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Structural optimization 
of multistage depressurization 
sleeve of axial flow control valve 
based on Stacking integrated 
learning
Shuxun Li , Guolong Deng *, Yinggang Hu , Mengyao Yu  & Tingqian Ma 

Due to the requirements of the working environment, the marine axial flow control valve needs to 
reduce the noise as much as possible while ensuring the flow capacity to meet the requirements. 
To improve the noise reduction effect of the axial flow control valve, this paper proposes a Stacking 
integrated learning combined with particle swarm optimization (PSO) method to optimize a multi-
stage step-down sleeve of the axial flow control valve. The liquid dynamic noise and flow value of 
the axial flow control valve are predicted by computational fluid dynamics. Based on the preliminary 
evaluation of its performance, the structural parameters of the multi-stage pressure-reducing 
sleeve are parameterized by three-dimensional modeling software. The range of design variables is 
constrained to form the design space, and the design space is sampled by the optimal Latin hypercube 
method to form the sample space. An automated solution platform is built to solve noise and flow 
values under different structural parameters. The Stacking method is used to fuse the three base 
learners of decision tree regression, Kriging, and support vector regression to obtain a structural 
optimization fusion model with better prediction accuracy, and the accuracy of the fusion model is 
evaluated by three different error metrics of coefficient of determination (R2), Root Mean Squared 
Error, and Mean Absolute Error. Then the PSO particle swarm optimization algorithm is used to 
optimize the fusion model to obtain the optimal structural parameter combination. The optimized 
multi-stage depressurization structure parameters are as follows: hole diameter t1 = 3.8 mm, hole 
spacing t2 = 1 mm, hole drawing angle t3 = 6.4°, hole depth t4 = 3.4 mm, and two-layer throttling sleeve 
spacing t5 = 4 mm. The results show that the peak sound pressure level of the noise before and after 
optimization is 91.32 dB(A) and 78.2 dB(A), respectively, which is about 14.4% lower than that before 
optimization. The optimized flow characteristic curve still maintains the percentage flow characteristic 
and meets the requirement of flow capacity Kv ≥ 60 at the maximum opening. The optimization 
method provides a reference for the structural optimization of the axial flow control valve.
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Noise is one of the sources of environmental pollution, and its importance comes from its significant impact 
on all human and biological health. Excessive noise can cause a gradual decline in hearing and can also cause 
negative psychological  effects1,2. There are many noise sources, including industrial activities, road traffic, etc. 
Among them, industrial activities are the main source of noise and one of the most important noise sources 
affecting human  health3. Pipeline transportation has the advantages of safety, reliability, continuity, and a high 
degree of automation. It is one of the main ways of liquid transportation and an indispensable transportation 
infrastructure for energy systems. It is of great significance to study how to reduce the noise of pipeline  systems4,5.

The valve is called the throat of the pipeline system. It is not only the source of vibration noise in the pipeline 
system but also an important source of hydrodynamic noise in the pipeline  system6. The axial flow control valve 
is a new type of valve. The position of the valve core and the sleeve is changed based on retaining the advantages 
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of traditional control valves. The sleeve and the valve core are placed in the inner cavity of the valve body along 
the flow channel. The flow direction of the fluid does not change. It has the characteristics of small flow resist-
ance, large flow adjustment range, and rapid opening and closing. It is an economical and energy-saving control 
 valve7. The research on high-performance similar products in China is developing rapidly. CFD high-precision 
simulation of its performance and research on noise reduction methods have become the key technologies for 
the development of the control valve industry.

With the development of computational fluid dynamics, the numerical simulation flow field prediction 
method for the control valve is becoming more and more mature. Domestic and foreign scholars have con-
ducted a lot of research on the structural optimization of the control valve based on CFD numerical simulation.

Some scholars have optimized the structure of the throttling element by studying the throttling characteristics 
of the throttling element of the control valve. Zhang et al.8 used CFD to analyze the sensitivity of the throttling 
characteristic curve under multiphase flow conditions and optimize the geometric structure of the regulating 
valve spool. Zhang et al.9 designed a bionic structure at the throttle to suppress cavitation and improve the service 
life of the regulating valve, and optimized the parameters of the bionic structure.  Lin10 studied the flow charac-
teristics of the V-valve during the opening and closing process through experiments and numerical simulation, 
especially the influence of different cone angles on the valve regulation process.

The problems of fluid excitation, high-pressure drop, and cavitation caused by the high-velocity medium in 
the control valve have always been the pain points of industry development. The use of multi-stage pressure-
reducing orifice plates can well suppress these problems. Therefore, many scholars are committed to studying the 
flow characteristics of multi-stage depressurization control valves. Fu-qing  Chen11 revealed the hydrodynamic 
characteristics of the superheated steam flow in the multi-stage high-pressure reducing valve through experi-
ments and numerical methods and studied the influence of typical parameters on the pressure drop and Mach 
number. The orthogonal design method of array  L9  (34) was used to realize the optimal design of the throttling 
element.  Xu12 introduced a porous sleeve valve with a secondary pressure reduction function, studied the flow 
resistance, and established the relationship between the flow rate, flow area, and flow resistance coefficient of 
the valve.  Geng13 used the user-defined function (UDF) to simulate the transient opening and closing process of 
the labyrinth regulating valve based on dynamic mesh technology.  Zhang14 optimized the design of the regula-
tor and analyzed and evaluated the influencing factors of irregular flow by numerical simulation to determine 
the final structure of the regulator. Although many scholars have designed and optimized the structure of the 
control valve, there is a lack of research on the comprehensive consideration of noise and flow characteristics, 
and the use of manual optimization design can not grasp the influence of the structure on the performance. The 
optimization design is based on the experience of the designer, and the efficiency is too low.

With the development of machine learning technology, using machine learning methods for engineering opti-
mization has become a research  hotspot15,16. Prabhakar  Sharma17 introduced the AI-based prognostic modeling 
and performance optimization of the CI engine using biodiesel-diesel blends. A large number of scholars have 
done a lot of research on intelligent algorithms such as kriging, decision trees, and PSO particle swarm optimiza-
tion in engineering optimization problems. Jiachang  Qian18 proposed a general sequential constraint updating 
method based on the confidence interval of the Kriging surrogate model (SCU-CI) to solve the prediction error 
between the surrogate model and the actual constraint in the Kriging surrogate model aided engineering opti-
mization design. Shuxun  Li19 based on a surrogate optimization algorithm to optimize the profile of a V-type 
regulating ball valve. Marcin  Czajkowski20 provides a detailed introduction to decision trees, discusses different 
representations of decision trees applied to regression problems, validates five evolutionary tree induction fac-
tors with different tree representations, and shows their advantages and disadvantages.  Zheng21 discussed and 
improved the particle swarm optimization (PSO) algorithm in detail. The improved PSO algorithm was used to 
optimize the hull shape of the engineering ship to reduce the wave resistance coefficient under static constraints. 
These studies provide an analytical basis for the analysis of this paper. At present, most of the optimization 
methods adopt a single surrogate model or artificial optimization design. The single surrogate model has low 
prediction accuracy and is easy to fall into the local optimum.

To improve the noise reduction effect of the axial flow regulating valve and improve the rationality of the 
structural design, this paper uses a Stacking integrated learning combined with the PSO particle swarm optimiza-
tion method to optimize the structure of the initial axial flow control valve. The automatic solution platform is 
built by Isight combined with SolidWorks modeling software and Fluent flow field simulation software to improve 
the efficiency of optimization design. The Stacking model fusion method is used to construct the structural opti-
mization surrogate model, and the performance evaluation of the fusion model is completed through a variety 
of error metrics. Combined with the PSO particle swarm global search algorithm, the multi-stage step-down 
structure of the axial flow control valve is optimized, and the multi-stage step-down structure parameters with 
lower noise level is obtained. This method can provide a reference for the structural optimization of axial flow 
control valves.

Structure and working principle
The structure of the axial flow control valve is shown in Fig. 1, mainly including valve body 1, anti-blow-out 
gland 2, gear shaft 3, anechoic pressure reduction assembly 4, positioning sleeve 5, valve spool 6, guide sleeve 7, 
the support frame 8 and rack shaft 9. The rack and pinion drive mechanism is used to adjust the spool 6 position.

The axial flow control valve is composed of the valve body, sealing assembly, two-stage sleeve (including the 
uniform opening sleeve and percentage opening sleeve), valve core, gear shaft, rack shaft, and positioning sleeve. 
The exploded sketch of the axial flow control valve 3D model is shown in Fig. 2. The drive unit is connected to 
the spline end of the gear shaft, and the spool position is adjusted by driving the gear shaft to drive the rack, to 
reduce the flow area, and achieve control of fluid flow, and low noise at full opening.
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The axial flow control valve multi-stage pressure reduction structure is initially designed for 2 stages, if its 
pressure reduction capacity or noise reduction capacity is not enough, the intelligent optimization algorithm can 
be used to further optimize the number of stages or structure of multi-stage pressure reduction structure sleeve.

Simulation method
To evaluate the performance of the initial axial flow control valve and determine the optimization goal, the 
internal flow field information and liquid dynamic noise are simulated and analyzed by CFD.

The fluid flow follows the Navier–Stokes equation. The governing equations for the application of compress-
ible viscous fluid flow are as follows:

① Energy-conservation equation

Among them, k is the heat transfer coefficient, W/m·K; T is the temperature, ℃; Cp is the specific heat capacity, 
kJ/(kg·K); ST is a viscous dissipation term; ρ is the medium density, kg/m3; u is the velocity of medium flow, m/s.

② Momentum-conservation equation

Among them, p is the static pressure on the micro-element, Pa; τij is the stress tensor; gi and Fi are the gravity 
and external volume force in the i direction, N.

③ mass-conservation equation
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Figure 1.  Axial flow control valve 3D model partial section.

Figure 2.  Exploded sketch of the axial flow control valve 3D model.
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Among them, ρ is fluid density, kg/m3.

CFD numerical simulation
The Large eddy simulation (LES) method is used to simulate and analyze the internal flow field of a preliminary 
axial flow control valve.

Establishment of flow channel model of the axial flow control valve
Using three-dimensional modeling software to establish solid models with different openings. To ensure full 
development of turbulence in the valve, add five times the nominal diameter length of straight piping before the 
valve and ten times after the valve. To ensure the convergence of the calculation and improve the efficiency of 
the calculation, on the premise of ensuring the accuracy of the calculation, the process chamfering, chamfering, 
and structures that have little impact on the flow analysis in the 3D model are simplified. Based on the simplified 
3D solid model, the flow channel model is generated by reverse modeling. As shown in Fig. 3.

Grid delineation and irrelevance verification
The axial flow control valve flow channel model mesh is generated by Fluent Meshing software. Fluent Meshing 
software uses mosaic meshing techniques using conformal polyhedral elements to enable it to quickly delineate 
unstructured meshes of complex structural fluids. The axial flow control valve flow path is divided into three 
areas, which are the straight pipe area before the valve, the main basin, and the straight pipe area after the valve. 
The overall flow channel grid and sub-regional grid division are shown in Fig. 4.

As shown in Fig. 4, two adjacent mesh regions are connected using a split interface form, and the stitching 
between polyhedral meshes is processed with conformal mapping, and their nodes correspond to each other. 
By imposing size constraints on the smallest geometric features, the overall mesh is smoothed over from small 
to large basins, facilitating the division of the boundary layer mesh over the entire fluid domain and capturing 
the flow information at the solid walls.

The grid quality of each region is evaluated by the maximum skewness, and the evaluation results are shown 
in Table 1. The requirement of maximum skewness less than 0.95 when performing CFD simulation is satisfied.

The grid-independence test with the flow rate value of the axial flow control valve at full opening as the target 
is shown in Fig. 5. From the grid-independent verification results in Fig. 5, it can be seen that when the grid 
number is greater than 4.8 million, the flow value tends to stabilize as the grid number increases by 16%, while 
the flow coefficient value Kv increases by 2.3%. Considering the accuracy, calculation efficiency, and other factors, 
the grid of about 4.6 million is selected for CFD simulation calculation.

Figure 3.  Flow channel model of the axial flow control valve.

Figure 4.  Axial flow control valve overall mesh division and local details.
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Determination of numerical simulation boundary conditions and calculation of solution for axial flow control valve
Numerical simulation based on the general-purpose solver Fluent, the solver type is set to pressure type, and the 
solution process is based on the SIMPLE algorithm. The LES method is used for simulation, and the boundary 
conditions for simulation calculation are selected as pressure inlet and pressure outlet, 4 MPa before the valve 
and 0.1 MPa after the valve. To ensure simulation accuracy, different surface roughness is set on different wall 
surfaces. To accelerate the convergence, the "Least Square Cell Based" format is chosen for the gradient term, 
the "Second Order Windward" format is chosen for the pressure term, and the "First Order Windward" format is 
chosen for the momentum, turbulent kinetic energy, and turbulent dissipation rate terms. Meanwhile, to maintain 
the stability of the calculation, the default value of the relaxation factor is kept for each calculated parameter.

The convergence criterion in the solution process is: ①Each residual curve is below 1 ×  10–6; ②The change 
rate of valve outlet flow and valve outlet center velocity is less than 1 ‰. It should be noted that only the mesh 
type differs in the different discretization strategies, while the mesh size (including body mesh size and surface 
mesh size) is the same. It should also be noted that the most severe throttling process inside the axial flow control 
valve occurs near the multi-stage step-down component. Therefore, to capture the flow details, additional mesh 
refinement is required on the wall and its adjacent surfaces of the multi-stage depressurization component. Nor-
mal-temperature water is selected as the simulation medium, and its physical parameters are shown in Table 2.

Flow field analysis of the initial axial flow control valve
Taking full opening as an example, the internal flow field of the axial flow control valve is analyzed. The internal 
flow field of the initial axial flow control valve under full opening is shown in Fig. 6:

The simulation results of the actual working conditions at 100% opening of the axial flow control valve 
obtained from Fig. 6 show that: From the pressure distribution cloud diagram of Fig. 6a, it can be seen that the 
fluid pressure decreases rapidly from 4 MPa to about 0.6 MPa after the fluid passes through the multi-stage 
decompression sleeve of the valve. From the velocity streamline distribution cloud diagram in Fig. 6c, it can be 
seen that the fluid converges at the middle cavity behind the valve, and the peak velocity of the fluid in the multi-
stage pressure-reducing sleeve reaches 105.08 m/s. After the fluid flows out of the pressure-reducing sleeve, the 
fluid streamline begins to stagger, indicating that the fluid intersects and collides, which leads to a rapid decrease 
in the pressure and velocity of the fluid medium, and then flows to the back of the valve.

Table 1.  Axial flow control valve grid quality assessment.

Straight pipe area before the valve Main watershed Straight after the valve domain

Maximum skew rate 0.339 0.926 0.316

Figure 5.  Grid-independence verification.

Table 2.  Physical parameters of room temperature water.

Pressure (atm) Temperature ℃ Density (kg/m3) Isobaric-specific heat capacity (kJ/(kg K)) Dynamic viscosity (Pa s)

1 25 997 4.1819 8.9008e−04



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7459  | https://doi.org/10.1038/s41598-024-58178-5

www.nature.com/scientificreports/

CFD noise prediction
The Ffowcs Williams and Hawkings (FW-H) method is used for acoustic calculation based on unsteady CFD 
results to evaluate the acoustic performance of the initial axial flow control valve.

Mechanism of liquid noise generation
The noise generation mechanism of the axial flow control valve is shown in Fig. 7. When the axial flow control 
valve is working, the fluid medium is in a turbulent state. Due to the throttling effect of the multi-stage pressure-
reducing sleeve of the axial flow control valve, a small amount of vortex will be continuously formed and shed, 
resulting in pressure pulsation, which will propagate around through the fluid medium. The pressure pulsation 
in the turbulent medium contains an audible acoustic frequency part, which radiates the flow noise and the 
sound-solid coupling of the inner wall surface of the valve and valve-controlled pipe system to generate vibration 
noise. In addition to the noise generated by internal turbulence, the fluid medium also includes the vibration 
radiation noise generated by the fluid–solid coupling between the fluid medium and the inner wall of the valve 
and valve-controlled pipe system.

Figure 6.  Simulation results at 100% opening. (a) The actual working condition 100 % opening pressure 
cloud diagram. (b) The actual working condition 100 % opening speed cloud diagram. (c) The actual working 
condition 100 % opening speed streamline diagram.
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Calculation method of liquid noise
The noise of the axial flow control valve is induced by the flow of the internal medium of the axial flow control 
valve. The FW-H method is used to perform acoustic calculations based on unsteady CFD  results22,23.

Firstly, the sound source term is calculated according to the LES. The Fluent software can be used for the 
unsteady calculation to obtain the flow field information of the liquid dynamic noise sound source integral 
surface of the internal flow of the axial flow control valve. Then, the FW-H noise analysis module provided by 
Fluent software is used to transform the flow field information of the liquid dynamic noise sound source integral 
surface into the noise source through the generalized FW-H equation, and then the wave equation is solved to 
obtain the noise at the far field receiving point.

Fluent software is used to simulate the typical opening of the axial flow control valve (10%, 20%, 30%, …, 
90%, 100%). The time step is 1 × 10–4 s when simulating the transient flow field. Select the Acoustic acoustic 
solution model and activate the FW-H noise analysis module. The monitoring point is set at 1 m behind the valve 
and 1 m away from the outer wall of the pipeline. The location of the noise monitoring point is shown in Fig. 8.

Analysis of the noise prediction results
The sampling frequency of the noise is 20–5000 Hz. The sound pressure levels of the noise monitoring points at 
different openings of the axial flow control valve are calculated respectively. The relationship between the sound 
pressure level and the frequency of the receiving point is obtained by Fourier  transform24. The sound pressure 
level and frequency curve under some typical openings are shown in Fig. 9.

After obtaining the relationship between the sound pressure level and the frequency of the receiving point 
by Fourier transform, the noise value LpAe,1m at 1 m outside the valve is calculated.

Firstly, the pressure difference ratio xF is obtained from the pressure difference p1–p2 and the saturated vapor 
pressure pv:
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Figure 7.  Noise generation mechanism of axial flow control valve.
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Figure 9.  Sound pressure level and frequency curve under a typical opening.
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Then the modified pressure drop ratio xFzp1 is obtained from the pressure drop ratio xF.

Then compare the pressure difference ratio xf and the modified pressure difference ratio to determine whether 
the noise is turbulent noise or the internal sound pressure level Lpi of cavitation noise:

The noise level at 1 m outside the turbulence valve LpAe,1m is:

Finally, the weighted noise LpAe calculation formula at the receiving point can be obtained:

The superimposed weighted noise at the receiving point of the axial flow control valve at different openings 
is calculated according to Eq. (8), and the results of the superimposed weighted noise results at different open-
ings are shown in Fig. 10.

As shown in Fig. 10, with the increase of opening degree, the superposition noise of the axial flow control 
valve shows an increasing trend, reaching a maximum value of about 91.32 dB(A) at about 65% opening degree. 
The noise value is at a high level. Due to the special use environment of the axial flow control valve, the peak 
noise sound pressure level at the full opening is required to be as low as possible. Therefore, it is necessary to 
optimize the outer noise reduction sleeve of the multistage step-down structure of the axial flow control valve.

Optimization for design
Aiming at the problem of high noise level and large noise peak of the initial axial flow control valve, a Stacking 
ensemble learning combined with PSO particle swarm optimization method for the optimization design of the 
multi-stage pressure-reducing sleeve of the axial flow control valve is proposed.

Optimization goals and processes
The design goal for axial flow control valves is low noise at full opening. The axial flow control valve has the largest 
working pressure difference at a small opening, the flow area is small, the throttling is the most serious, and the 
adverse situation of high noise is prone to occur. Firstly, the noise superposition sound pressure level under the 
typical opening of the axial flow control valve is simulated to further determine whether the noise value under 
the full opening is less than 75 dB. If it is not satisfied, it is necessary to optimize the multi-stage step-down 
structure, and at the same time, the use requirement of flow capacity Kv ≥ 60 at the maximum opening should 
be guaranteed. Therefore, the structural optimization of the axial flow control valve is a typical multi-objective 
optimization problem. The optimization process of the multi-stage step-down structure of the axial flow control 
valve is shown in Fig. 11.
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Figure 10.  Superimposed weighted noise at monitoring points at different openings.
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Parametric modeling
Before constructing the surrogate model of axial flow control valve structure optimization, it is necessary to 
simulate the multi-stage pressure-reducing sleeves of different structures many times. Firstly, the 3D solid model 
of the axial flow control valve should be parametrically modeled, and then the automatic solution platform 
should be constructed for the automatic solution. Parametric modeling refers to the application of a series of 
parameters to define some characteristics of the product when the designer is designing the product. As long as 
the parameter value is changed, the structural characteristics of the product can be changed, and the intelligent 
optimization algorithm is applied to improve its structure.

To reduce the calculation amount of a single calculation, the axial flow control valve model is simplified, 
and the valve core, transmission components, and other components that do not affect the overall flow are 
suppressed. The simplified model is shown in Fig. 12, and SolidWorks is used to parametrically model the axial 
flow control valve.
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Figure 11.  Flow chart of multi-stage depressurization structure optimization of the axial flow control valve.

Figure 12.  Simplified solid model for noise calculation of axial flow control valve.
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To explore the influence of the five variables of the outer sleeve’s throttling hole diameter t1, hole spacing t2, 
hole drafting angle t3, hole depth t4, and two-layer throttling sleeve spacing t5 on the flow performance of the axial 
flow control valve and the noise reduction ability of the outer noise reduction sleeve, the parametric modeling 
of the outer noise reduction sleeve of the axial flow control valve is shown in Fig. 13.

The spool stroke of the axial flow control valve is 25 mm. When the diameter of the outer sleeve orifice is 
changed, the equation control model in SolidWorks is used to automatically reconstruct the model. The automatic 
reconstruction model of typical orifice diameter t1 and hole drawing angle t3 is shown in Fig. 14.

The five variables of the Throttle hole diameter t1, the hole spacing t2, the hole extraction angle t3, the hole 
depth t4, and the Throttle sleeve spacing t5 of the outer sleeve are used as the design variables to construct the 
axial flow control valve structure optimization surrogate model.

The prediction accuracy of the proxy model depends on whether the design variables used to construct the 
proxy model can truly reflect the model’s performance. To ensure the correctness and authenticity of the struc-
tural optimization sample database, the ranges of the design variables were constrained, and the constrained 
ranges of the five design variables are shown in Table 3. The optimal Latin hypercube design was used to sample 
the design space to ensure uniformity of sample space points, improve prediction accuracy, and reduce the 
prediction blind area. 110 sample points were sampled for the design, and some of the optimal Latin hypercube 
sampling results are shown in Table 4.

Automatic solving platform for sample axial flow control valve structure optimization library.
Isight software has rich multi-software interfaces and high-degree-of-freedom integration methods. It can organ-
ize all design processes into a unified logical framework to realize the self-starting of modeling software numerical 
simulation software and interface data interaction. The output value of the sample data is automatically calcu-
lated, so that the entire process of obtaining the target value is automated and the iteration cycle is shortened. 

Figure 13.  Parametric modeling of multi-stage step-down components.

Figure 14.  Reconstruction model of typical structural parameters of multistage step-down sleeve. (a) 
t1=2mm,t3=1°. (b) t1=3mm,t3=4°. (c) t1=4mm,t3=2°. (d) t1=5mm,t3=5°.

Table 3.  Range of design variable constraints.

Design variables Initial value Lower limit Upper limit

Throttle hole diameter t1 (mm) 4 2 6

Hole spacing t2 (mm) 0.5 0.1 1

hole extraction angle t3 (°) 0 0 5

hole depth t4 (mm) 3 3 5

Throttle sleeve spacing t5 (mm) 4 3 5
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Therefore, the Isight software integration platform is used to couple SolidWorks with Fluent software of ANSYS 
Workbench to realize the automatic solution of the software to construct the sample database of axial flow control 
valve structure optimization. Then the calculated sample database is exported as a .csv file, and the five design 
parameters are expressed as column vector T = [t1 t2 t3 t4 t5] T as the input of the Python program to construct 
the surrogate model. The Jupyter Notebook software was used to complete the construction and optimization 
of the prediction model.

Multi-learner model fusion methods
The main idea of the stacking algorithm is to use the primary learner to train k-base models and secondary 
training sets on the training set, integrate them into a strong learner, and then stack the learners on the strong 
learner to improve the prediction accuracy of the constructed surrogate  model25. The Stacking algorithm is 
implemented as follows:

Firstly, the base prediction model (Mbasei) is trained by three machine learning algorithms: decision tree 
regression, Kriging surrogate model, and support vector regression.

For each learner Mbasei , i ∈ {1, 2, 3} , the i-th base prediction model is used to obtain the predicted value yi 
on the i-th training set. Four groups of predictive values were combined to obtain the secondary training set Ts.

Then, based on the secondary training set Ts, the learner is trained to obtain an integrated prediction model.
The whole process of implementing the agent model construction for structural optimization of the axial flow 

control valve using the Stacking integrated learning method is shown in Fig. 15.
The Stacking model fusion method makes full use of different learners ’ different observations of data from 

different data space angles and data structure angles to complement each other and does not weaken the predic-
tion accuracy of a single weak learner in theory.

Stacking multi-model fusion process and prediction performance evaluation
The Stacking multi-model fusion method is used to integrate the three basic learners of decision tree regression, 
Kriging, and support vector regression to construct the surrogate model of the axial flow control valve structure 
optimization. Different metrics are used to evaluate the performance of the fusion model.

Stacking fusion model construction process
The Stacking multi-model fusion method is used to integrate the three basic learners of decision tree regression, 
Kriging, and support vector regression to construct the surrogate model of axial flow control valve structure 
optimization.

Decision tree regression provides a binomial tree for regression prediction. For the construction of the optimal 
regression decision tree, the squared error minimization criterion is used for feature selection, which is used to 
solve for the optimal output value on each part. The heuristic method is used to divide the database input space 
into nodes. x is the input variable, and the jth variable x(j) and its value s are selected as the cut variable and the 
cut point, and two regions (R1, R2) can be defined.

(9)Mbase = {M1,M2,M3}

(10)
Ts =

{

y1, y2, y3
}

yi = Mi(x), i = 1, 2, 3

(11)
R1

(

j, s
)

=

{

x| x(j) ≤ s
}

R2
(

j, s
)

=

{

x| x(j) > s
}

Table 4.  Optimal Latin hypercube sampling results of structural optimization database.

Throttle hole diameter t1 (mm) Hole spacing t2 (mm) hole extraction angle t3 (°) hole depth t4 (mm)
Throttle sleeve spacing t5 
(mm)

3.62 0.1225 1.9865 3.23 4.07

3.42 0.1585 0.5655 3.15 4.55

4.14 0.8965 4.7305 3.37 3.87

2.74 0.1315 3.7995 4.37 4.03

5.86 0.2215 3.3095 4.69 4.25

3.5 0.7165 3.3585 4.27 3.13

4.86 0.8875 1.8395 3.09 4.27

4.3 0.8785 1.0065 3.53 3.53

2.78 0.7795 4.4365 3.73 4.95

5.5 0.4015 0.9085 4.05 3.11

5.78 0.9775 0.1245 3.75 3.77
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Kriging is used for the construction of a regression predictive agent model for the structural optimization 
of axial flow control valves database, which provides predicted values of the simulated response at unexperi-
mented points and also gives a measure of prediction  uncertainty26. The Kerriging agent model explores the 
unknown region of the sample space by Gaussian estimation of the unknown points and mean squared error 
(MSE) estimation.

Taking 100 sample points as the initial training samples, the other 10 Kriging models are used to test the 
trained Kriging nonlinear relationship between the optimization design variables and the optimization objec-
tives is established by taking the noise value and flow value of the axial flow control valve as the response values.

The surrogate model of the axial flow control valve structure optimization established by the Kriging method 
has a predicted uncertainty of 0 at the trained point.

Support vector regression provides a loss function calculation method. For the sample (x, y), it is assumed that 
the deviation between f(x) and y can be tolerated at most ε, that is, the loss is calculated only when the absolute 
value of the difference between the model output f(x) and y is greater than ε27. As shown in Fig. 16, only training 
samples that fall into an interval band of width 2ε are considered to be correctly predicted.

The cross-validation method is used to optimize the optimal hyperparameters of each model, and the weight 
coefficient of each base learner is calculated according to the inverse proportional averaging method, to ensure 
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Figure 15.  Stacking structure optimization fusion model construction process.

Figure 16.  Support vector regression diagram with an interval of 2ε. 
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that the base learner with high prediction accuracy has a larger weight coefficient. The response surface of the 
final structural optimization approximation function is shown in Fig. 17.

Stacking fusion model prediction performance evaluation
For the prediction results of the Stacking fusion model, three different error metrics, R2, RMSE, and MAE, are 
used to evaluate the accuracy of the fusion model. The evaluation results are shown in Table 5.

As shown in Table 5,  R2 is close to 1, and RMSE and MAE are close to 0, indicating that the prediction per-
formance of the fusion model is good. Taking R2 as an example, the evaluation results of the mathematical model 
of decision tree regression structure optimization of the axial flow control valve are analyzed.

The method of calculating R2 is used to evaluate the mathematical model of decision tree regression structure 
optimization of the axial flow control valve, and the results are shown in Fig. 18.

Figure 17.  Stacking fusion surrogate model response surface. (a) The response surface of Q concerning t2 and 
t4. (b) The response surface of noise value dB concerning t1 and t3.

Table 5.  Stacking fusion model prediction performance evaluation metrics.

Evaluation metrics R2 RMSE MAE

Flow rate value 0.9734 0.2148 1.2136

Noise value 0.9876 0.2005 1.0645

Figure 18.  Stacking fusion agent model R2 model evaluation results. (a) Flow rate value R2curve. (b) Noise 
value R2 curve.
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The model evaluation result of the Stacking fusion surrogate model is that the traffic value R2 is 0.9734 and 
the noise value R2 is 0.9876. From the R2 curve of the flow value in Fig. 18a, it can be seen that the trend line of 
the verification point intersects with the 1:1 line, but the trend is roughly the same. The 10 verification points 
are evenly distributed on both sides of the 1:1 line and the position is close to the 1:1 line, indicating that the 
Stacking fusion model has a high accuracy in predicting the flow value of the axial flow control valve. From the 
R2 curve of the noise value in Fig. 18b, it can be seen that the trend line of the verification point is crossed with 
the 1:1 line, and the trend is roughly the same and distributed near the 1:1 line. The 10 verification points are 
evenly distributed on both sides of the 1:1 line, indicating that the Stacking fusion model has high accuracy in 
predicting the noise value of the axial flow control valve.

The R2 values of the 3 base learners with the Stacking fusion agent model are shown in Table 6.
From Table 6, it can be seen that the prediction accuracy of the Stacking fusion surrogate model for the flow 

value and noise value of the axial flow control valve is slightly higher than that of the single learner using decision 
tree regression or Kriging or support vector regression. Therefore, the Stacking fusion agent model is used as the 
axial flow control valve structure optimization agent model for parameter optimization.

Stacking fusion surrogate model optimization based on particle swarm PSO algorithm
The particle swarm optimization algorithm is a group-based random search technology. In the search process, 
the previous best position and the global best position are remembered. The whole search update process is the 
process of following the current optimal  solution28. Each particle has a position vector Xi and a velocity vector 
Vi to calculate the fitness value determined by the optimization objective function. After calculating the new 
value of the objective function, the position and velocity of the particles will change. The particle update itera-
tion process is shown in Eq. (12).

In the formula: w is the inertia weight scale factor, which is used to control the influence of the old speed on 
the new speed; Pbesti is the best position to calculate the best fitness of the ith particle; Gbest is the global best 
particle currently sought; c1 and c2 are two constants called self-factors and global factors, which determine 
the weights of Pbesti and Gbest respectively; r1 and r2 are two random numbers generated in the range of [0, 1].

The PSO algorithm is a relatively mature global optimization algorithm, which has good applicability in 
engineering optimization problems. The particle swarm PSO global optimization algorithm is used to optimize 
the constructed Stacking structure optimization fusion agent model of the axial flow control valve. The particle 
swarm PSO optimal fitness convergence curve in the optimization process is shown in Fig. 19.

(12)
V

(t+1)
i = wV

(t)
i + c1r1(Pbest

(t)
i − X

(t)
i )+ c2r2(Gbest

(t) − X
(t)
i )

X
(t+1)
i = X

(t)
i + V

(t+1)
i

Table 6.  Comparison of R2 determination coefficient between single learner and Stacking fusion model.

Response value

R2

decision tree regression Kriging model Support vector regression Stacking fusion model

Flow rate value 0.8709 0.9102 0.9255 0.9734

Noise value 0.9635 0.9723 0.9848 0.9876

Figure 19.  The best fitness convergence curve of the Stacking fusion model optimization process.
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The parameters obtained by PSO global optimization are shown in Table 7. Considering the processing cost, 
the optimized structural parameters are rounded.

The optimized structural parameters after reasonable rounding are used for 3D modeling, and the internal 
flow channel and noise value under actual working conditions are simulated.

Analysis of results
To verify the optimization results of the structural optimization method of the axial flow control valve, the 
structural parameters obtained by the optimization algorithm are used for three-dimensional modeling. The 
reverse modeling, meshing, grid independence test, and simulation methods are the same. When analyzing the 
internal flow field of the axial flow control valve under 100% opening, the medium is normal temperature water, 
and the boundary conditions are set to 4 MPa before the valve and 0.1 MPa after the valve.

LES is used to simulate the internal flow of the axial flow control valve under actual working conditions. The 
simulation results on the horizontal section of the 100% opening internal are shown in Fig. 20. From the pressure 
distribution cloud map of Fig. 20a, it can be seen that the fluid pressure decreases rapidly from 4 MPa to about 
0.8 MPa after the fluid passes through the multi-stage pressure-reducing sleeve of the valve. From the velocity 
streamline distribution cloud map of Fig. 20c, it can be seen that the fluid converges at the middle cavity behind 
the valve, and the peak velocity of the fluid in the multi-stage pressure-reducing sleeve reaches 103.45 m/s. After 
the fluid flows out of the pressure-reducing sleeve, the analysis of the streamlined trajectory shows that the fluid 
intersects and collides, which leads to the rapid decrease of the pressure and velocity of the fluid medium, and 
then flows behind the valve.

A comparison of the outer sleeve structure of the multi-stage buckling sleeve before and after optimization 
is shown in Fig. 21.

As can be seen from Fig. 21, the number of openings in the outer sleeve after structural optimization is 
increased compared with that before optimization, the diameter of the holes has been reduced, and the thickness 
of the outer sleeve has increased slightly. The local amplification of the structure before and after optimization 
is shown in Fig. 22.

From Fig. 22a, it can be seen that the pressure change of the axial flow control valve after the optimization 
structure is more uniform than that before the optimization. The fluid pressure after passing through the outer 
sleeve is greatly reduced, but there is still a large amount of high-pressure fluid trapped between the two sleeves 
before optimization. From Fig. 22b, it can be seen that the speed change of the axial flow control valve after the 
optimization structure is also greatly improved. Before the optimization, most of the high-speed fluid still flowed 
into the valve, which may be the main cause of the noise. In the optimized structure, the speed of high-speed 
fluid decreases rapidly after leaving the influence area of the sleeve throttling effect.

The liquid dynamic noise prediction method of the axial flow control valve is used to predict the noise of 
the optimized axial flow control valve. The noise values at different frequencies received at the noise receiving 
point are calculated by the weighted noise calculation formula. The superimposed sound pressure level at the 
receiving point is calculated, and the superimposed sound pressure level at the receiving point under different 
openings after optimization is obtained, which is compared with the superimposed sound pressure level at dif-
ferent openings before optimization, as shown in Fig. 23.

It can be seen from Fig. 23 that under a large opening, the noise superposition sound pressure level after 
structural optimization decreases, and the peak value is 78.2 dB(A), which is significantly lower than that before 
optimization, and the opening is about 78%. Then the LES large eddy simulation is used to simulate the internal 
flow field of the axial flow control valve at 78% opening, and the liquid dynamic noise is calculated. The result 
is 77.8 dB(A), indicating that the optimization method can be used to reduce the noise superposition sound 
pressure level of the axial flow control valve.

The flow value of the axial flow control valve under the typical opening of the test condition after the structural 
parameters of the multi-stage step-down component are optimized is simulated, and the flow characteristic curve 
is fitted after the Kv value is calculated. The fitting results are shown in Fig. 24.

From Fig. 24, it can be seen that the flow characteristic curve of the axial flow control valve after structural 
optimization still maintains the percentage flow characteristic, and the flow capacity is lower than that before 
optimization, but it still meets the use requirements.

Conclusion
Based on LES for flow field calculation and noise prediction of axial flow control valves, structural optimiza-
tion based on Stacking integrated learning and PSO optimization seeking method is proposed to improve the 
performance of axial flow control valve. The specific conclusions can be summarized as follows:

Table 7.  Comparison of parameters before and after structural optimization.

Design variables Before optimization After optimization Optimized parameters (rounding)

Throttle hole diameter (mm) t1 4 3.84 3.8

Hole spacing(mm) t2 0.5 0.98 1

Hole extraction angle (°) t3 0 6.43 6.4

Depth of hole (mm) t4 3 3.38 3.4

Throttle sleeve spacing (mm) t5 4 3.86 4
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1. The Stacking algorithm is used to fuse the three machine learning algorithms of decision tree regression, 
Kriging surrogate model, and support vector regression to learn from each other and build a fusion model 
with higher accuracy. The accuracy of the fusion model is evaluated by three different error metrics: R2, 
RMSE, and MAE. The flow value R2 is 0.9734, the noise value R2 is 0.9876, and the reliability is close to 1, 
indicating that the established Stacking fusion proxy model can well predict the performance of the axial 
flow control valve.

2. Based on the PSO particle swarm optimization algorithm, the Stacking fusion model is optimized to obtain 
the best combination of structural parameters that meet the design requirements. The optimized multi-stage 
depressurization structure parameters are as follows: hole diameter t1 = 3.8 mm, hole spacing t2 = 1 mm, hole 
drawing angle t3 = 6.4°, hole depth t4 = 3.4 mm, and two-layer throttling sleeve spacing t5 = 4 mm.

3. The pressure change of the axial flow control valve after the optimization structure is more uniform than that 
before the optimization. The fluid pressure after the outer sleeve is greatly reduced, and the speed change is 
also greatly improved. The speed of the high-speed fluid decreases rapidly after leaving the influence area of 
the sleeve throttling effect.

Figure 20.  LES simulation results at 100% opening. (a) The actual working condition 100 % opening pressure 
cloud diagram. (b)  The actual working condition 100 % opening speed cloud diagram. (c) The actual working 
condition 100 % opening speed streamline diagram.
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Figure 21.  Comparison of the outer sleeve before and after structure optimization. (a) Outer sleeve before 
structure optimization. (b) Outer sleeve after structure optimization.

Figure 22.  Comparison of local zoomed-in clouds before and after structure optimization. (a) Pressure cloud 
comparison. (b) Speed cloud comparison.

Figure 23.  Comparison of superimposed sound pressure levels before and after optimization.
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4. The peak noise of the axial flow control valve before the optimization of the multi-stage step-down structure 
is 91.32 dB(A), and it is 78.2 dB(A) after optimization, which is about 14.4% lower than that before opti-
mization. After optimization, the noise level of the axial flow control valve meets the design requirements 
under most opening degrees. The flow characteristic curve of the axial flow control valve after structural 
optimization still maintains the percentage flow characteristic and meets the requirement of flow capacity 
Kv ≥ 60 at the maximum opening.

Compared with the single surrogate model or artificial optimization design, this method has good applicabil-
ity in the structural optimization of axial flow control valves. It provides a new idea for improving the perfor-
mance of axial flow control valves in the industry.

Some limitations should be further studied in the following work:

1. In the process of structural optimization of the axial flow control valve, a mature particle swarm global 
optimization algorithm is adopted. In the follow-up work, the algorithm will be improved according to the 
characteristics of the axial flow control valve, so that it has more accurate optimization results and faster 
optimization efficiency.

2. Limited by the test conditions, although the CFD simulation has high accuracy, due to the lack of experimen-
tal verification, it may weaken the credibility of the axial flow control valve structure optimization analysis. 
At present, the product has reached a cooperation intention with related enterprises, and the optimization 
results will be verified by experiments in the follow-up work.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request.
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