www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

The 3-component mixture of power
distributions under Bayesian
paradigm with application of life
span of fatigue fracture

Tahir Abbas?, Muhammad Tahir'*‘, Muhammad Abid3*, Samavia Munir® & Sajid Ali*

Mixture distributions are naturally extra attractive to model the heterogeneous environment of
processes in reliability analysis than simple probability models. This focus of the study is to develop
and Bayesian inference on the 3-component mixture of power distributions. Under symmetric and
asymmetric loss functions, the Bayes estimators and posterior risk using priors are derived. The
presentation of Bayes estimators for various sample sizes and test termination time (a fact of time
after that test is terminated) is examined in this article. To assess the performance of Bayes estimators
in terms of posterior risks, a Monte Carlo simulation along with real data study is presented.
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The power distribution is frequently proposed to study the electrical element reliability (Saleem et al.') and
in many practical situations, it provides a good fit to data as compared to other distributions, e.g., Rayleigh or
gamma distribution. We considered this particular distribution due to skewed nature and applied in different
fields like electrical engineering (Amanulla et al.?), reliability analysis (Shahzad et al.%), city population sizes, stock
prices fluctuation, magnitude of earthquakes (Parsa and Murty*) and average wealth of a country’s citizens etc.
However, simple probability distribution may not be well fitted due to heterogeneous environment of reliability
data. Therefore, mixture distributions of some suitable distributions are interesting to model the heterogeneous
environment of procedures in reliability study. For instance, if the values randomly picked from this popula-
tion are invented to be considered from three different probability distribution, 3-components mixture of that
distribution is recommended. Use of a mixture distribution becomes unavoidable when values are not given for
every distribution rather for the overall mixture distribution, so-called direct use of mixture distributions. Li®
and Li and Sedransk® discussed type-I mixture distribution (mixture of probability distributions from the same
family) and type-II mixture distribution (mixture of probability distributions from various family).

Many researchers have analyzed 2-component mixture models of different probability distributions and
applied them to various real life problems under classical and Bayesian framework. Similar to 2-component
mixture distribution, some researchers have studied the situations where data are taken from a 3-component
mixture distribution. For illustration, in order to know amount of failure because of a definite reason of failure
and to expand industrial procedure, Acheson and McElwee” separated electrical tube failures into three types
of flaws, namely, gaseous flaws, mechanical flaws, and usual deterioration of the cathode. Davis® also described
a mixture data on lifetimes of different parts composed from aircraft failure. Also, Tahir et al.” used the real life
mixture data on three parts, namely, Combination of Transformers, Transmitter Tube and Combination of Relays.
Haq and Al-Omari' studied the mixture of three Rayleigh distributions using type-1 censored data under differ-
ent scenarios. The application of such methodologies can further be seen in Luo et al.'!, Wang et al.'> and Zhou
etal."®. Thus, the practical significance of 3-component mixtures of distributions is evident to the cited literature.

Because of time and price restrictions, it is difficult proceed the testing till end value. Consequently, the
observations larger than fixed test termination time are retained equally censored observations. It is stating that
censoring is an asset of data and it is usually used in real lifetime tests. The practical reason of censoring is stated
in Romeu!*, Gijbels'® and Kalbfleisch and Prentice'.
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Inspired by wide application of mixture distributions, here we define a mixture of the power distributions for
capable modeling of practical data under Bayesian paradigm. Different types of loss functions and priors will be
assumed to derive Bayes estimators along with posterior risks.

The 3-component mixture of power distributions (3-CMPD) has following pdf and survival function:

fr: ©) =pifi(y) +p2f2(y) + (L =pr —p2)fs(y), 0<y <1, (1)
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where 4, 4> and A3 are component parameters, p; and p; are mixing proportions and
0= (;L], A2 235 P1s P2) (3)

The pdf f,,(y) and the survival function S,, (y) of the mth component, m = 1, 2, 3, are written as:

Fn(y) = Ay’ and Spu(y) = 1=y, im> 0. @)

Sampling structure for likelihood function

Suppose a data consists of n values from the 3-CMPD are taken in a real life test with fixed ¢ (test termination
time). Let y1, ¥2, ..., ¥y be the values that can be observed and remaining n — u greatest values are taken as cen-
sored, that is, their failure time cannot be noted. S0, y; = ¥11> - Y1up Y2 = Y215 s Y2u, A0 Y3 = Y31, s Y345
are failed data representing to 1st, 2nd and 3rd subpopulations. Remaining of the data which are greater than y,
taken to be censored from each subpopulation, while the numbers uy, u; and u3 of failed values can be taken from
Ist, 2nd and 3rd subpopulations. Rest of then; — uy, n; — up and n3 — u3 values are picked as censored data from
three subpopulations, whereas u = u; + u; + u3. Using the type-I right censored data, y = { (y; = y11, --» Y1u )»

(¥, = ¥215 - Y2u2 )» (3 = ¥31> > Y3u3) }» the likelihood function is:

L(ery) o { [Lo (M}{ i w}{ﬁ (1=~ )t <y3w>}{s<t>}n—n 5

w=1 w= w=1

On simplification, the likelihood function is:
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Posterior distributions assuming different priors
In this section, using the non-informative priors (NIPs) and informative prior (IP), the posterior distributions
of parameters are derived.

Posterior distribution assuming uniform prior (UP)

If no prior or additional prior knowledge is given, the use of UP and JP (Jeffreys’ prior) as NIPs are recom-
mended in Bayesian estimation. We assume the uniform (0, co) for component parameter 4,, (m = 1, 2, 3)and
the uniform (0, 1) for the proportion parameter p; (s = 1, 2). The joint prior distribution is 71 (®) o 1. Thus,
the joint posterior distribution given censored data y is:

L(©:y)71(©)

4

n—u i J [n—u i j . . . . Agy—1 Bpy—1 —
PIDIDS (—1)'( ) () (k) exp (~By141) exp (—Ba12) exp (~Bs1i3)py O p30' (1= py — py) 01!

1-A) ,1-Ay) ,1-A3]
Q1 44 2y /3

®

U
where An=1+4+u, An=14+u, A1 =1+ us, Bllz(i—j)ln(%)ﬁ—Zln(i),
w=1
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BZIZ(«’_k)ln(?)_‘_Elln(E) , B31=(k)1n(;)+w§11n(y3—w> , Ap=i+u+1—j ,
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After simplification, the marginal posterior distributions are derived as:
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Posterior distribution assuming Jeffreys’ prior (JP) )
: 1/2

Jeffreys'”!® suggested a formula for finding the JP as: p(ly) H_E{%%}H , where
—E {M is Fisher’s information. Here, we take prior distributions of ps (s = 1, 2) are uniform (0, 1).

So, the joint posterior distribution given censored data y using 7, (®) Tlm as joint prior distribution is:
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The marginal posterior distributions are derived as:
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Posterior distribution assuming the Informative prior
As an IP, we assume Gamma(dyy,, by,) for parameter 1,, and Bivariate Beta(a, b, c) for the proportion parameter
ps- The joint prior distribution is:
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So, the joint posterior distribution given censored data y is:
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Bayesian estimation using loss functions

Here, we derived the Bayes estimators (BEs) and their respective posterior risks (PRs) using Squared error loss
function (SELF) and quadratic loss function (QLF) as symmetric loss functions, whereas, DeGroot loss function
(DLF) and precautionary loss function (PLF) as asymmetric loss functions. The SELF, PLF and DLF introduced
by Legendre'®, Norstrom? and DeGroot?, respectively. For a given posterior, the general expressions of the BEs
and PRs are presented in Table 1.

Expressions for BEs and PRs using SELF
After simplification, the closed form expressions of BEs and PRs are given below:
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Table 1. The BEs and PRs under loss functions.
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wherev = 1,v = 2 and v = 3 for the UP, JP and IP, respectively.
Also, the BEs and PRs under other three loss functions can also be derived. For sake of shortness, we have
not given these derived BEs and PRs but presented upon request to the corresponding author.

Elicitation of hyperparameters

Elicitation is a process used to enumerate a person’s prior professional knowledge about some unidentified
quantity of concern which can be used to improvement any values which we may have. In Bayesian analysis,
specification and elicitation of hyperparameters of prior density is a common difficulty. For different statistical
models, different procedures for specification of opinions to elicit hyperparameters of prior distribution have
been established.

Aslam? suggested different methods which are depend upon the prior predictive distribution (PPD). In his
study, one method based on prior predictive probabilities (PPPs) for elicitation of hyperparameters is used. The
rule of evaluation is to link PPD with professional’s evaluation of this distribution and to select hyperparameters
which make evaluation agree narrowly with a part of family. So, subsequent the rules of probability the profes-
sional would be consistent in elicitation of the probabilities. A few conflicts may arise which are not significant.

2
A function ® (&, &) = gmén > {% } can be applied to elicit the hyperparameters &; and &;, where po(z)
1,82 z
represent the elicited PPPs and p(z) denote the PPPs considered by hyperparameters &; and &;. For elicitation,
the above equations are simplified numerically in Mathematica. A method depend upon PPPs is considered to
elicit the hyperparameters of the IP In this study.
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Elicitation of hyperparameters
Using the IP 73(@®), the PPD is define as:

1 1-p> o0 OO0 00
p(y) = / / / / / f(y|®)7T3(®)d/u1d)»2d)3dp1dp2 (37)
J0 0 JO JO JO

After substitution and simplification, the PPD is obtained as:

P( ) B aa b}! N bayb5? L cazby’ 1 (38)
4 y(bl —lny)alJrl y(bz —lny)leJrl y(b3 —lny)“3Jr1 (@a+b+o’

Using the above PPD (22), nine integrals based on limits of Y, i.e., 0.05 < y < 0.15, 0.15 < y < 0.25,
025 <y <035, 035 <y < 045, 045 <y < 0.55, 0.55 < y < 0.65, 0.65 < y < 0.750.75 < y < 0.85 and
0.85 < y < 0.95 are considered with associated predictive probabilities 0.08, 0.07, 0.06, 0.06, 0.065, 0.07, 0.08,
0.09 and 0.10, respectively. It is stating that predictive probabilities may have been taken from professional(s) as
their belief related to likelihood of given intervals. Now, to elicit the hyperparameters, the above equations are
solved numerically using Mathematica software. From the above methodology, the values of hyperparameters
area; = 0.9379,b; = 0.8332,a, = 0.7530, b, = 0.6344, a3 = 0.5335, b3 = 0.4339, a = 2.4950, b = 2.5060 and
¢ = 2.0200.

Monte Carlo simulation study

From the Bayes estimators’ expressions, it is clear that analytical assessments between BEs (using priors and loss
functions) are not suitable. Therefore, the Monte Carlo simulation study is used to assess the presentation of BEs
under various loss functions and priors. Moreover, the presentation of BEs has been checked under sample sizes
and test termination time. We calculated the BEs and PRs of a 3-CMPD through a Monte Carlo simulation as:

1. From given 3-component mixture distribution, a sample consists of n py,n py and n(1 — p; — p;) values out

of n values is taken randomly from fi (y).f1 (v) and f3(y), respectively.
2. Select values which are larger than t as the censored values. The selection of t has been prepared in such a
way that there is approximately 10% to 30% censoring rate in resultant data.

500 500
3. Find the simulated Bayes estimates and posterior risks as ® = ﬁ Zl (c?),) and p (c?)) = ﬁ Zl 0 ((Z)i), where
1= 1=

Bayes estimates @; and posterior risks p (c?),) of a parameter say w are determine assuming censored values
by solving (21)-(30).
4. Repeat steps 1-3 for n = 30,50, 100, (41, 22, 43, p1, p2) = (0.4,0.3,0.2, 0.5, 0.3)and t = 0.9, 0.6.

The simulated results have been arranged in Tables 2, 3, 4, 5, 6, 7, 8, 9. From Tables 2, 3, 4, 5,6, 7, 8, 9, it is
revealed that the extent of under-estimation of all five parameters assuming priors under SELF, QLF, PLF and
DLF is larger for smaller n as compared to larger » for fixed . Assuming fixed #, a similar trend is observed for
smaller ¢ as compared to larger ¢. It is also observed that PRs had inverse relationship with 7, i.e., PRS decreased
by increasing n (cf. Tables 2, 3, 4, 5, 6, 7, 8, 9). Also, it is noticed that PRs had inverse relationship with ¢, i.e., PRS
increased by decreasing ¢ (cf. Table 2, 3,4, 5, 6,7, 8, 9).

In case of choosing an appropriate prior, it is observed that IP materializes as an efficient prior because of
lesser related PR as compared to NIP for estimating all five parameters under both symmetric and asymmetric
loss functions (cf. Tables 2, 3,4, 5, 6,7, 8, 9). Also, it is noticed that JP (UP) emerges as a greater efficient because
of smaller related PR as compared to UP (JP) for estimating component (proportion) parameters using both
SELF and PLF (cf. Tables 2 and 6 vs Tables 4 and 8). Moreover, the UP is more efficient prior as compared to the
JP under QLF and DLF due to smaller PR. On the other hand, the presentation of SELF is better than remaining
three loss functions for estimating all parameters (cf. Tables 2 and 6).

It is also noticed that selection of an appropriate prior and loss function does not depend ¢. It is worth men-
tioning that our prior or loss function selection criterion is a posterior risk, i.e., we consider a loss function or
prior the best if it yields minimum posterior risk as compared to others.

A real-life application

Here, the analysis of a lifetime data to explain the procedure for practical situations is presented. Gomez et a
stated a lifetime data on exhaustion fracture of Kevlar 373/epoxy with respect to fix pressure at 90% pressure
level till all had expired. Gomez et al.* showed that data x can be modeled with an exponential mixture model.
However, the y = exp (—x) as a transformation of an exponentially distributed data (x) provides the power
random variable and we can use the resulting data to describe the proposed Bayesian analysis. The lifetime data
are divided into three groups of values with 26 values from 1st subpopulation, next 25 values from 2nd subpopu-
lation, and the last 25 values from 3rd subpopulation. To use type-I censored samplings, we used the 3.4 as a
censoring time and noted down the x; = X11, ..., X1, X2 = X21, -.., X2, and X3 = X31, ..., X3y, failed values from
subpopulations I, IT and III, respectively. The remaining values, which were greater than 3.4, have been taken
censored values from each subpopulation. At the end of test, we have the following numbers of failed values,
u1 = 22,uy = 22and uz = 21. The remaining n — u = 11values were assumed censored values, whereas u = 65
were the uncensored values, such that u = u; + u; + u3. The data have been summarized as below:

1'23
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Bes
t n Priors j.l j.z jvs 2 P2
UP 0.460571 | 0.371987 | 0.279892 | 0.483369 | 0.303464
30 |JP 0.421334 | 0.337086 | 0.238015 | 0.483630 | 0.303647
P 0.439631 | 0.349391 | 0.267096 | 0.470931 | 0.297692
UpP 0.428565 | 0.344971 | 0.244023 | 0.489830 | 0.302109
00.9 50 JP 0.416763 | 0.317347 | 0.225465 | 0.489892 | 0.302432
P 0.424941 | 0.337344 | 0.236809 | 0.481912 | 0.298489
UpP 0.411619 | 0.317893 | 0.222464 | 0.490724 | 0.300301
100 |JP 0.409768 | 0.313031 | 0.209039 | 0.494604 | 0.300767
P 0.412008 | 0.310983 |0.214546 | 0.487511 | 0.303163
t n Priors | PRs
UP 0.014584 | 0.016074 | 0.014424 | 0.007565 | 0.006397
30 |JP 0.012990 |0.014721 | 0.011995 | 0.007568 | 0.006406
P 0.010828 | 0.012329 | 0.009833 | 0.006742 | 0.005794
UP 0.007471 | 0.008203 | 0.006217 | 0.004773 | 0.004025
009 |50 |JP 0.007396 | 0.007380 | 0.005875 | 0.004775 | 0.004028
1P 0.007195 | 0.006987 | 0.004932 | 0.004366 | 0.003749
UP 0.003277 | 0.003147 | 0.002560 | 0.001767 | 0.001389
100 |JP 0.003164 | 0.003053 | 0.002322 | 0.002111 | 0.001964
1P 0.002965 | 0.002585 | 0.002241 | 0.001812 | 0.000512

Table 2. The BEs and PRs under SELF with parameters 1; = 0.4, 4, = 0.3, 43 = 0.2, p; = 0.5, p, = 0.3.

BEs
t n Priors 3.1 },2 3.3 131 132
UP 0.409332 | 0.296448 | 0.205024 | 0.448644 | 0.256064
30 |JP 0.374016 | 0.260241 | 0.158113 | 0.448952 | 0.257166
1P 0.37478 0.280769 | 0.162495 | 0.414561 | 0.281108
UPpP 0.404965 | 0.298157 | 0.196683 | 0.469611 | 0.273964
009 |50 |JP 0.375158 | 0.277423 | 0.177027 | 0.469289 | 0.273502
P 0.389487 | 0.284741 | 0.195654 | 0.460878 | 0.289203
UP 0.397235 | 0.301619 | 0.199885 | 0.485041 | 0.286571
100 |JP 0.389547 | 0.286446 | 0.187141 |0.481864 |0.292576
IP 0.394696 | 0.29089 0.197311 | 0.460970 | 0.292947
t n Priors | PRs
UP 0.068407 | 0.114832 | 0.169667 | 0.038115 | 0.085381
30 JP 0.073221 | 0.12879 0.205113 | 0.038198 | 0.085509
1P 0.064485 | 0.105065 | 0.184883 | 0.035298 | 0.071540
UP 0.040769 | 0.068318 | 0.102349 | 0.021992 | 0.050101
00.9 |50 JP 0.042589 | 0.073490 | 0.113484 |0.022016 | 0.050244
P 0.039444 | 0.065186 | 0.097374 |0.021095 | 0.045039
Up 0.012794 | 0.030941 | 0.049970 | 0.009186 | 0.024403
100 |JP 0.014569 | 0.077602 | 0.070874 |0.014523 | 0.061045
g 0.012888 | 0.029994 |0.030352 |0.003537 |0.019648

Table 3. The BEs and PRs under QLF with parameters A; = 0.4, A = 0.3, 43 = 0.2, p; = 0.5, p, = 0.3.

up ui
1
n=76, u=065 n—u=11, u =22, g ln(—> = E X1w = 31.2771
Viw

w=1 w=1

u 1 uz us 1 us
Uy =22, Zln (—) = szW =32.3513, u3 =21, Zln (—) = ngw = 30.1508.

w=1 Yaw w=1 w=1 V3w

=1
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BEs
t n Priors j.l j.z jvs 2 P2
UP 0.473699 | 0.392311 | 0.305913 | 0.490801 | 0.313692
30 |JP 0.438033 | 0.363620 | 0.260598 | 0.491943 | 0.313734
P 0.454581 | 0.374621 | 0.244704 | 0.478091 | 0.309406
UpP 0.440035 | 0.357303 | 0.252612 | 0.494011 | 0.309304
00.9 50 JP 0.422166 | 0.334364 | 0.229331 | 0.494023 | 0.309486
P 0.431558 | 0.351277 |0.238926 |0.48492 | 0.307309
UpP 0.419892 | 0.325579 | 0.223074 | 0.497226 | 0.304248
100 |JP 0.412053 | 0.314160 | 0.219033 | 0.498013 | 0.304786
P 0.407296 | 0.318637 |0.22410 | 0.487496 | 0.297906
t n Priors | PRs
UP 0.028845 | 0.038201 | 0.040083 | 0.015539 | 0.020761
30 |JP 0.028336 | 0.037192 | 0.039420 | 0.015563 | 0.020797
P 0.027668 | 0.035907 | 0.038064 | 0.014211 | 0.018355
UP 0.016763 | 0.021748 | 0.021856 | 0.009720 | 0.013170
009 |50 |JP 0.016717 | 0.021648 | 0.021716 | 0.009723 | 0.013189
1P 0.016634 | 0.020992 | 0.021519 | 0.009087 | 0.012122
UP 0.007254 | 0.011063 | 0.009877 | 0.005781 | 0.006787
100 |JP 0.007116 | 0.011043 | 0.009716 | 0.005793 | 0.006799
g 0.006623 | 0.009812 | 0.010062 | 0.002167 | 0.002596

Table 4. The BEs and PRs under PLF with parameters 1; = 0.4, 4, = 0.3, 43 = 0.2, p; = 0.5, p, = 0.3.

BEs
t n Priors 3.1 },2 3.3 131 132
UP 0.475799 | 0.408498 | 0.328774 | 0.497876 | 0.324916
30 |JP 0.453221 | 0.379994 | 0.282826 | 0.498166 | 0.325052
1P 0.479645 | 0.388532 | 0.485623 | 0.481371 | 0.320722
UPpP 0.447385 | 0.362848 | 0.268714 | 0.498202 | 0.315081
009 |50 |JP 0.431255 | 0.345394 | 0.250602 | 0.499222 |0.316196
IP 0.443268 | 0.35825 0.249059 | 0.486872 | 0.31360
UP 0.423969 | 0.309154 | 0.232522 | 0.499439 | 0.304887
100 |JP 0.408204 | 0.308525 |0.222283 |0.499570 | 0.307329
IP 0.46566 | 0.339404 | 0.220779 | 0.487407 | 0.303426
t n Priors | PRs
UP 0.059920 | 0.092535 | 0.126891 | 0.031455 | 0.065101
30 JP 0.063718 | 0.101989 | 0.145478 | 0.031471 | 0.065119
1P 0.056857 | 0.086621 | 0.118705 | 0.027287 | 0.056657
Up 0.037738 | 0.059984 | 0.084845 | 0.019510 | 0.042297
00.9 |50 JP 0.039147 | 0.063918 | 0.092344 | 0.029497 | 0.042385
P 0.036388 | 0.046964 | 0.081050 |0.018664 | 0.038305
Up 0.023765 | 0.029997 | 0.039085 |0.011914 |0.015394
100 |JP 0.024099 | 0.035941 | 0.042387 |0.019640 | 0.035477
g 0.021539 | 0.026378 | 0.026626 | 0.009967 | 0.014975

Table 5. The BEs and PRs under DLF with parameters 4; = 0.4, A, = 0.3, 43 = 0.2, p; = 0.5, p» = 0.3.

Here n — u = 11, therefore we have 14.5% approximately censored data. BEs and PRs are given in following
Table 10.

It is noticed that from the results, given in Table 10, are appropriate with the results given in simulation study
section. The presentation of the BEs using IP is shown better than NIP as a result of smaller associated PRs for
estimating all parameters under the different symmetric and asymmetric loss functions. Also, the BEs assuming
JP (UP) is observed more suitable prior than UP (JP) based on smaller PRs for estimating component (propor-
tion) parameters under SELF and PLF (SELF, QLE PLF and DLF). In addition, it is revealed that the SELF is
preferable to PLE, QLF and DLF due to minimum PRs for estimating all parameters.
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BEs
t n Priors j.l j.z jvs 2 P2
Up 0.502471 | 0.442411 | 0.405401 | 0.452371 | 0.311201
30 |JP 0.457120 | 0.409812 | 0.359421 | 0.460127 | 0.310249
P 0.468013 | 0.418756 | 0.365487 | 0.447627 | 0.314527
UpP 0.470024 | 0.390246 | 0.332946 | 0.467520 | 0.309874
00.6 50 JP 0.432190 | 0.356914 | 0.304978 | 0.469985 | 0.309988
P 0.439901 | 0.359983 | 0.315912 | 0.450714 | 0.290121
UpP 0.446031 | 0.345217 |0.271345 | 0.474198 | 0.305891
100 |JP 0.420101 | 0.338241 |0.248127 |0.472561 | 0.306467
P 0.425713 | 0.334251 | 0.259467 | 0.463786 | 0.293456
t n Priors | PRs
0.234102 | 0.270027 | 0.269914 | 0.098421 | 0.089452
30 0.230075 | 0.246321 | 0.224612 | 0.100294 | 0.092146
0.194201 | 0.204672 | 0.17981 0.075614 | 0.069845
0.169821 | 0.182791 | 0.154681 | 0.057842 | 0.042374
00.6 |50 0.156789 | 0.163087 | 0.132472 | 0.061247 | 0.042987
0.110781 | 0.119897 | 0.104894 | 0.039872 | 0.030214
0.086794 | 0.089814 | 0.067841 | 0.030918 | 0.021814
100 0.079012 | 0.071237 |0.032789 | 0.032179 | 0.022935
0.024509 | 0.026127 | 0.020914 | 0.018974 | 0.010594

Table 6. The BEs and PRs under SELF with parameters 4; = 0.4, 4, = 0.3, 43 = 0.2, p; = 0.5, p, = 0.3.

BEs
t n Priors 3.1 },2 3.3 131 132
UP 0.415721 | 0.252012 | 0.155527 | 0.412341 | 0.231452
30 |JP 0.437801 | 0.244725 | 0.148792 | 0.415782 | 0.239854
P 0.438952 | 0.250868 | 0.150901 | 0.405271 | 0.256971
UPpP 0.410216 | 0.268754 | 0.170264 | 0.438427 | 0.246923
00.6 |50 |JP 0.368754 | 0.250011 | 0.165734 | 0.431798 |0.250314
P 0.371548 | 0.257467 |0.170012 | 0.420122 | 0.260341
UP 0.398754 | 0.287906 | 0.185954 | 0.462346 | 0.268917
100 |JP 0.370241 | 0.275914 | 0.176458 | 0.469867 | 0.269898
IP 0.379985 | 0.280347 | 0.180647 |0.450012 |0.278142
t n Priors | PRs
UP 0.389534 | 0.47132 0.52641 0.152346 | 0.268674
30 JP 0.412567 | 0.511230 | 0.665234 | 0.167714 | 0.280122
1P 0.365491 | 0.442657 | 0.547889 | 0.123645 | 0.219850
UP 0.302145 | 0.387564 | 0.402651 | 0.112340 | 0.185501
00.6 |50 JP 0.324598 | 0.425661 | 0.445620 |0.123324 |0.193325
P 0.268746 | 0.356001 | 0.378991 | 0.109875 | 0.166887
Up 0.187564 | 0.275694 | 0.359870 | 0.075688 | 0.1234560
100 |JP 0.200344 | 0.299810 | 0.376900 | 0.098860 | 0.168985
g 0.142354 | 0.246010 | 0.293312 | 0.046772 | 0.102360

Table 7. The BEs and PRs under QLF with parameters 4; = 0.4, A, = 0.3, 43 = 0.2, p; = 0.5, p, = 0.3.

Further to see how well the 3-CMPD performs as compared to other existing 3-component mixture distri-
butions, we take 3-component mixture of exponential distributions (3-CMED), 3-component mixture of Burr
type-XII distributions (3-CMBD), 3-component mixture of Rayleigh distributions (3-CMRD), and 3-CMPD.
The Akaike information criterion (AIC) and Bayesian information criterion (BIC) are used to check their rela-
tive performance using the life span of fatigue fracture data. The AIC and BIC precise the relative loss of evi-
dence so the lesser values of AIC and BIC reveal the best distribution. The AIC and BIC can be determined
as: AIC = 2k — 2In(L) and BIC = klIn(n) — 2In(L), where, L =likelihood value of given data, k =number of
parameters in distribution and # =number of observations in data.
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BEs
t n Priors j.l j.z jvs 2 P2
UP 0.535624 | 0.475234 | 0.440038 | 0.426920 | 0.333670
30 |JP 0.469201 0.442113 | 0.411126 | 0.429875 | 0.340140
P 0.475001 0.449919 | 0.420031 | 0.402210 | 0.330118
UpP 0.495002 | 0.429570 | 0.369986 | 0.440028 | 0.324542
00.6 50 JP 0.4552477 | 0.403319 | 0.336792 | 0.446988 | 0.329987
P 0.463200 | 0.420301 | 0.343001 | 0.432100 | 0.321003
UpP 0.4564233 | 0.389906 | 0.276901 | 0.463651 | 0.318224
100 |JP 0.446681 0.355620 | 0.269841 | 0.469795 | 0.320345
P 0.440021 0.360028 | 0.274005 | 0.453327 | 0.311455
t n Priors | PRs
UP 0.385501 0.451123 | 0.506724 | 0.125470 | 0.183321
30 |JP 0.374562 | 0.435670 | 0.467705 | 0.135432 | 0.170122
P 0.347701 0.394551 | 0.412200 | 0.113367 | 0.143774
UP 0.225432 | 0.317739 | 0.386672 | 0.080443 | 0.125990
006 |50 |JP 0.220101 0.293301 | 0.366011 | 0.089964 | 0.129987
1P 0.199920 0.254332 | 0.304441 | 0.067300 | 0.106673
UP 0.143544 | 0.226401 | 0.244312 | 0.055420 | 0.080021
100 |JP 0.136610 | 0.217943 | 0.224577 | 0.056011 | 0.088709
iy 0.105773 | 0.163374 | 0.229943 | 0.034661 | 0.053318

Table 8. The BEs and PRs under PLF with parameters 1; = 0.4, 1,

BEs
t n Priors 3.1 },2 3.3 131 132
UP 0.614231 | 0.530024 | 0.483540 | 0.416600 | 0.382451
30 |JP 0.574220 | 0.493455 | 0.438801 | 0.424322 | 0.394551
IP 0.601124 | 0.503371 | 0.546788 | 0.409701 | 0.380052
UPpP 0.536788 | 0.450774 | 0.411580 | 0.436321 | 0.366014
00.6 |50 |JP 0.510114 | 0.427113 | 0.404551 | 0.439975 | 0.374402
P 0.530047 | 0.429989 |0.326741 |0.417330 | 0.355001
UP 0.473310 | 0.376775 | 0.320046 | 0.463007 | 0.330767
100 |JP 0.460124 | 0.366609 |0.319344 | 0.463551 |0.355771
IP 0.493320 | 0.400311 |0.315664 |0.458771 |0.328003
t n Priors | PRs
UP 0.365771 | 0.453304 | 0.503378 | 0.167012 | 0.323752
30 JP 0.402257 | 0.474830 | 0.558332 | 0.175506 | 0.340057
1P 0.346681 | 0.417745 | 0.479010 | 0.130221 | 0.278700
UP 0.277740 | 0.361421 | 0.426609 | 0.117452 | 0.217740
00.6 |50 JP 0.289918 | 0.368892 | 0.457200 |0.139820 |0.227327
P 0.256744 | 0.317054 | 0.374450 |0.105881 |0.175584
Up 0.193221 | 0.256772 | 0.303054 | 0.084452 | 0.135421
100 |JP 0.207784 | 0.266681 | 0.337451 | 0.106671 | 0.158544
g 0.168406 | 0.214771 |0.273341 |0.053347 | 0.098557

=03, 13 =02, p; = 0.5, py = 0.3.

Table 9. The BEs and PRs under DLF with parameters 4; = 0.4, 2, = 0.3, 43 = 0.2, p; = 0.5, p» = 0.3.

It is observed from the results, given in Table 11, our proposed mixture distribution provides the least val-
ues of AIC and BIC as compared to the other mixture distributions and fits the best on the life span of fatigue
fracture data. Also, the p-value of Kolmogorov-Smirnov (KS) test also indicates the proposed model fits better
than the rest models.
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BEs
Loss function | Prior | i a Js P P2
UP 0.761517 0.737372 0.755910 0.338405 0.338013
SELF JP 0.731365 0.708214 0.724613 0.338424 0.338007
1P 0.770563 0.745674 0.761989 0.340009 0.339795
uUp 0.700854 0.678693 0.692959 0.318327 0.317936
QLF JP 0.670828 0.649641 0.661789 0.318343 0.317925
1P 0.711381 0.68806 0.699831 0.32191 0.321699
UP 0.776576 0.751934 0.771529 0.343172 0.342781
PLF JP 0.746384 0.722740 0.740190 0.343193 0.342776
1P 0.785259 0.759976 0.777414 0.344328 0.344113
UP 0.791932 0.766784 0.787471 0.348007 0.347616
DLF JP 0.761711 0.737564 0.756103 0.348029 0.347612
1P 0.800235 0.774552 0.793152 0.348702 0.348486
PRs
UP 0.023162 0.021687 0.023858 0.003249 0.003245
SELF JP 0.022864 0.021534 0.023746 0.003250 0.003246
1P 0.022194 0.020786 0.022818 0.002956 0.002953
UP 0.041448 0.041408 0.043413 0.031014 0.031051
QLF JP 0.043140 0.043109 0.045282 0.031019 0.031059
1P 0.039902 0.040155 0.042487 0.0277038 | 0.027716
UP 0.030117 0.029124 0.031238 0.009535 0.009536
PLF JP 0.030037 0.029052 0.031155 0.009537 0.009538
1P 0.0293917 | 0.0286036 | 0.0308504 | 0.0086376 | 0.00863644
UP 0.038406 0.038356 0.040079 0.027591 0.027625
DLF JP 0.039839 0.039794 0.041648 0.027596 0.027631
P 0.037079 0.037283 0.039289 0.024928 0.024940

Table 10. The BEs and PRs using the real life data.

Mixture distributions AIC BIC P-value (KS)
3-CMED 438.4067 | 428.4067 | 0.7865
3-CMBD 495.3025 | 485.3025 | 0.6754
3-CMRD 1324.493 | 1314.493 | 0.5745
3-CMPD 130.8868 | 120.8868 | 0.8245

Table 11. AIC and BIC for different mixture distributions.

Conclusion and recommendation

In this article, a 3-CMPD using type-I right censored sample was developed to model lifetime mixture data using
the Bayesian approach. Assuming the availability of IP and NIP under symmetric and asymmetric loss functions,
the algebraic expressions of the BEs and PRs have also been presented. To assess the relative performance of BEs
across different n with a fixed ¢, a comprehensive Monte Carlo simulation study has been performed. In addition
to this, a real-life application has also been discussed to show the utility of the proposed methodology. From
the results presented in the previous sections, we observed that as n increased, the BEs approached to their true
value. To be more precise, smaller (larger) » results in larger (smaller) extent of under and/or over estimation at
fixed value of . We also noticed that the posterior risk decreased by increasing . Finally, it is revealed that for
a Bayesian analysis of 3-CMPD, the IP can be used to estimate component and proportion parameters under
SELE In future, the performance of the predictive distribution and predictive interval can be assessed. Also, other
censoring schemes, like progressive and interval, can be used to develop mixture models in Bayesian framework.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on
reasonable request.
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