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An efficient and accurate 2D human 
pose estimation method using 
VTTransPose network
Rui Li 1,2, Qi Li 1, Shiqiang Yang 1*, Xin Zeng 1 & An Yan 1

Human pose estimation is a crucial area of study in computer vision. Transformer-based pose 
estimation algorithms have gained popularity for their excellent performance and relatively compact 
parameterization. However, these algorithms often face challenges including high computational 
demands and insensitivity to local details. To address these problems, the Twin attention module was 
introduced in TransPose to improve model efficiency and reduce resource consumption. Additionally, 
to address issues related to insufficient joint feature representation and poor network recognition 
performance, the enhanced TransPose model, named VTTransPose, replaced the basic block in the 
third subnet with the intra-level feature fusion module V block. The performance of the proposed 
VTTransPose model was validated on the public datasets COCO val2017 and COCO test-dev2017. The 
experimental results on COCO val2017 and COCO test-dev2017 indicate that the AP evaluation index 
scores of the VTTransPose network proposed are 76.5 and 73.6 respectively, marking improvements 
of 0.4 and 0.2 over the original TransPose network. Additionally, VTTransPose exhibited a reduction of 
4.8G FLOPs, 2M parameters, and approximately 40% lower memory usage during training compared 
to the original TransPose model. All the experimental results demonstrate that the proposed 
VTTransPose is more accurate, efficient, and lightweight compared to the original TransPose model.
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Human pose estimation is the study of algorithms or systems for recovering joint and torso poses based on 
observed data from images, which has led to one of the very challenging and significant research directions 
in the field of computer vision because of the large variety of different joint scales in the human body and the 
interference of the scene for joint points in the real  environment1. The human pose estimation algorithms can be 
classified into two main categories: 2D pose estimation algorithms and 3D pose estimation algorithms according 
to the number of dimensions that represent the human pose features. Among them, 2D pose estimation algo-
rithms mainly obtain the human key point coordinates and skeletal correspondence by obtaining the position 
information of human key points on 2D images and the position and orientation information of human limb 
trunks, and the accuracy of this correspondence directly affects the results of human pose  estimation2.

Traditional two-dimensional pose estimation methods mostly use probabilistic graphical models or image 
structure models, but the results are not satisfactory, and in recent years, many scholars have started to apply 
deep learning ideas to models for pose  estimation3.

Deep learning-based two-dimensional human pose estimation algorithms use convolutional neural networks 
(CNNs) to simulate the human visual system by superimposing multiple convolutional layers to obtain rich fea-
tures under different receptive fields. CNNs are widely used in pose estimation tasks due to their advantages of 
capturing the human features required for pose estimation and high recognition  accuracy4–6. Intending to solve 
the body occlusion problem, Chen et al. constructed the Cascaded Pyramid Network (CPN)7 network in 2019, 
CPN includes two stages: GlobalNet and RefineNet. GlobalNet fuses high and low-level features to correlate 
contextual information and locate simple human body articulation points, and RefineNet combines features 
from all levels processed by convolution to deal with occluded articulation points. To alleviate the impact of 
different scales of different human joint points, in 2019, Sun et al. proposed the HRNet  algorithm8,9, which fuses 
semantic and positional information of images at different resolutions by parallel branching, and finally outputs 
a high-resolution feature map. The model improves the aggregation ability of low-level positional features and 
high-level semantic features by fusing features of different scales.
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The above CNN-based methods are characterized by the ability to learn features at different scales through 
cascade structure, which facilitates the model to learn discriminative information on different semantic spaces. 
However, it is also because such methods need to continuously superimpose the network depth to gradually 
increase the receptive field and obtain the global feature information, which leads to the network becoming 
bulkier and heavier. To alleviate these problems, researchers have focused on the transformer architecture in the 
field of natural language processing. The core concept of the Transformer model lies in its reliance on attention 
mechanisms to entirely capture dependency relationships within input sequences, thereby eschewing the use of 
recurrent neural networks (RNNs) or convolutional neural networks (CNNs). Transformer-based models achieve 
this by requiring only a single self-attention layer to learn associations between any pair of features, thus enabling 
the modeling of relationships from local features to global context with a reduced parameter count. Moreover, 
it learns more about the interconnections between different features, not only relying on the data itself, which 
has better generalizability. Inspired by the success of transformer structures in other vision  tasks10–13, a variety 
of different visual transformer structures have been successfully used for pose estimation. Based on a cascaded 
regression mechanism, Li and his  colleagues14 proposed a PRTR-based pose estimation network that uses an 
encoder-decoder structure to progressively predict human keypoints. To enhance the feature representation 
capability of the network for the highly fine-grained task of pose estimation, Yuan et al.15 proposed an HRFormer 
to adapt the pose estimation task by introducing high-resolution representation into the visual transformer 
through a multi-resolution parallel transformer module. Different from the pure Transformer architecture, both 
TokenPose and TransPose human pose estimation models proposed by Li et al.16 from Tsinghua University and 
the group led by Yang from Southeast  University17 respectively, utilize visual transformers to refine features 
extracted by CNN, thereby complementing the two network architectures. Ye et al. proposed the DistilPose 
model, which bridges the gap between heatmap-based and regression-based methods, transferring models based 
on heatmaps to models based on regression, effectively balancing speed and  accuracy18. Cheng et al. introduced 
GTPose, which integrates Transformer and graph convolutional networks, establishing a topological relation-
ship model between keypoints, learning feature representations, and achieving precise keypoint  localization19. 
Among these, the TransPose human pose estimation network model organically combines CNN’s excellent 
handling of local features with the Transformer’s excellent modeling capability for global features. Introducing 
the Transformer into human pose estimation not only excellently accomplishes the pose estimation task but also 
reveals how the self-attention mechanism captures the global relationship between various joints of the human 
body. This CNN-transformer hybrid architecture provides a new solution approach for pose estimation tasks, 
demonstrating excellent performance both in pose estimation effectiveness on datasets like MS  COCO20 and 
 MPII21, as well as in interpretability.

Nevertheless, insufficiencies still exist in this approach. First, the extensive feature maps in the pose estima-
tion task and the inherent nature of the self-attention computing mechanism will impose heavy computational 
costs and consume large computational resources. Second, the scale of human joints varies greatly, and this 
CNN-transformer architecture is not sufficient to make a delicate local representation of joints at various scales. 
To address the above problems, this paper proposes an improved pose estimation algorithm called VTTransPose 
based on TransPose.

The contribution of this work can be summarized as follows.
Firstly, to alleviate the problem of large consumption of time and computational resources in human pose 

estimation tasks due to the extensive feature map, and the inherent characteristics of the self-attention mecha-
nism. In this paper, we propose to introduce twin attention from  SOTR22 into TransPose and replace the self-
attention mechanism in the original encoder layer to significantly reduce memory consumption and thus improve 
network efficiency. In addition, in order to enhance the special extraction capability without introducing more 
operations. In this paper, two 3 × 3 depthwise separable convolutions connected by leaky  ReLU23 are introduced 
after the twin attention of each transformer encoder layer as a useful complement to the attention mechanism 
to enhance the representation of joint features.

Secondly, to address the issue of scale differences in the original network, which hindered the precise localiza-
tion of keypoints for body joints with significant scale variations, this paper was inspired by  RSN24 and designed 
a local feature enhancement module called the V block. It features a parallel multi-branch structure to fuse 
features with the same spatial size, thereby obtaining refined local features and enhancing the network’s ability 
to localize keypoints.

The pose estimation effect of VTTranspose was tested on the COCO data set, and the AP (Average precision) 
of COCO val2017 and COCO test-dev2017 was 76.5AP and 73.6AP, respectively. Compared with the original 
Transpose network improved by 0.4 and 0.2. In addition, compared to the original network, VTTranspose’s 
floating point operations (FLOPs) are reduced by 4.8G, the number of parameters is reduced by 2M, and the 
video memory occupancy during training is reduced by about 40%. Compared with other SOTA methods, 
VTTranspose proposed in this paper has a competitive performance.

The following paper is organized as follows: In “Method”, the Method part will first give a brief descrip-
tion of the overall structure of VTTranspose. Later, the two improved modules of Twin attention, improved 
transformer encoder layer, and Backbone after the introduction of the V block will be explained in detail. In 
“Experimental and result analysis”, the experimental and result analysis section will validate the VTTransPose 
algorithm developed in this paper on the COCO dataset and compare it with other excellent pose estimation 
algorithms. In “Conclusion”, the conclusion section will summarize the algorithm of this paper and give an 
outlook on future research.
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Method
VTTransPose network structure
The VTTransPose network architecture proposed in this paper is an improvement upon the TransPose  model17. 
TransPose is a detection model that introduces Transformer principles into human pose estimation. The model 
mainly consists of three parts: a backbone network for extracting mid-level human pose features from input 
images, a transformer encoder for modeling global relationships among the joint features output by the back-
bone network, and a head for predicting the positions of human keypoints. The structure of VTTranspose is 
illustrated in Fig. 1.

Take a human body pose image I ∈ R3×HI×WI as an example. Feed it into the VTTranspose network. After 
Backbone processing, the low and middle-level feature maps of human joints based on this image are output, 
whose mathematical characterization method is Xf ∈ Rd×H×W , and the channel dimension has been changed 
to d through the 1 × 1 convolution. Then, the image feature map is flattened into a sequence X ∈ RL×d , where 
L is equal to H × W. After that, it is fed into N Transformer encoder layers for processing. Finally, the output 
E ∈ RL×d is fed into a head to predict Kkeypoint heatmaps P ∈ RK×H∗×W∗ , where the default settings are H∗ , 
W∗ = HI/4 , WI/4. After obtaining the heatmap of the different joints, the position with the highest thermal 
value in the heatmap is selected to obtain the joints’ coordinates.

Transformer encoder layer after twin attention is introduced
The self-attention mechanism, as the core of the transformer, has received a lot of attention for its excellent 
modeling ability for the connection between long-range  features24. Along with the excellent global modeling 
ability of self-attention, there is also a large consumption of computational resources due to its complex matrix 
operations. Therefore, to alleviate this problem, this paper introduces the twin attention mechanism into trans-
former encoders to replace the original self-attention computational mechanism and make the network more 
efficient and resource-friendly.

Self‑attention mechanism
The self-attention mechanism, as the core of the transformer, can be further divided into single-head self-
attention and multi-head self-attention according to the number of attention  heads22. The calculation process of 
the single-head self-attention mechanism is as follows: first, the input sequence X ∈ RL×d is multiplied by the 
three weight matrices Wq,Wk,Wv ∈ Rd×d , then we can get the queries, keys, values matrices Q,K ,V ∈ RL×d to 
calculate the attention value, the schematic diagram of self-attention is depicted in Fig. 2a.

Firstly, the correlation score matrix A ∈ RL×L between each input feature xi ∈ Rd in X is calculated using the 
dot product of vectors. This is, every vector qi ∈ Rd in Q is calculated with every vector ki ∈ Rd in K . Specifically 
in matrix form, it can be expressed in Eq. (1).

After that, all correlation scores wi ∈ RL in the result matrix A are normalized to enable the gradient stable 
during training, which can be expressed by Eq. (2).

where, dk denotes the dimension of k, whose value is d in this paper.
Finally, each wi is converted to a probability distribution between [0, 1] by the softmax function and then 

multiplied by the corresponding vi ∈ R
d , the attention value can be obtained, and the overall calculation process 

can be expressed by Eq. (3).

where Z ∈ RL×d is the attention matrix.
The multi-head self-attention mechanism, involves processing the original input sequence through multiple 

sets of self-attention operations. Subsequently, the results of each set of self-attention are concatenated and sub-
jected to a linear transformation to obtain the final output. As illustrated in Fig. 2b, it utilizes h sets of Wq , Wk , 

(1)A = QK⊤

(2)A = A/
√

dk

(3)Z = Attention(Q,K,V) = softmax(
QK⊤

√
dk

)V

Figure 1.  VTTransPose network structure diagram.
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Wv to derive multiple sets of Q,K , V  . Then, according to Eq. (3), the attention matrix is computed for each set 
separately. Finally, the obtained multiple matrices are  concatenated24. Through these computations, the relation-
ships between any two input vectors can be obtained, which helps overcome the issue of the model excessively 
focusing on its own position when encoding information at the current position.

Twin attention mechanism
As shown in the left side of Fig. 3, Twin attention is similar to convolution decomposition in CNN, the design 
idea of twin attention is to decompose the original self-attention into two steps, and then obtain a sparse rep-
resentation of the original attention matrix. It first computes the attention of each column in the input matrix, 
while keeping the elements in different columns non-interfering with each other, and this strategy can aggregate 
the contextual information among the elements on the horizontal scale. After computing the attention in the 
column direction, a similar computation strategy is executed for each row along the row direction to obtain the 

Figure 2.  The attention calculation model. (a) Scaled dot-product attention, (b) Multi-head attention.

Figure 3.  Transformer encoder with twin attention and depthwise separable convolution.
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attention of each row to establish a perfect connection between the features at the vertical scale. Connecting 
the attention in these two scales sequentially, a sparse representation equivalent to self-attention is obtained, 
which has a global receptive field with information in both horizontal and vertical dimensions and can model 
the global connections of the input features.

For the input two-dimensional human posture feature map Xf ∈ Rd×H×W , it will be decomposed into N*N 
patches Pf ∈ R

d×N×N , and then stack them in the vertical and horizontal directions respectively. To preserve the 
position information of the features, position embedding is added to the blocks stacked along the two directions, 
and the position embedding space in the column and row directions are d× 1×N and d×N× 1 . Through this 
strategy, Twin attention can effectively reduce the memory consumption and computational complexity from 
the standard self-attention O((H×W)2) to O(H×W2 +W×H2).

Assuming that the width and height of the input two-dimensional human pose features are 48, 64, the reduc-
tion in memory consumption and computational complexity of twin attention reaches 96% compared with the 
standard self-attention mechanism, which can certainly enhance the efficiency of the network greatly.

Depthwise separable convolution blocks
Considering that the sparse attentional representation may lead to the degradation of network detection per-
formance, this paper uses two depthwise separable convolution blocks connected by leaky ReLU to replace the 
FFN in the original transformer encoder to enhance the feature representation capability of the network. The 
structure of the depthwise separable convolution block is shown in Fig. 4, which divides the traditional convo-
lution operation into two steps. First is depthwise convolution, where one convolution kernel is responsible for 
only one channel, so the number of convolution kernels needed is the same as the number of input channels. 
After that, the generated feature maps are sent to pointwise convolution to aggregate the information on dif-
ferent channels. With this strategy, the depthwise separable convolution reduces the computational complexity 
from O(K × K × Cin × Cout) to O(K × K × Cin + Cin × Cout) , so that it can provide a useful complement to 
the twin attention mechanism without introducing a high computational cost. where K represents the convolu-
tion kernel size, Cin represents the number of input feature channels, and Cout represents the number of output 
feature channels.

TransPose backbone after the introduction of V block
After the introduction of twin attention, the transformer encoder layer is significantly less resource-intensive 
and the efficiency of the network can be improved. However, the backbone network is not sufficient for the 
extraction of low and medium-level features at multiple scales. Although the HRNet as Backbone fuses features 
with different resolutions to obtain spatial feature information with different receptive fields through the parallel 
multi-subnet structure, the transition of receptive fields between different subnets is not smooth enough and the 
interval of receptive fields is large. For human joints with different scales, such as the nose with a smaller scale 
and the chest with a larger scale, the network needs a larger range and more scales of receptive fields to extract 
feature information at different  scales7.  Reference25 suggests that merging features within layers with the same 
resolution can achieve more refined local feature representations, preserving more accurate spatial feature infor-
mation, which is more conducive to precise localization of keypoints. Therefore, this paper proposes a layer-wise 
multi-branch feature fusion module called the V block to refine the network’s receptive field spacing, increase 
the overall receptive field range of the network, and obtain fine representations of local features.

Backbone structure
There are two series of TransPose network backbones: ResNet-S and HRNet-S. In order to keep the high-reso-
lution representation of the feature, HRNet-S is chosen for the study in this paper. As shown in the upper part 
of Fig. 4, HRNet-S mainly consists of one stem unit, three stages, and two transition units. The network can be 
divided into three sub-networks according to the feature map resolution, and the feature map resolutions of 
sub-networks 1,2,3 are gradually reduced to 1/4, 1/8, 1/16 of the input images, respectively.

The input image will be downsampled to 1/4 of the original image in the spatial size and increased in the 
channel dimension through the stem unit and the first stage, and then a parallel sub-network is added by dou-
bling downsampling in each transition part. Except for the first stage which is composed of bottleneck blocks, 
the second and third stages are composed of one and four high-resolution modules respectively, where each 
high-resolution module consists of four basic blocks. Whenever the input features pass through a high-resolution 
module, a feature fusion operation between different subnets is performed immediately afterward. It is this design 
of constantly fusing different resolution features while maintaining high-resolution feature representation that 

Figure 4.  Diagram of depthwise separable convolution.
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allows HRNet to perform well in various vision tasks. Note that at the end of the third stage, only the feature 
map of the first subnet is output, which has the highest resolution and fully fuses the features of the three dif-
ferent resolution subnets.

Structure of the intra‑level feature fusion module V block
The proposed V block structure in this paper is shown in the black dashed box at the bottom of Fig. 5. For 
the third subnet of low-resolution human pose input features Fin , V block first divides them into 4 branches 
fi(i = 1, 2, 3, 4) in the channel dimension, Then, the features of each of the four branches are fed into a 1 × 1con-
volution for processing. After that, the output of each branch is processed by a 3× 3 asymmetric convolution in 
turn (the asymmetric convolution structure is explained below). The output feature fi′(i = 1, 2, 3, 4) is added to 
the next branch, inspired by Bi-FPN26, in this paper, after the forward summation is completed, a set of reverse 
sequential summation operations are performed, and each summation operation is followed by a 3× 3 asym-
metric convolution block to process the summed features. Output features yi(i = 1, 2, 3, 4) will be fed into a 1× 1 
convolution after concatenated, and an identity connection is employed as the HRNet Basic block. The V block 
is named because the arrangement of the asymmetric convolutional blocks is similar to the V in the alphabet. 
The V block can be expressed by the following formula:

where Fout represents the output feature map of a single V block, Fin represents the input feature map, 
∑

() 
represents the concation operation, and f

′
i is the feature of each branch after the first asymmetric convolution 

block processing, when i = 2 , let fi−2′ = 0 , K1,1 represents the convolution operation using a convolution kernel 
of 1 × 1, and ⊙ represents the convolution operation, and Kac represents the asymmetric convolution operation 
using a set of convolution kernels of (3× 1, 1× 3).

To reduce the network’s parameters and fully explore its feature extraction capabilities, this paper utilizes 
asymmetric convolutions in the V block instead of standard convolutions. Asymmetric convolutions decompose 
the standard d × d convolution into 1× d and d × 1 convolutions, reducing the parameter count. By perform-
ing convolution operations of varying degrees in different directions and positions, asymmetric convolutions 
can better capture subtle features and structural information in the input data, thereby enhancing the model’s 

(4)Fout = Fin + K1,1 ⊙ (
∑4

i=2
(Kac ⊙ (yi + Kac ⊙ (fi−2′ + K1,1 ⊙ (fi−1))))+ y4)

Figure 5.  The HRNet-S framework after V block is introduced.
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understanding of the input and improving the network’s perception of the local range of each keypoint. The 
structure is shown in Fig. 6, for the input feature finput , it will first undergo a convolution with a convolution 
kernel size of 3 × 1 for processing, and then send the processed features into a convolution kernel with a con-
volution kernel size of 1 × 3 for further feature extraction. Through this strategy, the same feature extraction 
effect as standard convolution can be achieved. And the number of parameters can be reduced. The asymmetric 
convolution processing flow can be expressed by the following formula:

where ⊙ denotes the convolution, finput denotes the input feature map, fac denotes the output feature map, and 
Ki,j denotes the convolution operation with the size of the kernel i × j.

The receptive field analysis
In the  literature7, it is pointed out that a larger range, as well as more scales of receptive fields, are essential to 
extract feature information at different scales, so in this paper, the analysis of different modules of receptive fields 
is carried out in this section. First, the receptive field calculation can be expressed by the following equation.

where lk represents the receptive field of the k th layer, fk denotes the kernel size of the k th layer, si denotes the 
stride of the i th layer. Since the complete structure of each network is complex and inconvenient for complete 
analysis and comparison, only the relative receptive fields in a single block are considered and compared in this 
paper. Every fk is 3 and si is 1. Thus, Eq. (6) can be simplified to Eq. (7)

The relative receptive fields of V block and the two blocks in HRNet can be calculated by using Eq. (7), as 
shown in Table 1, which shows that the proposed V block has a larger receptive field compared with the two 
blocks in HRNet, which is beneficial for the network to learn more semantic discriminative information and 
thus obtain more accurate joint localization and classification.

Experiment and result analysis
The COCO 2017 dataset is selected to train and test the improved model in this paper, and the effectiveness of 
this paper’s model is demonstrated by comparing it with other excellent models.

COCO data set and evaluation index
The COCO 2017 dataset contains more than 200,000 images and 250,000 human instances, each labeled with the 
location of 17 keypoints. This dataset is widely used for tasks such as target detection, human pose estimation, 
and semantic segmentation. The COCO train2017 dataset is used to train the proposed model in this paper, 
which includes 57K images and 150K human instances. The model of this paper is evaluated on the val2017 
set and the test-dev2017 set, where the val2017 set contains 5000 images and the test-dev2017 set contains 20K 
images. This paper uses AP (average precision), AR (average recall), Params(parameter), and FLOPs (floating 
point operations) to evaluate networks.

Assessment is based on object keypoint similarity (OKS) in the node detection task of the COCO dataset. 
OKS represents how close the predicted key points are to the actual situation, and a higher OKS score means a 

(5)fac = K1,3 ⊙ (K3,1 ⊙ finput)

(6)lk = lk−1 + [(fk − 1) ∗
∏k−1

i=1
si]

(7)lk = lk−1 + 2

Figure 6.  Asymmetric convolution.

Table 1.  The receptive field comparison between V block and the block in HRNet.

Architecture y1 y2 y3 y4

HRNet_Bottleneck block 3 3 3 3

HRNet_Basic block 3, 5 3, 5 3, 5 3, 5

V block 3, 15 5, 13 7, 11 9
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higher overlap between the predicted key points and the actual situation, that is, the prediction is more accurate. 
The calculation method is shown in Eq. (8).

 where di is the Euclidean distance between the i th prediction key point and the generalized truth value; S rep-
resents the scaling factor, σ represents the normalization factor of the i key point; vi is the visibility parameter 
of the ith key point. vi is 0 when the key point does not exist, 1 when the key point exists but is blocked, and 2 
when the key point exists and is visible. The function of δ is to select the key point of existence, which has two 
values. When vi>0, the value is 1, otherwise it is 0; N represents the number of key points, which in COCO is 17.

This paper uses the standard average precision (AP) value based on OKS as an evaluation indicator. AP can 
be used to evaluate the network’s ability to detect key points. The higher the value, the better the detection per-
formance. AP is calculated as shown in Eq. (9).

where, T is the threshold set when calculating AP; δi is used to determine the relationship between the OKS score 
of the i′th individual and the size of threshold T . If OKS > T is met, δi is set to 1, otherwise it is set to 0. M is the 
number of human instances in the test set.

Training details
This paper follows a top-down paradigm for human pose estimation. The training samples are single human 
images after cropping. All input images will be resized to resolution. In this paper, we use the same data expan-
sion, human detection results, and coordinate decoding strategy as  in17. In this paper, the Adam optimizer is 
used to train the model with a training period of 240 epochs, the batch size is set to 16. The cosine annealing 
learning rate decay is used to change the learning rate from 0.0001 to 0.00001. The environment configuration 
for network training is shown in Table 2.

VTTranspose pose estimation effect test
Figure 6 shows the display image of the human pose estimation results of VTTransPose. Figure 7a–d show the 
pose estimation results on four images selected in COCO val2017, and Fig. 7e–h show the pose estimation results 
on the images taken in the actual scene. It can be observed that VTTransPose has good pose estimation results 
in different human scales, different human postures, and with slight occlusion, but the results are not good when 
dealing with large occlusion and human overlap, for example, the pose estimation results of two farther overlap-
ping human bodies at the corner of the stairs in Fig. 7g.

Validation results on the COCO val2017 and the COCO test-dev2017 datasets
In this paper, VTTranspose’s ability to complete the node detection task is tested respectively on two data sets of 
COCO val2017 and COCO test-DEV2017, and the test results are shown in Tables 3 and 4 respectively.

Compared to transpose-H–S. Compared to models such as HRNet-W48, TokenPose, GTPose, TransPose-H-
A4, and TransPose-H-A6, although VTTransPose may have slightly lower AP, its parameter count and compu-
tational complexity are only 1/10 to 1/2 of these models. Compared to other models in the table, VTTransPose 
achieves higher accuracy with lower parameter counts and computational complexity.

On the COCO test-dev2017 dataset, all models are evaluated based on the object detection results obtained 
from the same human object detector achieving 60.9 AP. As shown in Table 4, among models with the same 
input size, the proposed VTTranspose achieves competitive performance with 73.6 AP while having the fewest 
parameters and the lowest computational complexity.

Ablations
In order to verify the respective effects of two improvement modules in VTTransPose, the following experi-
ments were carried out on COCO val2017. Firstly, only introduce the improved transformer encoder layer to the 

(8)OKS =

∑N
i exp

(

− d2i
2S2σ 2

i

)

δ(vi > 0)
∑N

i δ(vi > 0)

(9)AP
T
=

∑

M

i
δi(OKS>T)

M

Table 2.  Experimental training environment.

Environment configuration

System Windows10

GPU P106-100

Memory size 6 GB

CPU Intel(R) Core(TM) i5-4460 CPU @ 3.20 GHz

Python 3.7

Torch 1.2.0

CUDA 10.0
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original TransPose, then train the model and test its network performance. On this basis, V block is introduced 
to Backbone and network performance is detected after training. The results are shown in Table 5.

As can be seen from Table 5, firstly, after twin attention is introduced based on the original TransPose model, 
the memory occupied during the model training decreases significantly, with a decrease ratio of 44.2%, which 
greatly improves the training efficiency; and due to the addition of depthwise separable convolution, the feature 
extraction ability of the model is enhanced, and the AP index is improved compared with the original model by 
0.2. After that, the AP index is improved by 0.2 with the introduction of V block, which slightly increases the 
memory consumption, but reduces the number of model parameters by 25% with the introduction of asymmetric 
convolution, so that the model achieves a balance of accuracy and the number of parameters.

Conclusion
This paper presents a top-down human pose estimation model VTTransPose. First, to reduce the computational 
complexity of self-attention in the transformer, save computational resources, and speed up the training and 
convergence process, the self-attention in the original TransPose network is replaced by the twin attention 
computing mechanism, which can reduce the memory and computational complexity from O((H*W)2) to 

Figure 7.  VTTransPose pose estimation effect demonstration.

Table 3.  Comparisons on the COCO validation set.

Method Input size AP AR #Params (M) FLOPs (G)

SimpleBaseline-Res5027 256 × 192 70.4 76.3 34.0 8.9

SimpleBaseline-Res10127 256 × 192 71.4 76.3 53.0 12.4

SimpleBaseline-Res15227 256 × 192 72.0 77.8 68.6 35.3

TransPose-R-A3*17 256 × 192 71.5 76.9 5.0 5.4

TransPose-R-A317 256 × 192 71.7 77.1 5.2 8.0

TransPose-R-A417 256 × 192 72.6 78.0 6.0 8.9

HRNet-W328 256 × 192 74.4 79.8 28.5 7.2

HRNet-W488 256 × 192 75.1 80.4 63.6 14.6

TokenPose-B16 256 × 192 74.7 80.0 13.5 5.7

DistilPose-S18 256 × 192 71.6 – 5.4 2.38

DistilPose-L18 256 × 192 74.4 – 21.3 10.33

GTPose-B19 256 × 192 75.0 80.1 13.5 –

TransPose-H-A417 256 × 192 75.3 80.3 17.3 17.5

TransPose-H-A617 256 × 192 75.8 80.8 17.5 21.8

TransPose-H–S17 256 × 192 74.2 78.0 8.0 10.2

VTTranspose (ours) 256 × 192 74.6 78.5 6.0 5.4
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O(H*W2 + W*H2). And the depthwise separable convolution is added after twin attention to replace the MLP 
module to enhance the local feature capture capability with a very small amount of computation. Later, to 
enhance the feature extraction ability and expression ability of the model for the fine-grained task of keypoint 
detection, the intra-level feature fusion module V block was introduced into the third subnet of HRNet-S in 
TransPose to achieve intra-level feature and inter-level feature fusion of the network. In addition, to enhance the 
feature extraction capability of the network while reducing the number of parameters, the standard convolution 
within the V block is replaced with an asymmetric convolution, and the number of parameters is reduced by 
such convolutional decomposition without reducing the accuracy. The validation results on COCO val2017 and 
COCO test-dev2017 datasets show that VTTransPose has lower memory consumption, higher training efficiency, 
and higher accuracy compared with the original model. The proposed model also has a competitive performance 
when compared with other good models.

Although the comprehensive performance of the model proposed in this paper is good, the limitation to the 
inherent CNN-Transformer fusion framework leads us to make only small improvements in various aspects and 
does not reach SOTA. Therefore, in the future, we will make a study on how to better fuse CNN and transformer 
architectures in pose estimation tasks.

Data availability
The data presented in this study are available on request from the corresponding author. The data are not publicly 
available due to [In order to adapt to our study, we processed the dataset].
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