theorem, the posterior probability P(Y|X) is computed, 
signifying the probability distribution of projects falling into different risk levels given the feature vector X. The 
fundamental equation governing the Naive Bayesian model is expressed as:

In Eq. (1), P(Y|X) represents the posterior probability, denoting the likelihood of the project belonging to 
a specific risk level. P(X|Y) signifies the class conditional probability, portraying the likelihood of the feature 
vector X occurring under known risk level conditions. P(Y) is the prior probability, reflecting the antecedent 
likelihood of the project pertaining to a particular risk level. P(X) acts as the evidence factor, encapsulating the 
likelihood of the feature vector X occurring.

The Naive Bayes, serving as the most elementary Bayesian network classifier, operates under the assumption 
of attribute independence given the class label c, as expressed in Eq. (2):

The classification decision formula for Naive Bayes is articulated in Eq. (3):

(1)P(Y |X) =
P(X|Y) · P(Y)

P(X)

(2)P(x|c) =

n∏

i=1

P(xi|c)

Construction and

Training of Naive

Bayesian Models

Data collection and

preparation stage

Data integration and coding Feature selection and processing

Data Splitting and Training

Predictive Risk

Assessment Results

Result analysis and

model optimization

Figure 1.  Naive Bayesian algorithm process.
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The Naive Bayes model, rooted in the assumption of conditional independence among attributes, often 
encounters deviations from reality. To address this limitation, the Tree-Augmented Naive Bayes (TANB) model 
extends the independence assumption by incorporating a first-order dependency maximum-weight spanning 
tree. TANB introduces a tree structure that more comprehensively models relationships between features, easing 
the constraints of the independence assumption and concurrently mitigating issues associated with multicol-
linearity. This extension bolsters its efficacy in handling intricate real-world data scenarios. TANB employs 
conditional mutual information I(Xi;Xj|C) to gauge the dependency between attributes Xj and Xi , thereby 
constructing the maximum weighted spanning tree. In TANB, any attribute variable Xi is permitted to have at 
most one other attribute variable as its parent node, expressed as Pa(Xi) ≤ 2 . The joint probability Pcon(x, c) 
undergoes transformation using Eq. (4):

In Eq. (4), xr refers to the root node, which can be expressed as Eq. (5):

TANB classification decision equation is presented below:

In the RA of SRPs, normal distribution parameters, such as mean (μ) and standard deviation (σ), are estimated 
for each characteristic dimension (project scale, budget investment, team member experience, project cycle, and 
technical difficulty). This estimation allows the calculation of posterior probabilities for projects belonging to 
different risk levels under given feature vector conditions. For each feature dimension Xi , the mean mui,j and 
standard deviation sigmai,j under each risk level are computed, where i represents the feature dimension, and j 
denotes the risk level. Parameter estimation employs the maximum likelihood method, and the specific calcula-
tions are as follows.

In Eqs. (7) and (8), Nj represents the number of projects belonging to risk level j. xi,k denotes the value of the 
k-th item in the feature dimension i. Finally, under a given feature vector, the posterior probability of a project 
with risk level j is calculated as Eq. (9).

In Eq. (9), d represents the number of feature dimensions, and Z is the normalization factor. P(Y = j) rep-
resents the prior probability of category j. P(Xi | Y = j) represents the normal distribution probability density 
function of feature dimension i under category j. The risk level of a project can be predicted by calculating the 
posterior probabilities of different risk levels to achieve RA for SRPs.

This paper integrates the probability estimation of the Naive Bayes model with actual project risk response 
strategies, enabling a more flexible and targeted response to various risk scenarios. Such integration offers deci-
sion support to project managers, enhancing their ability to address potential challenges effectively and ultimately 
improving the overall success rate of the project. This underscores the notion that risk management is not solely 
about problem prevention but stands as a pivotal factor contributing to project success.

MLR analysis
MLR analysis is used to validate the hypothesis to deeply explore the impact of various factors on RA of SRPs. 
Based on the previous research status, the following research hypotheses are proposed.

Hypothesis 1: There is a positive relationship among project scale, budget investment, and team member 
experience and RA results. As the project scale, budget investment, and team member experience increase, the 
RA results also increase.

Hypothesis 2: There is a negative relationship between the project cycle and the RA results. Projects with 
shorter cycles may have higher RA results.

Hypothesis 3: There is a complex relationship between technical difficulty and RA results, which may be 
positive, negative, or bidirectional in some cases. Based on these hypotheses, an MLR model is established to 

(3)c∗NB = arg max
c∈�C

P(c)

n∏

i=1

P(xi|c)

(4)Pcon(x, c) = P(c)P(xr |c)

n∏

i=1

P
(
xi|c, xj(i)

)

(5)xj(i) = Pa(Xi)/C, i �= r

(6)c∗TAN = arg max
c∈�C

P(c)P(xr |c)

n∏

i=1

P
(
xi|c, xj(i)

)

(7)µi,j =
1

Nj

∑Nj

k=1
xi,k

(8)σi,j =

√
1

Nj

∑Nj

k=1
(xi,k − µi,j)

2

(9)P(Y = j | X) =
1

Z
· P(Y = j) ·

∏d

i=1
P(Xi | Y = j)
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analyze the impact of factors, such as project scale, budget investment, team member experience, project cycle, 
and technical difficulty, on RA results. The form of an MLR model is as follows.

In Eq. (10), Y represents the RA result (dependent variable). X1 to X5 represent factors, such as project scale, 
budget investment, team member experience, project cycle, and technical difficulty (independent variables). β0 
to β5 are the regression coefficients, which represent the impact of various factors on the RA results. ǫ represents 
a random error term. The model structure is shown in Fig. 2.

In Fig. 2, the MLR model is employed to scrutinize the influence of various independent variables on the 
outcomes of RA. In this specific context, the independent variables encompass project size, budget investment, 
team member experience, project cycle, and technical difficulty, all presumed to impact the project’s RA results. 
Each independent variable is denoted as a node in the model, with arrows depicting the relationships between 
these factors. In an MLR model, the arrow direction signifies causality, illustrating the influence of an independ-
ent variable on the dependent variable.

When conducting MLR analysis, it is necessary to estimate the parameter β in the regression model. These 
parameters determine the relationship between the independent and dependent variables. Here, the Ordinary 
Least Squares (OLS) method is applied to estimate these parameters. The OLS method is a commonly used 
parameter estimation method aimed at finding parameter values that minimize the sum of squared residuals 
between model predictions and actual observations. The steps are as follows. Firstly, based on the general form 
of an MLR model, it is assumed that there is a linear relationship between the independent and dependent vari-
ables. It can be represented by a linear equation, which includes regression coefficients β and the independent 
variable X. For each observation value, the difference between its predicted and actual values is calculated, which 
is called the residual. Residual ei can be expressed as:

In Eq. (11), Yi is the actual observation value, and Ŷi is the value predicted by the model. The goal of the OLS 
method is to adjust the regression coefficients β to minimize the sum of squared residuals of all observations. This 
can be achieved by solving an optimization problem, and the objective function is the sum of squared residuals.

Then, the estimated value of the regression coefficient β that minimizes the sum of squared residuals can be 
obtained by taking the derivative of the objective function and making the derivative zero. The estimated values 
of the parameters can be obtained by solving this system of equations. The final estimated regression coefficient 
can be expressed as:

(10)Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ǫ

(11)ei = Yi − Ŷi

(12)minimize
∑n

i=1
e2i ==

∑n

i=1
(Yi − Ŷi)

2

(13)β̂ = (XTX)−1XTY

Budget
investment

Team member
experienceProject scale

Technical difficulty Project cycle

Risk
assessment
results

Budget
investment

Team member
experienee ceProject scale

Technicii al diffff iff cultytt Project cycle

Risk
assessment
results

Figure 2.  Schematic diagram of an MLR model.
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In Eq. (13), X represents the independent variable matrix. Y represents the dependent variable vector. (XTX)−1 
is the inverse of a matrix, and β̂  is a parameter estimation vector.

Specifically, solving for the estimated value of regression coefficient β requires matrix operation and statistical 
analysis. Based on the collected project data, substitute it into the model and calculate the residual. Then, the 
steps of the OLS method are used to obtain parameter estimates. These parameter estimates are used to establish 
an MLR model to predict RA results and further analyze the influence of different factors.

The degree of influence of different factors on the RA results can be determined by analyzing the value of 
the regression coefficient β. A positive β value indicates that the factor has a positive impact on the RA results, 
while a negative β value indicates that the factor has a negative impact on the RA results. Additionally, hypothesis 
testing can determine whether each factor is significant in the RA results.

The TANB model proposed in this paper extends the traditional naive Bayes model by incorporating condi-
tional dependencies between attributes to enhance the representation of feature interactions. While the tradi-
tional naive Bayes model assumes feature independence, real-world scenarios often involve interdependencies 
among features. To address this, the TANB model is introduced. The TANB model introduces a tree structure 
atop the naive Bayes model to more accurately model feature relationships, overcoming the limitation of assum-
ing feature independence. Specifically, the TANB model constructs a maximum weight spanning tree to uncover 
conditional dependencies between features, thereby enabling the model to better capture feature interactions.

Assessment indicators
To comprehensively assess the efficacy of the proposed TANB model in the RA for SRPs, a self-constructed 
dataset serves as the data source for this experimental evaluation, as outlined in Table 1. The dataset is segre-
gated into training (80%) and test sets (20%). These indicators cover the accuracy, precision, recall rate, F1 value, 
and Area Under the Curve (AUC) Receiver Operating Characteristic (ROC) of the model. The following are 
the definitions and equations for each assessment indicator. Accuracy is the proportion of correctly predicted 
samples to the total number of samples. Precision is the proportion of Predicted Positive (PP) samples to actual 
positive samples. The recall rate is the proportion of correctly PP samples among the actual positive samples. 
The F1 value is the harmonic average of precision and recall, considering the precision and comprehensiveness 
of the model. The area under the ROC curve measures the classification performance of the model, and a larger 
AUC value indicates better model performance. The ROC curve suggests the relationship between True Posi-
tive Rate and False Positive Rate under different thresholds. The AUC value can be obtained by accumulating 
the area of each small rectangle under the ROC curve. The confusion matrix is used to display the prediction 
property of the model in different categories, including True Positive (TP), True Negative (TN), False Positive 
(FP), and False Negative (FN).

The performance of TANB in RA for SRPs can be comprehensively assessed to understand the advantages, dis-
advantages, and applicability of the model more comprehensively by calculating the above assessment indicators.

Results and discussion
Accuracy analysis of Naive Bayesian algorithm
On the dataset of this paper, Fig. 3 reveals the performance of TANB algorithm under different assessment 
indicators.

From Fig. 3, the TANB algorithm performs well in various projects, ranging from 0.87 to 0.911 in accuracy. 
This means that the overall accuracy of the model in predicting project risks is quite high. The precision also 
maintains a high level in various projects, ranging from 0.881 to 0.923, indicating that the model performs well 
in classifying high-risk categories. The recall rate ranges from 0.872 to 0.908, indicating that the model can effec-
tively capture high-risk samples. Meanwhile, the AUC values in each project are relatively high, ranging from 
0.905 to 0.931, which once again emphasizes the effectiveness of the model in risk prediction. From multiple 
assessment indicators, such as accuracy, precision, recall, F1 value, and AUC, the TANB algorithm has shown 
good risk prediction performance in representative projects. The performance assessment results of the TANB 
algorithm under different feature dimensions are plotted in Figs. 4, 5, 6 and 7.

From Figs. 4, 5, 6 and 7, as the level of budget investment increases, the accuracy of most projects also shows 
an increasing trend. Especially in cases of high budget investment, the accuracy of the project is generally high. 
This may mean that a higher budget investment helps to reduce project risks, thereby improving the predic-
tion accuracy of the TANB algorithm. It can be observed that team experience also affects the accuracy of the 
model. Projects with high team experience exhibit higher accuracy in TANB algorithms. This may indicate that 

(14)Accuracy =
TP + TN

TP + TN + FP + FN

(15)Precision =
TP

TP + FP

(16)Recall =
TP

TP + FN

(17)F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
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experienced teams can better cope with project risks to improve the performance of the model. When budget 
investment and team experience are low, accuracy is relatively low. This may imply that budget investment and 
team experience can complement each other to affect the model performance.

There are certain differences in the accuracy of projects under different risk levels. Generally speaking, 
the accuracy of high-risk and medium-risk projects is relatively high, while the accuracy of low-risk projects 
is relatively low. This may be because high-risk and medium-risk projects require more accurate predictions, 
resulting in higher accuracy. Similarly, project scale also affects the performance of the model. Large-scale and 
medium-scale projects exhibit high accuracy in TANB algorithms, while small-scale projects have relatively low 
accuracy. This may be because the risks of large-scale and medium-scale projects are easier to identify and predict 
to promote the performance of the model. In high-risk and large-scale projects, accuracy is relatively high. This 
may indicate that the impact of project scale is more significant in specific risk scenarios.

Figure 8 further compares the performance of the TANB algorithm proposed here with other similar 
algorithms.

As depicted in Fig. 8, the TANB algorithm attains an accuracy and precision of 0.912 and 0.920, respectively, 
surpassing other algorithms. It excels in recall rate and F1 value, registering 0.905 and 0.915, respectively, out-
performing alternative algorithms. These findings underscore the proficiency of the TANB algorithm in compre-
hensively identifying high-risk projects while sustaining high classification accuracy. Moreover, the algorithm 
achieves an AUC of 0.930, indicative of its exceptional predictive prowess in sample classification. Thus, the 
TANB algorithm exhibits notable potential for application, particularly in scenarios demanding the recognition 
and comprehensiveness requisite for high-risk project identification. The evaluation results of the TANB model 
in predicting project risk levels are presented in Table 2:
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Figure 3.  Performance assessment of TANB algorithm on different projects.
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Figure 4.  Prediction accuracy of TANB algorithm on different budget investments.
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Table 2 demonstrates that the TANB model surpasses the traditional Naive Bayes model across multiple 
evaluation metrics, including accuracy, precision, and recall. This signifies that, by accounting for feature inter-
dependence, the TANB model can more precisely forecast project risk levels. Furthermore, leveraging the model’s 
predictive outcomes, project managers can devise tailored risk mitigation strategies corresponding to various risk 
scenarios. For example, in high-risk projects, more assertive measures can be implemented to address risks, while 
in low-risk projects, risks can be managed more cautiously. This targeted risk management approach contributes 
to enhancing project success rates, thereby ensuring the seamless advancement of SRPs.

The exceptional performance of the TANB model in specific scenarios derives from its distinctive character-
istics and capabilities. Firstly, compared to traditional Naive Bayes models, the TANB model can better capture 
the dependencies between attributes. In project RA, project features often exhibit complex interactions. The 
TANB model introduces first-order dependencies between attributes, allowing features to influence each other, 
thereby more accurately reflecting real-world situations and improving risk prediction precision. Secondly, 
the TANB model demonstrates strong adaptability and generalization ability in handling multidimensional 
data. SRPs typically involve data from multiple dimensions, such as project scale, budget investment, and team 
experience. The TANB model effectively processes these multidimensional data, extracts key information, and 
achieves accurate RA for projects. Furthermore, the paper explores the potential of using hybrid models or 
ensemble learning methods to further enhance model performance. By combining other machine learning 
algorithms, such as random forests and support vector regressors with sigmoid kernel, through ensemble learn-
ing, the shortcomings of individual models in specific scenarios can be overcome, thus improving the accuracy 
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Figure 5.  Prediction accuracy of TANB algorithm on different team experiences.
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and robustness of RA. For example, in the study, we compared the performance of the TANB model with other 
algorithms in RA, as shown in Table 3.

Table 3 illustrates that the TANB model surpasses other models in terms of accuracy, precision, recall, F1 
value, and AUC value, further confirming its superiority and practicality in RA. Therefore, the TANB model 
holds significant application potential in SRPs, offering effective decision support for project managers to better 
evaluate and manage project risks, thereby enhancing the likelihood of project success.
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Figure 7.  Prediction accuracy of TANB algorithm on different project scales.
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Figure 8.  Performance comparison of different algorithms in RA of SRPs.

Table 2.  Evaluation results of the TANB model in predicting project risk level indicators.

Model Accuracy Precision Recall

Naive Bayes 0.87 0.881 0.872

TANB 0.911 0.923 0.908
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Analysis of the degree of influence of different factors
Table 4 analyzes the degree of influence and interaction of different factors.

In Table 4, the regression analysis results reveal that budget investment and team experience exert a signifi-
cantly positive impact on RA outcomes. This suggests that increasing budget allocation and assembling a team 
with extensive experience can enhance project RA outcomes. Specifically, the regression coefficient for budget 
investment is 0.68, and for team experience, it is 0.51, both demonstrating significant positive effects (P < 0.05). 
The P-values are all significantly less than 0.05, indicating a significant impact. The impact of project scale is 
relatively small, at 0.31, and its P-value is also much less than 0.05. The degree of interaction influence is as fol-
lows. The impact of interaction terms is also significant, especially the interaction between budget investment and 
team experience and the interaction between budget investment and project scale. The P value of the interaction 
between budget investment and project scale is 0.002, and the P value of the interaction between team experi-
ence and project scale is 0.003. The P value of the interaction among budget investment, team experience, and 
project scale is 0.005. So, there are complex relationships and interactions among different factors, and budget 
investment and team experience significantly affect the RA results. However, the budget investment and project 
scale slightly affect the RA results. Project managers should comprehensively consider the interactive effects of 
different factors when making decisions to more accurately assess the risks of SRPs.

The interaction between team experience and budget investment
The results of the interaction between team experience and budget investment are demonstrated in Table 5.

From Table 5, the degree of interaction impact can be obtained. Budget investment and team experience, 
along with the interaction between project scale and technical difficulty, are critical factors in risk mitigation. 
Particularly in scenarios characterized by large project scales and high technical difficulties, adequate budget 

Table 3.  Performance of the TANB model and other algorithms in RA.

Model Accuracy Precision Recall F1 value AUC value

TANB Model 0.912 0.920 0.905 0.915 0.930

Random Forest Model 0.901 0.915 0.895 0.905 0.920

Support Vector Regressor with Sigmoid Kernel 0.895 0.910 0.890 0.900 0.915

Table 4.  Regression analysis of the degree of influence and interaction of different factors.

Factor
Degree of influence (regression 
coefficient) Standard error t value P value (P < 0.05)

Interaction and the influence of other 
factors

Budget investment 0.68 0.042 16.18 < 0.001 Team experience (0.51) and project scale 
(0.31)

Team experience 0.51 0.035 14.57 < 0.001 Budget investment (0.68) and project 
scale (0.31)

Project scale 0.31 0.026 12.03 < 0.001 Budget investment (0.68) and team 
experience (0.51)

Budget investment × team experience 0.19 0.018 10.65 < 0.001 –

Budget investment × project scale 0.12 0.013 9.21 0.002 –

Team experience × project scale 0.08 0.009 8.94 0.003 –

Budget investment × team experi-
ence × project scale 0.06 0.007 8.17 0.005 –

Table 5.  Regression analysis of the degree of influence and interaction of different factors.

Team experience Budget investment Average RA results Standard deviation P Value (P < 0.05)

High High 0.895 0.012 < 0.001

High Medium 0.891 0.013 < 0.001

High Low 0.885 0.015 < 0.001

Medium High 0.898 0.011 < 0.001

Medium Medium 0.894 0.012 < 0.001

Medium Low 0.892 0.014 < 0.001

Low High 0.905 0.013 < 0.001

Low Medium 0.902 0.014 < 0.001

Low Low 0.897 0.015 < 0.001
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allocation and a skilled team can substantially reduce project risks. As depicted in Table 5, under conditions 
of high team experience and sufficient budget investment, the average RA outcome is 0.895 with a standard 
deviation of 0.012, significantly lower than assessment outcomes under other conditions. This highlights the 
synergistic effects of budget investment and team experience in effectively mitigating risks in complex project 
scenarios. The interaction between team experience and budget investment has a significant impact on RA results. 
Under high team experience, the impact of different budget investment levels on RA results is not significant, 
but under medium and low team experience, the impact of different budget investment levels on RA results is 
significantly different. The joint impact of team experience and budget investment is as follows. Under high team 
experience, the impact of budget investment is relatively small, possibly because high-level team experience can 
compensate for the risks brought by insufficient budget to some extent. Under medium and low team experi-
ence, the impact of budget investment is more significant, possibly because the lack of team experience makes 
budget investment play a more important role in RA. Therefore, team experience and budget investment interact 
in RA of SRPs. They need to be comprehensively considered in project decision-making. High team experience 
can compensate for the risks brought by insufficient budget to some extent, but in the case of low team experi-
ence, the impact of budget investment on RA is more significant. An exhaustive consideration of these factors 
and their interplay is imperative for effectively assessing the risks inherent in SRPs. Merely focusing on budget 
allocation or team expertise may not yield a thorough risk evaluation. Project managers must scrutinize the 
project’s scale, technical complexity, and team proficiency, integrating these aspects with budget allocation and 
team experience. This holistic approach fosters a more precise RA and facilitates the development of tailored risk 
management strategies, thereby augmenting the project’s likelihood of success. In conclusion, acknowledging 
the synergy between budget allocation and team expertise, in conjunction with other pertinent factors, is pivotal 
in the RA of SRPs. Project managers should adopt a comprehensive outlook to ensure sound decision-making 
and successful project execution.

Risk mitigation strategies
To enhance the discourse on project risk management in this paper, a dedicated section on risk mitigation strat-
egies has been included. Leveraging the insights gleaned from the predictive model regarding identified risk 
factors and their corresponding risk levels, targeted risk mitigation measures are proposed.

Primarily, given the significant influence of budget investment and team experience on project RA outcomes, 
project managers are advised to prioritize these factors and devise pertinent risk management strategies.

For risks stemming from budget constraints, the adoption of flexible budget allocation strategies is advo-
cated. This may involve optimizing project expenditures, establishing financial reserves, or seeking additional 
funding avenues.

In addressing risks attributed to inadequate team experience, measures such as enhanced training initiatives, 
engagement of seasoned project advisors, or collaboration with experienced teams can be employed to mitigate 
the shortfall in expertise.

Furthermore, recognizing the impact of project scale, duration, and technical complexity on RA outcomes, 
project managers are advised to holistically consider these factors during project planning. This entails adjust-
ing project scale as necessary, establishing realistic project timelines, and conducting thorough assessments of 
technical challenges prior to project commencement.

These risk mitigation strategies aim to equip project managers with a comprehensive toolkit for effectively 
identifying, assessing, and mitigating risks inherent in SRPs.

Discussion
This paper delves into the efficacy of the TANB algorithm in project risk prediction. The findings indicate that 
the algorithm demonstrates commendable performance across diverse projects, boasting high precision, recall 
rates, and AUC values, thereby outperforming analogous algorithms. This aligns with the perspectives espoused 
by Asadullah et al.37. Particular emphasis was placed on assessing the impact of variables such as budget invest-
ment levels, team experience, and project size on algorithmic performance. Notably, heightened budget invest-
ment and extensive team experience positively influenced the results, with project size exerting a comparatively 
minor impact. Regression analysis elucidates the magnitude and interplay of these factors, underscoring the 
predominant influence of budget investment and team experience on RA outcomes, whereas project size assumes 
a relatively marginal role. This underscores the imperative for decision-makers in projects to meticulously con-
sider the interrelationships between these factors for a more precise assessment of project risks, echoing the 
sentiments expressed by Testorelli et al.38.

In sum, this paper furnishes a holistic comprehension of the Naive Bayes algorithm’s application in project 
risk prediction, offering robust guidance for practical project management. The paper’s tangible applications are 
chiefly concentrated in the realm of RA and management for SRPs. Such insights empower managers in SRPs 
to navigate risks with scientific acumen, thereby enhancing project success rates and performance. The paper 
advocates several strategic measures for SRPs management: prioritizing resource adjustments and team train-
ing to elevate the professional skill set of team members in coping with the impact of team experience on risks; 
implementing project scale management strategies to mitigate potential risks by detailed project stage division 
and stringent project planning; addressing technical difficulty as a pivotal risk factor through assessment and 
solution development strategies; incorporating project cycle adjustment and flexibility management to accom-
modate fluctuations and mitigate associated risks; and ensuring the integration of data quality management 
strategies to bolster data reliability and enhance model accuracy. These targeted risk responses aim to improve 
the likelihood of project success and ensure the seamless realization of project objectives.
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Conclusion
Achievements
In this paper, the application of Naive Bayesian algorithm in RA of SRPs is deeply explored, and the influence of 
various factors on RA results and their relationship is comprehensively investigated. The research results fully 
prove the good accuracy and applicability of Naive Bayesian algorithm in RA of science and technology projects. 
Through probability estimation, the risk level of the project can be estimated more accurately, which provides 
a new decision support tool for the project manager. It is found that budget input and team experience are the 
most significant factors affecting the RA results, and their regression coefficients are 0.68 and 0.51 respectively. 
However, the influence of project scale on the RA results is relatively small, and its regression coefficient is 0.31. 
Especially in the case of low team experience, the budget input has a more significant impact on the RA results. 
However, it should also be admitted that there are some limitations in the paper. First, the case data used is 
limited and the sample size is relatively small, which may affect the generalization ability of the research results. 
Second, the factors concerned may not be comprehensive, and other factors that may affect RA, such as market 
changes and policies and regulations, are not considered.

The paper makes several key contributions. Firstly, it applies the Naive Bayes algorithm to assess the risks 
associated with SRPs, proposing the TANB and validating its effectiveness empirically. The introduction of the 
TANB model broadens the application scope of the Naive Bayes algorithm in scientific research risk management, 
offering novel methodologies for project RA. Secondly, the study delves into the impact of various factors on RA 
for SRPs through MLR analysis, highlighting the significance of budget investment and team experience. The 
results underscore the positive influence of budget investment and team experience on RA outcomes, offering 
valuable insights for project decision-making. Additionally, the paper examines the interaction between team 
experience and budget investment, revealing a nuanced relationship between the two in RA. This finding under-
scores the importance of comprehensively considering factors such as team experience and budget investment 
in project decision-making to achieve more accurate RA. In summary, the paper provides crucial theoretical 
foundations and empirical analyses for SRPs risk management by investigating RA and its influencing factors in 
depth. The research findings offer valuable guidance for project decision-making and risk management, bolster-
ing efforts to enhance the success rate and efficiency of SRPs.

This paper distinguishes itself from existing research by conducting an in-depth analysis of the intricate 
interactions among various factors, offering more nuanced and specific RA outcomes. The primary objective 
extends beyond problem exploration, aiming to broaden the scope of scientific evaluation and research practice 
through the application of statistical language. This research goal endows the paper with considerable significance 
in the realm of science and technology project management. In comparison to traditional methods, this paper 
scrutinizes project risk with greater granularity, furnishing project managers with more actionable suggestions. 
The empirical analysis validates the effectiveness of the proposed method, introducing a fresh perspective for 
decision-making in science and technology projects. Future research endeavors will involve expanding the 
sample size and accumulating a more extensive dataset of SRPs to enhance the stability and generalizability of 
results. Furthermore, additional factors such as market demand and technological changes will be incorporated 
to comprehensively analyze elements influencing the risks of SRPs. Through these endeavors, the aim is to provide 
more precise and comprehensive decision support to the field of science and technology project management, 
propelling both research and practice in this domain to new heights.

Limitations and prospects
This paper, while employing advanced methodologies like TANB models, acknowledges inherent limitations 
that warrant consideration. Firstly, like any model, TANB has its constraints, and predictions in specific sce-
narios may be subject to these limitations. Subsequent research endeavors should explore alternative advanced 
machine learning and statistical models to enhance the precision and applicability of RA. Secondly, the focus of 
this paper predominantly centers on the RA for SRPs. Given the unique characteristics and risk factors prevalent 
in projects across diverse fields and industries, the generalizability of the paper results may be limited. Future 
research can broaden the scope of applicability by validating the model across various fields and industries. The 
robustness and generalizability of the model can be further ascertained through the incorporation of extensive 
real project data in subsequent research. Furthermore, future studies can delve into additional data preprocessing 
and feature engineering methods to optimize model performance. In practical applications, the integration of 
research outcomes into SRPs management systems could provide more intuitive and practical support for project 
decision-making. These avenues represent valuable directions for refining and expanding the contributions of 
this research in subsequent studies.

Data availability
All data generated or analysed during this study are included in this published article [and its Supplementary 
Information files].
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