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Machine learning‑based 
survival prediction nomogram 
for postoperative parotid 
mucoepidermoid carcinoma
Zongwei Huang 1,3, Zihan Chen 1,3, Ying Li 1, Ting Lin 1, Sunqin Cai 1, Wenxi Wu 1, Lishui Wu 1, 
Siqi Xu 1, Jun Lu 1* & Sufang Qiu 2*

Parotid mucoepidermoid carcinoma (P‑MEC) is a significant histopathological subtype of salivary 
gland cancer with inherent heterogeneity and complexity. Existing clinical models inadequately 
offer personalized treatment options for patients. In response, we assessed the efficacy of four 
machine learning algorithms vis‑à‑vis traditional analysis in forecasting the overall survival (OS) of 
P‑MEC patients. Using the SEER database, we analyzed data from 882 postoperative P‑MEC patients 
(stages I–IVA). Single‑factor Cox regression and four machine learning techniques (random forest, 
LASSO, XGBoost, best subset regression) were employed for variable selection. The optimal model 
was derived via stepwise backward regression, Akaike Information Criterion (AIC), and Area Under 
the Curve (AUC). Bootstrap resampling facilitated internal validation, while prediction accuracy was 
gauged through C‑index, time‑dependent ROC curve, and calibration curve. The model’s clinical 
relevance was ascertained using decision curve analysis (DCA). The study found 3‑, 5‑, and 10‑year 
OS rates of 0.887, 0.841, and 0.753, respectively. XGBoost, BSR, and LASSO stood out in predictive 
efficacy, identifying seven key prognostic factors including age, pathological grade, T stage, N stage, 
radiation therapy, chemotherapy, and marital status. A subsequent nomogram revealed a C‑index of 
0.8499 (3‑year), 0.8557 (5‑year), and 0.8375 (10‑year) and AUC values of 0.8670, 0.8879, and 0.8767, 
respectively. The model also highlighted the clinical significance of postoperative radiotherapy across 
varying risk levels. Our prognostic model, grounded in machine learning, surpasses traditional models 
in prediction and offer superior visualization of variable importance.
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ROC  Receiver operating characteristic
NCCN  National Comprehensive Cancer Network
LNR  Lymph node ratio
RFS  Recurrence-free survival

Parotid gland carcinoma represents an uncommon, markedly heterogeneous malignancy of the head and neck 
 region1. As per the World Health Organization (WHO) classification, over 20 histological subtypes exist, encom-
passing adenoid cystic carcinoma, mucoepidermoid carcinoma (MEC), secretory carcinoma, among others, with 
MEC being the predominant tissue  type2. MEC is characterized as a malignant glandular epithelial neoplasm, 
characterized by the presence of mucinous, intermediate, and epidermoid cells exhibiting columnar, clear cell, 
and cancer-like features. Based on invasiveness and differentiation, MEC is stratified into low, intermediate, and 
high-grade malignant  neoplasms3–5.

The tumor’s pathological grade is an important factor in determining the prognosis for MEC patients, and it 
often guides treatment  approaches6–9. However, the TNM system and pathological grade fall short in estimating 
survival or informing adjuvant therapy-related  decisions10. Previous research has shown that high-grade tumors 
and those with positive margins are at a higher risk of recurrence and spread. Post-operative radiation therapy can 
help to prevent the recurrence of the tumor and improve overall outcomes for these  patients11–13. Therefore, post-
operative management is crucial for the long-term prognosis of parotid mucoepidermoid carcinoma (P-MEC) 
patients. Additionally, the postoperative stage is also a critical period for disease monitoring and making clini-
cal decisions, such as the development of postoperative radiation therapy plans. Hence, a comprehensive and 
accurate postoperative survival prediction model is needed to integrate multiple clinical pathological features 
to guide treatment decision-making and disease monitoring.

Although the preoperative phase and initial treatment strategies are undoubtedly important in the manage-
ment of P-MEC, the majority of patients undergo surgery as the primary treatment modality. Therefore, the 
objective of this study is to establish a personalized, clinically valuable, and effective predictive model specifi-
cally for postoperative P-MEC. Prior research has been limited by small sample sizes, brief study durations, and 
single-center designs. In contrast, the Surveillance, Epidemiology, and End Results (SEER) database serves as a 
comprehensive trove of clinical data collected from a diverse array of cancer patients across multiple registries 
spanning the vast expanse of the United States. The database’s wide-reaching coverage imbues it with the capac-
ity to offer a representative sample of cancer incidence and survival rates across the entire US populace, thereby 
enhancing the credibility and robustness of research  studies10. Machine learning methods have been extensively 
employed in other tumor prediction models, with their analytical and visual capabilities serving as potent tools 
for clinical forecasting. Machine learning approaches consider a broader range of variable relationships compared 
to conventional statistical methodologies. To date, no studies have explored machine learning-based predictive 
models for postoperative P-MEC14,15.

A nomogram integrating visual representations with hazard probability scores for each prognostic factor to 
construct a proportional hazards regression model was developed and validated using a large SEER population 
database and screening suitable variables via traditional and machine learning methods. Moreover, risk strati-
fication based on the nomogram scores substantially enhances clinical applicability, offering clinicians tailored 
treatment strategies for patients with postoperative P-MEC.

Method
Study population: SEER data
For this study,  SEER*STAT software (version 8.4.0) was employed to extract clinical data of patients with P-MEC 
between 2004 and 2015.The criterias for the inclusion of P-MEC patients were as follows: (1) patients with a 
primary site of “parotid gland: 07.9”; (2) patients with pathologically confirmed stage I-IVA P-MEC; (3) post-
surgical patients; (4) patients with diagnostic confirmation of “Positive histology or exfoliative cytology”. Addi-
tionally, patients who were not primary cases, lived less than 1 month, had unclear basic information, were not 
examined for regional lymph nodes, or had inaccurate positive lymph node results were excluded. The screening 
process is illustrated in Fig. 1.

Variable selection
To identify the clinical variables that significantly impact the overall survival (OS) of patients, various statistical 
methods were employed, including extreme gradient boosting (XGBoost), least absolute shrinkage and selection 
operator (LASSO), best subsets regression (BSR), random forest (RF), and Cox proportional hazard regression. 
The LNR, representing the ratio of regional nodes testing positive among those examined, was calculated, and 
its cut-off point was determined using X-tile software. Subsequently, the clinical variables were screened using 
stepwise backward regression with the “MASS” package. Model fitting was evaluated by the Akaike Information 
Criterion (AIC), and the area under the receiver operating characteristic curve (AUC) was used to evaluate the 
model’s accuracy. The ‘survival’ package was used for proportional hazards hypothesis testing and Cox regres-
sion analysis, the ‘caret’ package for RF analysis with default settings and 20-fold cross-validation, the ‘shapviz’ 
and ‘xgboost’ packages for XGBoost analysis, the ‘glmnet’ package for LASSO analysis, and the ‘leaps’ package 
for BSR analysis.

Nomogram construction
The nomogram, an effective visual tool for predicting survival outcomes, was constructed using the “rms,” “tim-
eROC,” and “nomogramFormula” packages, based on the variables included in the Cox proportional hazards 
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regression model. The nomogram values were assigned to each patient, and the ROC curve analysis was utilized 
to determine the optimal cutoff value for risk stratification.

Model validation
The calibration curves were used to assess the agreement between the predicted probabilities and observed out-
comes, and the ROC curve and AUC were utilized to evaluate the model’s discrimination ability. The internal 
validation was performed using the bootstrapping method, where 1000 resampling was performed to validate the 
model, using the “riskRegression” and “pec”  packages16. Moreover, to identify the clinical utility of the model, the 
decision curve analysis (DCA) through the “stdca.R” package was  employed17. Additionally, the Kaplan–Meier 
(K–M) method was used to compare the OS of various groups, and the log-rank test was used to evaluate its 
significance with a P-value threshold of < 0.05. The statistical analyses were performed using R software (R ver-
sion 4.2.1), and the seed was set to 1234 for all the tests.

Risk
Stratifiaction

Inclusion criteria
(1)Pathologically diagnosed as parotid 
gland mucoepidermoid carcinoma 
(2)I-IVA stage
(3)Underwent surgery
(3)diagnostic confirmation="Positive
histology or exfoliative cytology"
(4)data from 2004-2015

Exclusion criteria
(1)More than one primary malignant tumour,

N=723
(2)Less than 1 month survival,N=9
(3)Unkown grade,race,laterality,marriage,

N=79,14,2,49
(4)Unexamined or unknown regional lymph nod
es,N=308,34
(5)Unknown Positive regional lymph nodes,N=1
(6)Unknown radiation therapy,N=8
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Figure 1.  Analysis flow for the development and evaluation of models for parotid mucoepidermoid 
carcinoma(P-MEC).
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Results
Screening and characteristics of the patients
This study examined 882 patients with stage I–IVA P-MEC, who met the inclusion–exclusion criteria, from the 
SEER database between 2004 and 2015. Figure 1 illustrates the patient selection process, while Table 1 sum-
marizes patients’ demographic and clinicopathological characteristics. The lymph node ratio (LNR) cut-off was 
determined using X-tile analysis, with a resultant cut-off of 1.15%. The median (95% CI) follow-up time was 
99 (92–105) months, and the median (IQR) age at diagnosis was 52 (37–66) years. A majority of the patients 
were white (661, 74.9%), with most tumors being grade II (396, 44.9%), stage I (353, 40%), T1-stage (381, 
43.2%), N0-stage (685, 77.7%), and LNR0 (686, 77.8%) according to the AJCC 6th stage. All variables, except for 
chemotherapy (94.2% vs 5.8%), had proportions exceeding 10%. The study encompassed 12 variables, includ-
ing age, gender, grade, stage, tumor (T) stage, node (N) stage, radiation, chemotherapy, laterality, marriage, 
and LNR. Nine factors—age, gender, grade, stage, T stage, N stage, radiation, chemotherapy, and LNR—were 
selected based on univariate Cox regression. Multivariate Cox regression revealed that four factors (age, grade, 
T stage, and chemotherapy) were independent risk factors, each with P-values less than 0.05. In the multivari-
ate analysis, individuals aged 60–70 years (HR = 5.936, 95% CI = 3.016–11.681, P < 0.001), those over 70 years 
old (HR = 11.962, 95% CI = 6.303–22.703, P < 0.001), Grade III (HR = 2.324, 95% CI = 1.235–4.375, P = 0.009), 
Grade IV (HR = 3.148, 95% CI = 1.710–5.795, P < 0.001), T2 (HR = 3.162, 95% CI = 1.059–9.440, P = 0.039), 
T3 (HR = 4.300, 95% CI = 1.501–12.316, P = 0.007), T4 (HR = 4.414, 95% CI = 1.439–13.535, P = 0.009), and 
chemotherapy (HR = 1.721, 95% CI = 1.096–2.703, P = 0.018) emerged as independent risk factors for overall 
survival (OS). Nevertheless, radiation(HR = 0.750, 95% CI = 0.525–1.072, P = 0.114), LNR (HR = 0.868, 95% 
CI = 0.114–6.602, P = 0.891), and other variables demonstrated no prognostic value (Table 2).

Variable selection
Figure 2A displays the relationship between the LASSO coefficients and the regularization parameter, lambda (λ), 
and demonstrates the variable selection process and the effect of λ on the coefficients. The “lambda.min” value, 
which represents the lambda value corresponding to the minimum likelihood deviation or the highest C-index, 
was utilized for selecting tuning parameters in LASSO regression. Another vertical line was “lambda.1se,” which 
corresponds to the most regularized model within one standard error of the minimum (Fig. 2B). The “λ.min” 
(λ = 0.0050724) was chosen for the best predictive performance. A ten-fold cross-validation was employed. Ten 
variables were chosen through the LASSO regression algorithm, including age, gender, grade, T stage, N stage, 
radiation, chemotherapy, laterality, marriage, and LNR. Employing the adjusted R-squared maximum of the BSR, 
we selected eight variables: age, grade, stage, T stage, N stage, radiation, chemotherapy, and marriage(Fig. 3). In 
the RF model and XGBoost, we independently extracted the top 10 variables, excluding laterality, radiation (RF), 
and LNR (XGBoost) (Fig. 4). We assessed the key performance of machine learning and traditional statistics 
using AUC and AIC. Multivariate Cox stepwise backward regression reconfirmation identified LASSO, BSR, and 
XGBoost as the best of the five screening methods based on both AUC (AUC = 88.4) and AIC (AIC = 2118.9) 
criteria (Table 3).

Nomogram construction
Consequently, we constructed a nomogram with seven variables from the three algorithms (LASSO, BSR, and 
XGBoost), including age, grade, tumor stage, node stage, chemotherapy, radiation, and marriage. We developed 
an OS-nomogram capable of predicting a patient’s 3-, 5-, and 10-year OS rates using these variables (Fig. 5). By 
converting clinical, pathological, and therapeutic factors into points, the nomogram accurately predicted OS. 
The total risk point score, calculated by summing all points, significantly correlated with 3-, 5-, and 10-year 
OS. We utilized a 5-year ROC curve to determine the optimum risk score cut-off point. Kaplan–Meier curves 
revealed that low-risk group patients (risk score < 80.29) had better survival prognosis compared to high-risk 
group patients (risk score ≥ 80.29, log-rank test, P < 0.001) (Fig. S1).

Predictive ability evaluation
We evaluated the predictive ability of our nomogram by constructing time-dependent receiver operating char-
acteristic (ROC) curves at 3, 5, and 10 years. The ROC curves demonstrated excellent discriminative capacity 
of our model, with areas under the curves (AUCs) of 86.9 (95% CI = 83.3–90.6), 88.4 (95% CI = 83.5–91.4), and 
87.7 (95% CI = 84.1–91.3) (Fig. 6). This indicates that our model has high accuracy in predicting overall survival 
in parotid MEC patients.

We also performed 1000 bootstrap resampling analyses on the dataset and generate calibration plots for the 
prediction model. The calibration plots showed that the curves closely aligned with the 45-degree line, indicating 
a well-calibrated model in practical use (Fig. 6). Furthermore, the 1000 bootstrap resamplings indicated good 
concordance between actual and predicted values in both the training and validation datasets, as evidenced by 
C-index (3-year, 0.8499, 0.775–0.914; 5-year 0.8557, 0.793–0.911; 10-year, 0.8375, 0.772–0.897) and AUC (3-year, 
0.8670, 95 CI% = 0.787–0.935; 5-year, 0.8879, 95 CI% = 0.82–0.945; 10-year, 0.8767, 95 CI% = 0.792–0.947). 
(Fig. 7). These results further support the reliability and accuracy of our prediction model.

Clinical utility analysis
To determine the clinical utility of our prediction model, we utilized the decision curve analysis (DCA) plot. 
The DCA plot illustrates the net benefit of the prediction model across a spectrum of threshold probabilities. 
Our model demonstrates clinical utility, as evidenced by its net benefit curve lies above both two lines across 
the range of threshold probabilities (Fig. 6). This suggests that our prediction model is more effective than TNM 
stage or grade and can aid in making clinical decisions for P-MEC patients.
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Table 1.  Demographic and clinical characteristics of patients with P-MEC. Grade is codefined as follows: 
Grade I, well differentiated, Grade II, moderately differentiated; Grade III, poorly differentiated, Grade IV, 
undifferentiated; anaplastic. Lymph node ratio, the number of positive lymph nodes divided by the number of 
neck lym-ph nodes dissected. LNR0, LNR(%) < 1.15. LNR1, LNR(%) ≥ 1.15. IQR, inter quartile range.

Characteristics n (%)

Age

 Median (IQR) 52.00 [37.00, 66.00]

  < 40 254 (28.8)

 40–50 146 (16.6)

 50–60 173 (19.6)

 60–70 138 (15.6)

  ≥ 70 171 (19.4)

Gender

 Female 445 (50.5)

 Male 437 (49.5)

Race

 White 669 (74.9)

 Black 120 (13.6)

 Other 101 (11.5)

Grade

 I 234 (26.5)

 II 396 (44.9)

 III 120 (13.6)

 IV 132 (15)

Stage

 I 353 (40)

 II 202 (22.8)

 III 170 (18.9)

 IVA 161 (18.3)

Tumor (T) stage

 T1 381 (43.2)

 T2 257 (29.1)

 T3 145 (16.4)

 T4 99 (11.2)

Node (N) stage

 N0 685 (77.7)

 N1 110 (12.5)

 N2 87 (9.9)

Radiation

 No 450 (51)

 Yes 432 (49)

Chemotherapy

 No/unknown 831 (94.2)

 Yes 51 ( 5.8)

Laterality

 Left 413 (46.8)

 Right 469 (53.2)

Marriage

 No 390 (44.2)

 Yes 492 (55.8)

Lymph node ratio (%)

 Median (IQR) 0.00 [0.00, 0.00]

 LNR0 686 (77.8)

 LNR1 196 (22.2)
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In summary, our nomogram exhibited excellent predictive ability and calibration, as well as clinical utility, 
indicating its potential usefulness in clinical practice.

Table 2.  Univariate and multivariate analyses for OS in patients with P-MEC. Statistical significance indicated 
by P < 0.05 has been denoted in bold.

Characteristics

Univariable analysis Multivariable analysis

HR (95% CI) P-value HR (95% CI) P-value

Age  < 0.001

  < 40 Reference Reference

 40–50 1.453 (0.628–3.363) 0.383 1.305 (0.561–3.036) 0.536

 50–60 3.282 (1.656–6.505)  < 0.001 2.594 (1.286–5.234) 0.008

 60–70 7.195 (3.766–13.746)  < 0.001 5.936 (3.016—11.681)  < 0.001

  ≥ 70 18.925 (10.379—34.508)  < 0.001 11.962 (6.303—22.703)  < 0.001

Gender  < 0.001

 Female Reference Reference

 Male 2.112 (1.563–2.855)  < 0.001 1.101 (0.797–1.522) 0.560

Race  < 0.001

 White Reference Reference

 Black 0.533 (0.319–0.891) 0.016 1.444 (0.840–2.483) 0.184

 Other 0.437 (0.237–0.806) 0.008 0.839 (0.449–1.570) 0.584

Grade  < 0.001

 I Reference Reference

 II 1.668 (0.975–2.856) 0.062 1.346 (0.773–2.343) 0.294

 III 6.837 (3.981–11.741)  < 0.001 2.324 (1.235–4.375) 0.009

 IV 9.505 (5.654–15.978)  < 0.001 3.148 (1.710–5.795)  < 0.001

Stage  < 0.001

 I Reference Reference

 II 1.668 (1.029–2.706) 0.038 0.481 (0.145–1.596) 0.232

 III 3.353 (2.173–5.175)  < 0.001 0.480 (0.149–1.544) 0.218

 IVA 5.950 (3.970–8.917)  < 0.001 0.462 (0.130–1.638) 0.232

Tumor (T) stage  < 0.001

 T1 Reference Reference

 T2 2.199 (1.454–3.325)  < 0.001 3.162 (1.059–9.440) 0.039

 T3 4.210 (2.773–6.390)  < 0.001 4.300 (1.501–12.316) 0.007

 T4 5.440 (3.534–8.376)  < 0.001 4.414 (1.439- 13.535) 0.009

Node (N) stage  < 0.001

 N0 Reference Reference

 N1 2.972 (2.067–4.274)  < 0.001 1.807 (0.226–14.438) 0.577

 N2 4.849 (3.400–6.916)  < 0.001 2.517 (0.300–21.156) 0.395

Radiation  < 0.001

 No Reference Reference

 Yes 2.074 (1.531–2.810)  < 0.001 0.750 (0.525–1.072) 0.114

Chemotherapy  < 0.001

 No/unknown Reference Reference

 Yes 3.871 (2.569–5.832)  < 0.001 1.721 (1.096–2.703) 0.018

Laterality 0.648

 Left Reference

 Right 0.935 (0.702–1.246) 0.648

Marriage 0.327

 No Reference

 Yes 0.866 (0.649–1.154) 0.326

Lymph node ratio 9%)  < 0.001

 LNR0 Reference Reference

 LNR1 3.647 (2.731–4.869)  < 0.001 0.868 (0.114–6.602) 0.891
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Discussion
In clinical research, traditional linear statistical methods, such as multivariate regression and correlation analy-
sis, often encounter challenges due to the complexity of biological variables.These variables frequently display 
nonlinear relationships and exhibit conditional dependencies. The fundamental assumption of these methods 
is that variables are independent, and there exist linear relationships among them. However, these assumptions 
often fall short in practice. Machine learning offers a robust solution to these problems. ML techniques can 
capture nonlinear relationships and conditional dependencies in data, demonstrating high accuracy and flex-
ibility when handling clinical research data. To date, several ML-based predictive models have been developed, 
including models based on conditional survival forests and random survival forests for the study of advanced 
salivary gland cancer and primary salivary gland cancer,  respectively18,19.The determination of prognostic factors 
exhibits considerable variation among patients with P-MEC, largely due to differences in pathological grading 
and disease stage. Furthermore, the establishment of reliable prognostic factors remains a challenging task due 
to limitations such as patient size and subjective grading. However, our research incorporates an expanded set of 
ML algorithms. Among the algorithms employed in this study, XGBoost, BSR, and LASSO screening displayed 
excellent overall predictive performance.

Our study identified seven independent prognostic factors and designed Kaplan–Meier plots for risk strati-
fication, potentially providing valuable insights for clinical practice. Age, grade, T stage, N stage, radiotherapy, 
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chemotherapy, and marital status have been determined as independent prognostic factors for the OS of patients 
with P-MEC.

Age, grade, T stage, and N stage are factors that have been extensively explored and validated across 18 studies 
published between 1968 and  20208. Beyond these parameters, our study incorporates additional variables such 
as radiotherapy, chemotherapy, and marital status. Subgroup analyses were conducted to further understand 
the study population. The role of radiotherapy in treating mucoepidermoid carcinoma of the salivary glands has 
not been thoroughly examined in prior research. Our in-depth analysis of patients who underwent postopera-
tive radiotherapy suggests that individuals in low-risk categories may not derive significant benefits from this 
 treatment20–23. Additionally, our findings regarding LNR diverge from those of previous studies, which will be 
elaborated upon in subsequent sections of this paper.

A review of the National Cancer Database and a meta-analysis further confirmed the importance of age as 
a prognostic  factor24. This meta-analysis of survival factors in P-MEC patients showed that in 33% of search 
studies, older age was associated with worse survival outcomes (HR, 1.02–6.86)8. A 30-year retrospective study 
on a predominantly MEC affected sample also demonstrated a more favorable prognosis for children compared 
to adults (95% ± 1.5% compared with 59% ± 0.5% (P < 0.001))25.
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Table 3.  Screening results of five methods for identifying predictors. Final, the results obtained after the 
model undergone Multivariate Cox stepwise backward regression. Statistical significance indicated by P < 
0.05 has been denoted in bold.

Characteristics

Univariate Cox regression LASSO regression Besubset regression Random forest XGboost

Preliminary Final Preliminary Final Preliminary Final Preliminary Final Preliminary Final

Age  +  +  +  +  +  +  +  +  +  + 

Gender  +  +  +  + 

Race  +  +  + 

Grade  +  +  +  +  +  +  +  +  +  + 

Stage  +  +  +  + 

T stage  +  +  +  +  +  +  +  +  +  + 

N stage  +  +  +  +  +  +  +  +  + 

Radiation  +  +  +  +  +  +  +  + 

Chemotherapy  +  +  +  +  +  +  +  +  +  + 

Laterality  +  + 

Marriage  +  +  +  +  +  +  +  + 

Lymph node ratio(%)  +  +  + 

Total number 10 6 10 7 8 7 10 6 10 7

AUC(5 years) 87.7 88.4 88.4 88.0 88.4

AIC 2131.3 2122.3 2123.9 2118.9 2122.6 2118.9 2129.0 2120.0 2124.2 2118.9
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Our study found that the prognosis of P-MEC patients is grade-dependent, with poor prognoses observed 
for patients with high grade, consistent with prior  research8. The inclusion of marital status in the model was 
supported by previous studies, suggesting that married patients may experience better prognoses due to factors 
such as “spousal protection”26,27.

Currently, the treatment of primary mucoepidermoid carcinoma of the parotid gland is based on the overall 
treatment strategy of parotid gland cancer, according to the National Comprehensive Cancer Network (NCCN) 
 guidelines27. The role of radiotherapy as a protective prognostic factor for parotid cancer patients has been a 
subject of  controversy20–23. For patients with advanced, high-grade (poorly differentiated or undifferentiated), 
nerve or vascular invasion, insufficient or positive margins, extraparotid invasion, or lymph node involvement, 
postoperative radiotherapy is recommended. Our study further analyzed the clinical value of postoperative radio-
therapy at different risk levels. Compared with surgery alone, postoperative radiotherapy did not significantly 
improve the survival of patients in the low-risk group (P = 0.973). In contrast, there was a significant therapeutic 
advantage in survival performance for patients in the high-risk group (P = 0.002).This suggests that the low-risk 
population may not benefit from postoperative radiation therapy in cases of postoperative P-MEC, potentially 
preventing overtreatment. Previous studies have reported successful postoperative radiotherapy for low-grade 
pT2N0 P-MEC and cases where postoperative radiotherapy significantly improved survival in advanced, high-
grade patients. Our results attempt to analyze the optimal population that can benefit from postoperative radio-
therapy by integrating pathologic and demographic characteristics, providing limited evidence for the choice 
of treatment  options28–30. Further multicenter, large sample retrospective or prospective studies are needed to 
validate these findings.

During surgery for parotid gland cancer, lymph node dissection and biopsy are performed. Generally, the 
association between LNR and OS in parotid gland cancer is worth affirming. However, due to differences in 
research endpoints, subjects, and statistical methods, our study suggests that LNR is not an independent prognos-
tic factor for P-MEC patients. Q. Fang et al. reviewed more than 20 years of postoperative patients with parotid 
cancer and confirmed our viewpoint. Furthermore, the study believed that more than two positive parotid lymph 
nodes reduced the control of recurrence-free survival (RFS)31. A German retrospective cohort study after parotid 
cancer surgery also found that LNR was not the best prognostic  factor32. Due to the failure of LNR to consider 
the condition of lymph nodes in the parotid gland, the study suggests that the evaluation of lymph nodes in the 
parotid gland should be included. Consequently, more analysis is required to determine the effect of LNR on 
the prognosis of P-MEC patients.

This study is subject to several limitations. Firstly, its retrospective design may lead to selection bias. Sec-
ondly, the absence of data on nerve and vascular invasion could compromise the accuracy of the findings. 
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Figure 5.  A survival nomogram for predicting overall survival (OS) for patients with P-MEC. (1) When using 
the nomogram, seven predictors were quantified as “point” based on patient-specific factors and then the sum of 
the “point” corresponded to the “total point” below, which corresponded to the 3, 5, 10 year OS ; (2) The optimal 
cut-off total point was 80.29 (the median of patients’ point), which divided the patients into high-risk group and 
low-risk group.
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Additionally, the reliance on cancer data primarily from North America restricts the generalizability of the results 
to other regions, particularly Asia. Furthermore, both the development and validation cohorts were sourced 
from the same database, which might affect the robustness of the conclusions. Although the nomogram and 
risk stratification systems underwent comprehensive internal validation, the limited number of P-MEC patients 
prevented external validation, potentially limiting the external applicability of the findings. Moreover, the study 
did not account for all possible factors influencing patient survival, such as more detailed treatment protocols 
(e.g., radiation dosage, chemotherapy drugs) and more comprehensive information on individual heterogeneity 
(e.g., molecular markers). Despite these limitations, our clinical prediction model shows substantial potential 
in predicting the survival rate of P-MEC patients based on SEER database, offering reliable results for clinical 
decision-making.
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Figure 6.  (A–C) The calibration curves. The calibration curves of the nomogram predicting (A) 3-years, (B) 
5-years, and (C) 10-years OS. (D–F) Time dependent ROC curve. (D) ROC curves for 3-year, (E) 5-year, and 
(F) 10-year overall survival rates. (G–I) Decision curve analysis (DCA) plot. (G) DCA plot for 3-year, (H) 
5-year, and (I) 10-year overall survival rates.
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Conclusion
In conclusion, this study developed a machine learning-based nomogram for predicting overall survival in 
postoperative P-MEC patients, incorporating age, pathological grade, T stage, N stage, radiation therapy, chem-
otherapy, and marital status as independent prognostic factors.The feature selection capabilities of machine 
learning not only significantly enhance model-building process but also offer improved predictive performance 
and enable effective visualization of variable importance. The nomogram has the potential to aid clinicians 
in making personalized treatment recommendations and clinical management decisions for P-MEC patients, 
thereby improving patient outcomes.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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