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with Mittage-Leffler kernel for type
| diabetes mellitus
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In this paper, we propose a fractional-order mathematical model to explain the role of glucagon in
maintaining the glucose level in the human body by using a generalised form of a fractal fractional
operator. The existence, boundedness, and positivity of the results are constructed by fixed point
theory and the Lipschitz condition for the biological feasibility of the system. Also, global stability
analysis with Lyapunov’s first derivative functions is treated. Numerical simulations for fractional-
order systems are derived with the help of Lagrange interpolation under the Mittage-Leffler kernel.
Results are derived for normal and type 1 diabetes at different initial conditions, which support the
theoretical observations. These results play an important role in the glucose-insulin-glucagon system
in the sense of a closed-loop design, which is helpful for the development of artificial pancreas to
control diabetes in society.
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Specifically, blood sugar levels are regulated by two hormones that have antagonistic effects on the human body.
In contrast to insulin, which promotes the uptake of blood sugar by muscles and adipose tissues and stores it as
glycogen in the liver, glucagon is secreted to treat hypoglycemia following fasting or meals without carbohydrates,
but insulin is released to prevent blood sugar levels from going above a specific threshold after meals. Because of
this, it will be challenging to control glycemia whenever glucagon or insulin secretion is disrupted. Research on
a-cells and glucagon is less important than that on S-cells and insulin, despite the significance glucagon plays in
the regulation of blood sugar'. According to studies, type 2 diabetic participants do not display the same glucagon
suppression in response to the glucose stimulus as healthy people. Plasma glucagon levels significantly decrease,
plasma insulin levels significantly rise, and as a result, plasma glucose levels are normal in non-diabetic indi-
viduals. The opposite is true for those with type 2 diabetes, who also have post-prandial hyperglycemia and low
plasma insulin levels that are at or above pre-prandial levels®. According to the bi-hormonal hypothesis proposed
by Unger and Orci in 1975, hyperglycemia is caused by both an excess of glucagon and insulin insufficiency or
resistance, which cause the liver to create more glucose than is needed for the utilization of the glucose, leading
to diabetes’. In contrast to a-cells and glucagon, mathematical models of the dynamics of glucose, insulin, and
B-cells have recently drawn a lot of attention*”’. In this study, we provided a mathematical model of the coupled
dynamics of glucose, insulin, « and B cells, and glucagon®.

Atangana’ has proposed an entirely novel technique for fractional calculus called the fractal fractional deriva-
tive. The idea behind this subject is frequently quite helpful for solving some difficult issues. Two orders of the
operator are the fractal dimension and the fractional order. The conventional method is outperformed by this
new approach to fractal fractions!*-12. This is so that one can simultaneously study fraction operators and fractal
dimensions while dealing with fractal fractional derivatives. The huge advantage of this operator is that it enables
you to construct models that more precisely describe systems with memory effects. In addition, there are other
real-world concerns that call for knowledge of a system’s information capacity. utilised unique applications and a
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variety of kernels to report some breakthroughs in fractal-fractional differential equations'>'. Fractional calculus
is parqueting the interest of scientists all around the world because of its many benefits and useful applications
in physics and engineering. Hereditary traits, memory, and crossover behaviour can only be observed using a
model with a fractional-order system'>~"”. The behaviour of a fractional-order diabetes model was examined in
the research paper. The fractional order derivative of the glucose concentration was taken into account along
with the interactions between glucose, insulin, and glucagon. The model’s equilibrium points were examined for
stability, and the scientists also looked at how the fractional order derivative affected the dynamics of the system.
The outcomes demonstrated that the model’s behaviour could be influenced by the fractional order derivative,
producing dynamics that were more complex than in the traditional integer order scenario®. The literature on
fractional order modelling and analysis of diabetes was thoroughly reviewed by them. The authors explored a
range of modelling techniques for diabetes, such as conventional integer order models, fractional order models,
and hybrid models. They emphasised the benefits of employing fractional order models, including their capacity
to reproduce memory and non-locality effects observed in biological systems'®. Researchers have been examin-
ing the intricate interactions between glucose-insulin dynamics, metabolic regulation, and patient behaviour
in the study of behavioral dynamics in the fractional order diabetes model in recent years?. Researchers have
been able to capture the non-integer order derivatives that result from patient behavior by introducing fractional
calculus into diabetes modelling, providing a more accurate picture of the dynamics of the disease®!. The exist-
ing fractional order models for diabetes and their uses in evaluating the course of the disease, the effectiveness
of insulin treatment, and glucose control were also reviewed by some writers?. Nevertheless, conventional or
classical fractional-order models find it challenging to effectively articulate the concept of piecewise fractional-
order derivatives to get over this limitation due to the complexity of the epidemic, particularly during crossover
periods. With this approach, we want to provide a more realistic picture of the intricate crossover behaviours
present in the dynamics of the pandemic and some real life application through different kinds of fractional
order derivative?-32,

Fractional calculus has a strong history and plays a major role in the simulation of physical phenomenon
of real life. Recently, there has been a lot of interest in the study of fractional calculus. Fractional calculus and
fractional processes have become one of the most useful approaches to deal with a variety of problems in applied
sciences due to memory and hereditary properties. A number of studies for fractional order linear, non-linear
and complex dynamical mathematical models have been presented with interesting results during recent years.
Therefore, compared to the traditional integer order models, fractional order models seem to be more objec-
tive and flexible. There is a long history of mathematical modelling on the topic of glucose metabolism. There
are various reasons for using models. Models have been used to infer physiologically significant factors from
experimental data in an indirect manner, to provide a clear quantitative depiction of pathophysiological pathways,
and to derive clinically valuable indexes from basic experimental procedures. As the impact of type 1 diabetes
on society grows, models related to the disruption of the glucose homeostasis system are being developed and
utilised more frequently. Currently, diabetes mellitus is one of the major issues all over the world. We construct
a fractional-order glucose-insulin-glucagon system with a novel fractional technique. For this purpose, Sec-
tion “Introduction” is an introduction, and Section “Basic concepts has some useful definitions”. A mathematical
model with a description is presented in Section “Diabetes model with fractional derivative” An analysis with
different aspects and stability is given in Section “Analysis of proposed model”. The advanced numerical scheme
fractal fractional is present in Section “Computational analysis with fractal fractional operator for reliable solu-
tions”. A numerical simulation is given in Section “Numerical simulation and discussion” to see its physical
interpretation and conclusion in Section “Conclusion’”.

Basic concepts

Definition 1 ?*?** For a power law kernel in the Riemann-Liouville sense is given as;

0" DMx() = ﬁ dt / (= eyt v

with0 < @, n < 1. Where
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The corresponding power law kernel fractal-fractional integral of order («, 1) is given as

o 1 ' - -
o LX) = @/0 (t =) ¢! x(s)ds @

Definition 2 *** Assume that x(t) is a function that is not constantly differentiable. For a exponential decay
kernel in the Riemann-Liouville sense is given as;
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wherew > 0,7 < 1,and H(0) = 1 = H(1). The corresponding exponential decay kernel fractal-fractional inte-
gral of order (o, n) is given as

n(l—a)t" x(t)  an
H(a) H(a) Jo

t
FEEr®x(t) = s x(s)ds (4)

Definition 3 2>** Assume that x(¢) is a function that is not constantly differentiable. For a Mittag-Leffler kernel
in the Riemann-Liouville sense is given as;

AB(x) d / ¢ o
FFM el a
D ) = — | Ey|—— (@t — d
EMDE0 = T | R T 9 e (5)
where 0 < o, < 1, Ey is the Mittag-Leffler function and AB(a) = 1 — o + % is a normalization function.
The corresponding Mittag-Leftler kernel fractal-fractional integral of order («, 1) is given as
gy = B0 oy 10 /t(t — o) T x(9)ds (6)
AB() AB(@)T (@) Jo

Diabetes model with fractional derivative

For our motivation, we consider the glucose-insulin-glucagon system given in®, which explains the relation and
role of insulin and glucagon in maintaining the glucose level in the human body to overcome the risk of death.
We construct the fractional order model in followings equations
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with initial condition G(0) = Gy > 0,1(0) = Iy > 0, 8(0) = By > 0,a(0) = g > 0,]J(0) = Jo > 0 Assume that
glucagon is produced by the a-cells at low glucose concentrations in order to increase hepatic glucose synthesis,
which raises blood glucose levels. An excessive rise in blood glucose levels is prevented by the production of
insulin by the B-cells. G(f) represents the dynamics of glucose. The term ;] refers to glucagon’s effect on liver
gluconeogenesis, which produces glucose. The blood glucose level increases at a rate w (the rate of glucose gen-
eration by the liver and kidneys) and falls at a rate bG (independent of insulin) and § (the rate of glucose uptake
as a result of insulin sensitivity). where y is the maximum rate of insulin secreted by B-cells and I is the rate
of kidney clearance of insulin. The dynamics of insulin are represented by I(). We assumed a logistic equation,
where p and p; represent the growth rates of the f and the « cell masses, respectively. v and v; represent the car-
rying capacities of the  and the « cell masses, respectively. The glucagon J(¢) is released if the glucose level falls
below a specific threshold (G < G).

Analysis of proposed model
Positivity and boundedness of solutions
Here, we demonstrate the suggested model’s positivity and boundedness.

Theorem 1 Assume the initial condition be

{G(0),1(0), B(0),x(0),](0)} C @, (8)
then if the solutions {G, 1, B, o, ]} exist, they are all positive for allt > 0.
Proof Start with the basic analysis to demonstrate that responses are superior because they demonstrate real-

world issues with positive values using the methodology described in**. This section looks at the conditions
necessary for the proposed model to provide positive results. We'll describe the norm

Ihlloc = sup [h(®) ©)

teDy,

where the domain of 4 is Dy, Let’s begin with the G(t) class
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where the time component is r. This illustrates that for any t > 0, G(¢) is positive. For the function I(¢)
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where the time component is r. This illustrates that for any ¢ > 0, I(¢) is positive. For the function B(t)
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where the time component is r. This illustrates that for any ¢ > 0, B(¢) is positive. For the function « (t)
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where the time component is r. This illustrates that for any t > 0, «(¢) is positive. For the function J(t)
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This yield
Py ()Y
I(t) 21(0)E (— ),Vr >0 (19)
Y\ AB() — (1 — )lul
where the time component is r. This illustrates that for any t > 0, J(¢) is positive. O

Positive invariant regions

Theorem 2 The diabetes fractional order model have distinct solution and constrained in R..
Proof System given in (7) is investigated with positive solution given as follows:

FEMDPIG(1)] 6o = + 8] = 0, (20)

FEM y¥an yBG?

o DI®l=o =7 20, (21)
gFMD;z/’nﬁ(t)hS:O =0, (22)
5FMD§”’"a(t)|a:o =0, (23)

SMDY () l7=0 =yiet(Gy — G) = 0. (24)

If (G(0),1(0), 8(0),®(0),](0)) € Ri, so that the solution must be from hyperplane. The domain RS+ is a positive
invariant with non-negative orthant because the vector field is enclosed with each hyperplane. O

Existence and uniqueness analysis

The most crucial application of non-linear functional analysis is the use of fixed point theorems to demonstrate
the existence of any non-linear system. Using fixed point contractions, non-linear functional analysis shows
the point at which every given non-linear system exists. Fixed point mappings that are defined in Banach space
ensure thorough investigation of the existence of unique solutions. The examined model (7) has at least one
solution in [0, T]according to a fixed point mapping theorem?’. Consider the system (7) as

FFM V1 8IG -
DG =w — bG — §i] = G(t,G(1)),
0 . w aG+1+ ] (t, G(1)

2
FEM V-0 vBG 7

D/ '] = —ul =1(t,1(t)),
0 t ot G2 2 (&, 1(1))

6Dl pﬁ(l—ﬁ> Bt ), (25)

o _
gFMD;ﬂJ]a :pia(l — ;) =a(t,a(t)),

gFMD;//,n] = —y0(G — Gp) — wi] =Jt,J ().

The following is a reformulation of (25) in the form of a Fractal-Fractional integral for the Mittag-Leftler kernel
as expressed in (6).

G(1) =G(0) + %Gu, G(t) + m / (t— o)V 'G5, G(s))ds = Ay + Ay,
1) =10) + %Hum) + m / (t — V11 (5, 1(6))ds = By + By,
B(t) =B(0) + %B(t,ﬂ(t)) + wa) (t—9)"'¢"7B(s. B(s))ds = C1 + Cy,
a(t) =a(0) + %&(t,a(ﬂ) + W/ (t— )V ¢! a(s,a(s))ds = Dy + Dy,
J(t) =J(0) + %i(u(m + W / (t =)V " (s,J(s)ds = Ey + Es,

(26)

Scientific Reports |

(2024) 14:8058 | https://doi.org/10.1038/s41598-024-58132-5 nature portfolio



www.nature.com/scientificreports/

where
=am+ﬁgé%§20¢6m» Ay = E@ﬁﬂﬁ/(—swll”mgﬂﬁmg
Blzlm)+3ﬁ%i£g§:ihﬂlu», B, = XE@SFGB}/( t— o)V (s, 1(5))dg
q=mm+ﬁgé%§jﬂmﬂmx (b=2a%%@3 u—;W*ﬂﬂﬂ;mwm; (27)
D1=aw>+fﬁ%i£3§:1&a¢uox D, = ZE@SFGB)/(t‘5°W1 a(g,a())ds
&=H®+Qgé%§:5@ﬂm, E; = Eﬁﬁﬁﬁl/a—gwl (s, T (9))dg

We prove the primary component of governing Eq. (26), M (A1, By, C1, D1, Ey) as contraction maps and
N(A3, By, C3, Dy, E;) as continuous compact integral parts using Krasnoselski’s fixed point theorem.

Theorem 3 The non-linear map M(Ay,B1,C1,D1,E1) 1 [0,T] x R xR — R given in (27) ensures Lipschitz
contractive condition for constants P, Pg, Pc, Pp, Pg > 0.

Proof Consider the operator M(Ay, B, C1, Dy, Ep) : [0, T] x R x R — R® defined on a fully normed space.
Where the norm is

(G, 1, B, 0, DIl = max G +I(t) + Bt) +a®) +T®OI, G, LB,a,] €[0,T] (28)

(i) Firstly, we will show that M (A, B, Cy, Dy, E;) is a contraction map. For G(t) and G(t), we have

IAG.L oo (®) = AG.L B DO =l = bG = —=— +&n—whwc—aG+l+&nn
=] - b(G—G) — G+1“ &l (29)
sw+aG+ﬂMG—mn
<P4II(G - G|l

where P4 = ||b + |. Using this approach, we have

aG—Hl

IB(G, T, B, e, ))(t) — B(G,1, B>, D] <PB||(1—I)||
IC(G, I, B, ) (1) = C(G, I, B,a, (1) < Pell(B — )
ID(G, L, B, ))(t) = D(G, 1, B, &, (D) < Ppli(e — )
1E(G, L B,a, N() — E(G, L B, ., ()| < PellJ — DI

where Pg = ||ull, Pc = llp(1 — %) I, Pp = ||Pi<1 - %) l, PE = || 4;|| This implies that, for the operator
M(G, I, B,a,]), we have

n(l =yt

AB(Y) te[O’JI‘]I(G LBa.)®) — (GLA &N

IM(G, I, B,a,]) — M(G, 1, B,&,))Il =

(1 —y)tn! »
s—jaﬁ—wmmﬁmmo (G.LB.a. D) (30)
gm—wwﬂp

= AB(®Y)

where P = max[Py, Pg, Pc, Pp, Pg] < 1is a Lipschitz constant. This implies M(A, B, C, D, E) is a non-
expansive operator.

(ii) Now we will show that N (A3, B;, C3, Dy, E3) is continuously compact. The absolute modulus of all posi-
tively bounded continuous operators A, B, C, D, E specified in (27) given by the non-zero positive con-
stants g4, £8, £¢> £D> £F> Na, N, R, Np, Ng meeting the following bounded-ness inequalities, illustrates
the compactness of the operator N (A3, B2, Cy, D;, E»).
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At G)| < pallGll 4 Ra
[B(t, DI < psllIll + Xp
ICE Bl = pcliBll +Rc (31)
ID(t, )| < ppllall +Rp
[E(t, DI < pellJIl + R
Suppose that x is a closed subset of Z as
x ={(A,B,C,D,E) € Z/||A,B,C,D,E| < A, A > 0} (32)

For (A,B,C,D,E) € x, we find

A2(t,G)| = m )V ITA(s, G(6))ds |

T
te[o ’JTJ AB(Y)T'(¥)

<’V[7"/ (T — )V A, Gl9))dg| -
TABW)T(Y) Jo

¥

S F—
AB(Y)I(¥)
Similarly, we find

AN + R4

¥
1B2(t, DIl < m&oBA + Rp
v
GBI < mé’ac/\ +Re
¥
ID2(t, )|l < WS’JDA +8p
v
IE2(5, DIl < W&OEA + Ng
proceeding this process, we find the maximum norm of|| E (A,, B2, C;, D3, E>) || as,
1E(A2, B2, C2, D2, Ex) || < {[9a + 9B+ 0c + 9D + 9EIA + 84 +Rp + Ve +R8p + R} =& (34)
where & is a positive constant. Therefore,
IE(A2, B2, C3, Do, B))|| <& = & (35)

is a uniformly bounded operator. Now we will prove that E is equi-continuous for £, < ¢, € [0, T]. For
this purpose, we have for t, < t, € [0, T]

[A2(t2, G) — Az (11, G)| ml/ (t— )V ' TA(s, G(s))ds

i <t — )V TA(s, G(6))ds |

- ¥n

T AB(W)T (%)
< PAN + Ry [tw,n _ txl/,n]
TAB(W)T (y) L2 !

Similarly,

t}’ Ix (36)
{ t—)V e — | (t— )V e g [ (A +Ra)
0

AR
[Ba(t2,1) = Ba(tr, DI = e [ — o]
g R
ICalt2, B) — Caltr, )] = Agsces [ — o),

IDa(t2,@) = Da(tr @) < sty [ — o),

[Baltn,]) — Ea(tn, )] < A3Ei [ef7 — 7).

Since t, — t;is independent of (G, I, 8, &, J). This implies that
|E(A2, By, C3, Dy, E3) (t2) — E(A2, By, C3, Dy, E2)(t1) || — 0 (37)

= E(Ay, By, G, Dy, E») is a completely continuous, equi-continuous operator. = E(A», B;, Cy, Dy, E)
is relatively compact by Arzela’s theorem. As a result, the Krasnoselski theorem follows, which states that
the contraction and continuity of the operators M and N ensure the existence of a single unique solution.

O
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Theorem 4 The model (7) has a unique solution if

¥
——P<1
AB(WY)I ()
where P = max{Py4, Pg, Pc, Pp, Pg}.

Proof Establish an operator H =

(Hi, Hy, H3, Hy, Hs) : Z — Z utilizing (31) as:

Pg| <

Pp| <

(39)
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(41)

(42)

(43)
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For(G,1,B8,2,]), (G, I, B,a,]) € Z, and utilizing (39) we have,
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H, (G, 1, B,a,])(t) — Hy(G, I, B, e, ) (t 1-—
|1 H2( B,a,])(t) 2( B Ol])()”- < AB(Y) AB(W)F(@&)
o1 5 e (1T e )
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Therefore,

— )t N e

. n(1
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D

The contraction map H inherits the features of Schauder’s and Krasnoselski’s theorems and confirms our sug-

gested model’s unique fixed point solution.

O
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Remark 1 The derived unique solution is attractive

e if the zero solution (G, I, 8, «,J)(t) = 0 such that
G LB, . ) <&, implies that  lim (G, L, B, e, ])(t) =0 (44)
e if the trivial solution ¢(t) = 0 such that

1Zoll < &= lim z5 = 0.
t—00

Equilibrium points analysis
The system given in (7) is solved for equilibria. we have

w
E =<E’0’0’ 0, 0) (45)
o+ bviy;G —(wviyi + 8iviviG
E, :(u,o,o,w, (@viyi + 8iviyi ”) (46)
bui + 8iviyi bui + 8;viy;

Stability analysis
Global stability is analyzed for the proposed system as follows.

Lemma1 Leth € RT represents the continuous function for which anyt > to,

h(t) B N EEmuan

M py (h(t) — h* — h*log
h* € RT,Va € (0,1).
First derivative of Lyapunov
Lyapunov function for the endemic, {G, I, 8,«,]}, L < 0is the endemic equilibrium points E*.

Theorem 5 The endemic equilibria E* for the model are globally asymptotically stable, If the reproductive number
Ro > 1

Proof Suppose that the Volterra-type Lyapunov function as:

G* I* *

M =Ci(G—-G"— G*logE) +CI-TI* —I*logT) +C3(8—B* — ,B*log%)
o* I (48)

+Cy(a — a* — a*log;) +Cs(J —J* —J*log 7)

Where C;,i = 1,2, 3,4, 5are positive constants will be considered later. Then putting Eq. (48) into main system
and using Lemma (3.1).

G — G* I—TI* _ px
EEM [y g §C1< . )gFMD;//,ﬂG+C2< . )gFMth,nI+C3(.3 ﬁﬂ >OFFMD;//J7'B
(49)
—o* _T*
+C4(a aot )gFMD,w’ntx-f-Cs(] ]] )gFMD;/""]

After the substituting the values of the derivative derivatives, we have.

FFM py¥r1 e 4 I[-I*\ yBG* B—B"
o Dy M§C1( )(w bG aG+1+5z])+C2< I >(e+G2 ul) + C3 5

G
X<pﬁ(1 - 5)) +c4(°‘_“ )(pia(l - 5)>+c5(]_’ )(—yia(G—Gt) — )
v o Vi J

ReplacingG =G —-G*I=1—-1I* =B — B*,a = a — a*,] =] — J*, we can have the following

*

(50)
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FEM ot G-G*\ . . 8I-ING-G P I-r*
IEM ) Mscl( )(a) bG= G = o Gy O ]))+Cz( - )

Y- GGy : p— 8" NS
X( e+ (G- G _“(I_I))JFCS( 5 )(P(ﬂ—ﬂ)(l—f))
a—a* . (a *) J—J* )
+C4< ” )(pi(a—a)(l ” ))+Cs< )(—y,»oe((G—G)_G[)

J
—wiJ =T)

Now letC; = C; = C3 = C4 = Cs = 1. We can organize the above as follows

* G — G*)? 8(I — I*)(G — G*)? G* G*
FEMpUnr <~ St - 8i] — 8T — Si—] + 8i—J*
o T A =wTmes G Gl@—anG-Gntn Mool ol +ag]
y(B — B)(G — G*)? lyB=89(G = G*)*1I* (I —1%)? (B—B*)? B-p"°
+ ) " —u +p —-pP
e+ (G—G¥) le+ (G — GH2I I B VB
2 _ ¥)3 *
+pi @ aa C pi @ V‘Z - YiG + G + yiaGy + 10" G — yia*G* — yi" Gy + yiaG]7
WJF T T I T J—7J?
—viaG T_ViaGt] — via G] +wxG7+%a GtT—Mz 7
(52)
after simplification, we get
FEMpVip <@ — (53)
where
G* y(B— B*)(G — G*)? (B — B*)? (@ —a*)?
Q= §i 8i—J* ;
w+1]+1G]+ e+ (G — G2 +p B + pi Ot
I Ik I &Y
+yiaG* + y;aGy + yia*G + )/,uGT + )/iOl*G*T + yia*GtT
and
(G G*)? 8(I—I*)(G — G*)? [y (B — B*)(G — G*)*]I*
Y =w— i 8 —
a) G + G + Gl —a*)(G—-G*)+1) + 8T+ 5 ]+ [e+ (G — G*)2I
I —1%)?2 _ pB*\3 o —a*)3 * *
/L( ) +p(ﬂ i +Pi( ) +)’iO‘G+7/i05*G*+Via*Gt+Vi“G*L+ViaGtL
I vB Vil ] i
J* J—J9?
+)’ia*G7 + /LiT
(55)
it is concluded that if @ < ¥ this yields gFMD‘/f "M < 0Ohowever when G = G*,I = I*, 8 = B*,a = a*,] = J*
s0Q— % =0,FMpY = O
Second derivative of Lyapunov
FEM w n FFM y¥n FFM ¥
G D'l D/
EEM [y EEM g < > G+ < i > o < 5)
+ <1+ )FFMD'//’I[FFMD‘PUG]
(56)

+

1+ >FFMD¢fn[gFMD¢nI]+( :3*> FMDwn[FFMDwnﬂ]

)
)FFMD‘/f n[FFMDwn 1+ (1+]7) FMD;//JI[gFMD;//JI]]

N‘N

+(1+

< \// ¢'
(e (),

<

(

Q\Q

where
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FFM W1 [FEM V> FFM V> FFM V> @
FEMpY ISP DY G = — b(E™ DY G) + 8 (] Dt”’])—m
FFM ¥ FFM ¥ FFM V>
FEM [yl FEM o ) 2(3)(7(0 D;""B)G* +2yBGG™D"G) + y ™MD, )G — u(EPMp¥y
0 t 0 t (E+ G2)2 23Y) t
Vi

. . . 2085 ™Dy B)
(I;FMD;PTI[IO:FMD;//nﬁ] zp(gFMD;// ”ﬁ) _ 0 - t

’ ) ) zpu(FFMDV/J?a)
gFMD:/NI[gFMD;/' Mo =pi(gFMD;P "a) _ =Pi%% - t

1

™MD EM DY = = DY )G = via DY G) + vi 6D e Gy — i DY)

(57)
where
® = (@G + )GIE™MDY"G) + s E*™MDY'1)G) — SIG(EPMDY ") G + o (F*M DY G)) (58)
then we have
FFEM ~¥'s1 {FFM V1 G* FFM V1 FEM Vs P
SYDIEM DM <TG, 1 By + (14 ) 1=bGPDY G + 8 DY) — )
I\, @@ ™D BG* + 2yBGE™D] " G) + y (D] ) G*
+{14+ = )¢
i (e + G2)2
v.n
, B* , 208¢™ D} B)
_M(gFMthnI)}+ (1+F p(gFMD;Pﬂﬂ)_ 0 - t
ot 2ol FFMDW»UO[ *
+(1 + —) {p,»(gFMD;”’"a) _2pel DT b (1 + ]—)
o Vi ]
(=7 MDY ") G — yia MDY G) + yi G DY ) Gy — i S DY )
(59)
where
2 2 2 2
FFMD\M G FFMDw,ﬂI FFMDIWJ FFMDWJ?
N(G.1,B,a,)) = 0 t G+ [ 2 t r+ 0 ;B B* + 0 P o o
G I B o
FEM ¥\ 2
Dy
=+ 0 t ]*
(60)

now replacing gFMD;#’"G, gFMD;//’"I, gFMD;”’"ﬁ,gFMD,w’”a

proposed model (7), we can get

,EEMDY1T with their respective formula from the

SEMDY M DM < Wy 4 W, (61)
W;: represents all positive terms
W,: represents all positive terms So that
o IfW; > W, then FFMDY[FEMDIp <
o IfW, < W,then FFMDY[FEMDIp < o
o IfW, = W, then MDY FEMDIT I = o

Computational analysis with fractal fractional operator
In this section, By using Mittag-Leffler Kernel for diabetes model given in (7), we get the simplist form as follows.

FEMpYIG =G, (t, G, I, B,at, )
FEMpIT =1, (t, G, I, By e, ])
FEMDI G =By (t, G, 1, B0, ]) (62)
FEMPIy —a) (1, G, 1, B, ])
SEMDY] =)y (t, G, L, B )

where
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8IG
Gi1(t,G, L B,a,]) =w — bG — G+ 1 + 8]
vBG?
LG LB o)) =i —ul

Bt G, LB, ]) =pﬂ<1 - é)

a1 (G, 1, By, ) :p,-a<1 - 3)

Vi
(G LB o)) =— vie(G — Gp) — wi
With Mittag-Leffler kernel applying fractal-fractional integral , we get

G(ty + 1) =G(0) + TG (ty, Gty), I(ty), B(ty), alty), I (tp))

AB(1//) '
fg+1
1-n _ Y—1
+AB(¢)F(¢) Z/ Gi(t,G, LB, o, NG " (tp+1 — )V dE
I 'ﬁ
(Rﬂ"‘l) I(O)+ AB(]&) <,0 Il(tzp G(t(p) I(tgo) ﬂ(tw) O‘(tw) ](t(ﬂ))
; /tqH . -1
—_ Lt G Bt ) (g — p
W) ; ) i€ Brot, NSt — )L
,B(ttp +1) =B(0) + AB(gZI) ” ﬂl(tw,G(t(p) I(tfﬂ) IB(%)»O‘(%) ](tw))

tg+1
1-n _ v—1
+AB(¢)F(]//)Z/ ﬁl(t’G)Lﬁ,C(,])C (t<ﬂ+1 g) d{

alty +1) =a(0) + oy (ty, G(ty), 1(ty), Blty), a(ty), ] (1))

AB(w) '

14 ¥ lg+1 - ]/I_ld
+AM¢)F(¢);A a1t G LB, a, DT M (tpr1 — §)7 7 dE

—V
AB(Y) '

fq+1
1-n o1
+AB(1//)F(1[I) Z/ L1(t, G, 1, B,a,])¢ (tp+1—¢) dc

J(t, +1) ](0)+

T (tg, G(t), I(ty), B(te), ac(ty), ] ()

Recall the Newton Polynomial:
Qt, G, LB, ]) ~Q(typ—2, Gyp—2,Ip—2, Bp—2, Ap—2, Jp— 2)+ [Q(t(p 1> G(p 1 Ip—1, Bp—1,2p—1,Jp—1)

—Q(tp—2, Gp—2,Ip—2, Bp—2, 0tp—2,Jo—2)1(§ — ty—2) + AL 2[Q(t<p Gy, Iy, Byr 0> T )

—2Q(t-1,Gp—1,1p-15 IB(p—l)aw—l:](p—l) + Q(t(p—Z» Gyp—2,1p—2, ,3¢_2,a¢_2,](p_2)]
x (& — t(p—z)(f —tp—1)

Replacing the Newton polynomial (69) into Egs. (64)-(68), we have

(63)

(64)

(65)

(67)
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1= 1y

G(tw + 1) =G(0) + AB(Y) ” Gl(tw’G(t‘/’)’I(t¢)’ﬂ(tw)’a(t¢)>](t¢))
1// : 2 2 2 2 2.,1-7 lg+1 v-1

BT 42 [9-2, 492 od-2 [4-2)¢1- e
TABGT ) ;G‘“ﬁ’c A1 BT I T /tq (tyi1 — OV dg
+LZ¢: L{tl_nG (t Ga—1 a1 ,Bq_l YLt et _ 4l

ABT(y) g Ap a7 e 2l e 4-2
x Gy (tg-2, quz,quz,ﬂqu,aqu,]qu)} /tq+1 (€ = ty2) (b1 — é,)1/;—1114. n L

fq AB(Y)HT(¥)
¢
X Z ﬁ{t;_”Gl(tq,Gq)Iq,ﬂq)oﬂ,ﬂ) _ Zt;:?Gl(tq,l, GI~1, 1471, a1 a1 a1y
q=2
tg+1
TGt G212, 812,082, 1120} [ (6 = 1y 0) (€ = g D) lgn — ¥
t
q (70)
— 1- 1ﬁ 1—-n
I(tgo + 1) —1(0) + AB(]//) t(p Il(tW’G(t(ﬂ)’l(tgo)a/g(tw);a(t(g),](tw))
v Ld N ) ) 5 5 lon tgt1 -

IV TARY=RY 42 [9-2, g9-2 a2 [4-2)¢1- e
+AB(¢)F(1//) ;Il(tqiz’c AT BT QT )tqu/tq (tpr1 — OV d¢
+L§:L{tl—nl (l’ Gq—l Iq—l ﬂq_l oﬂ_l ]q—l) _ tl_,]

AB(I//)F(][I) p At q—1 1Ug-1> > 5 > 5 92

(71)
I (g, G172, 1972, g172, 0172, J172)) /tq+1 € =ty D) tr — g)w’ldgL
fq AB(Y)HT'(¥)

¢
> ZAltz {63711 (tg, G119, B, 0, ) — 2, 1 (tg—1, G171, 1971, B171, 7, J471)

q=2

lg+1
T (12 GI2 2, 812,082 1) [ (6 — 1 0) (& =ty 1) g1 — )Y N
2]
-y .,
B(ty, +1) =B(0) + ABY) t, "Bty Glty), I(ty), Blty), alty), ] ()
L4 3 2 192 2 g2 gq-2y, 1y [ -

BT 92 [9-2, g9-2 -2 [4-2)¢1- e
+AB(W)F(1//) qzz:zﬁl(tqu,G AT BT e )tqu/tq (tpr1 — OV d¢
+Lii{tl—ﬁﬂ (t Gqfl qul ,qul 0lq71 ]qil)tl_n

BT () 2 Aot A1l GERITL BTl 2
X i (tg—2, G172, 1172, g172 72 J4=2)) /tq+1 € =t ts — g)‘b’ld{L

71q AB(Y)T(¥)

[

X E ﬁ{t;_”fﬁ(tq,qulq,ﬁqﬂq,ﬂ) _ Zt;:?,gl(tq—l,Gq_l,Iq_l,ﬂq_l,aq_l,]q_l)
q=2
g1
+t;:§ﬁ1(’q—2>GHJH»ﬁq_z,oﬂ‘z,]‘f‘z)}/ U~ )€ byt — O
t
q (72)
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alty + 1) =a(0) + v ty "1 (tg, G(ty), I(ty), Blty), a(ty), ] (1))

AB(«/r) ¢
RN S Zal(tq 2. G172, 1972, 12,2, 11211 /tq“(twﬂ — oyl
AB(Y)T () b

l[/ (4
+7Z—{tq Torn(tg—1, G171, 1970, p171 @871y )

AB(IT(¥) o=

tg+1 v
q—2 7q—2 q-2 ,q—2 19-2 _ B v v
xa(tg—2, G175, 1975, g7, 0172, ] )}/zq (¢ — tg—2)(tpg1 — ©) dgAB(g[/)r‘(l//)
¢
X Zﬁ{ 1= Tay (tg, G1,19, 1, a1, J7) _th ?Oll(tqq,Gq_l,Iq_l,ﬁq_l)oﬂ_l,]q—l)
q=2
tg+1
-l-l‘ql:gon(tq—z,GQ—Z)]G—Z,ﬁq—Z,aq—Z)]q—Z)} / ! (& —t3-2) (€ — tg—1)(tp+1 — oOVlde
t
q (73)
J(ty +1) =J(0) + AB(IZ/) v ]l(t(ﬂiG(t(p) I(ty), B(ty), a(ty), ] (ty))
+LZh(t 2 G2 1172, g1, 0172, 117 2)t g/tqﬂ(tgoﬂ—f)w*ld(
AB(Y)T'(¥) T :
4 g 1-p GI-1 14-1 ga—1 oa—1 ja—1y=n
+mgﬂ“ﬂz—1h%—b SLN AN LY L U
fg+1 " (74)
I B2, 172, 1 - CeWlge Y
XJ1(tg—2, G175, 1177, 17,0174, ] )}/z (€ —tg-2)(tyy1 — ) dCAB(l/,)r(l/,)
9
XZZAtZ{tl (g G, 19, B, @, 1) — 26,11 (tg—1, G, 197E, BT 7, gAY
q=2

g2 6T 1, 81202, 1) [ e~ ty it — 0V e
fq

Calculations for the integral in the Eqgs. (70)-(74) are:

tq+1
/ (tps1 — OV = (¢ ((0—g+1)¥ — (o —Y) (75)
t,

q

(anvr L _{(p—q+ DV (p—q+3+2¢)
v ¥ »—q 76)

—(p— V(9 —q+3+3y)}

tg+1
/q (€ — tg-2)(tgpr — OV NdE =
t,

q

(At)ilf+2
YW+ D +2)
+GY +10)(9 — q) + 292 + 9% +12) — (9 — @)V

x2(p — 9> + Y + 10)(¢ — q) + 6¥* + 18y + 12)}
77)

fa+1 14 2
/ (€ —tg-2)( = tg-D(tp1 — OV~ {og—q+D"C0e -9
t

q

Hence, we get finally
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Numerical simulation and discussion

In this section, the numerical simulation of the proposed method using the mittage-leffler kernel for the diabetes

model is discussed. The system’s parameter values and initial conditions® are listed in table 1 that is given below
The effectiveness of the obtained theoretical outcomes is established by using advanced techniques. The

mathematical analysis of diabetes with hormonal effects is analysed through simulation in Figs. 1, 2, 3 at different

Parameters | Biological interpretation Values | Units

1) Production rate of glucose for G = 0 864 mg/(dl - d)

b Glucose clearance rate independent of insulin 1.44 d!

8 Glucose uptake rate induced by insulin 0.85 ml/(mU - d)

8; Glucose production rate induced by glucagon 1350 d-!

y The maximum insulin secretory rate by S-cell 432 mU/(ml - d * mg)

Vi The maximum glucagon secretory rate by a-cell | 0.05 1/(mg - d)

e Inflection point for sigmoid 20000 | mg?/di1?

n Insulin clearance rate for complete body 432 d-!

Wi Glucagon clearance rate for complete body 0.3 d!

v Environmental capacity of -cell mass 900 mg

v a-cell mass environmental capacity 300 mg

o Half saturation inverse as a constant 0.01 mg

Gy Glycaemia minimum level 80 mg/dl
Table 1. Parameter values and biological interpretation.
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Figure 1. Simulation of the diabetes model compartments at initial condition (120, 07, 10, 30, 0.16).

initial conditions. In Figs. 1, 2, 3, solutions for all compartments are shown with different fractional order val-
ues at a fixed fractal dimension of the system. Matlab coding is employed to find the numerical simulation for
the fractional-order diabetes model. A range of values for ¥ (¥ = 0.85,0.90, 0.95, 1) are shown to illustrate the
dynamic effects. Interestingly, glucose, 8 mass, and o mass decrease while insulin and glucagon increase when
taking into account a fractional order. Still, there is a marked drop in gulcagon and insulin as v gets closer to 1.
The findings highlight how v affects the system’s dynamics. The normal glucose concentration level in human
blood is in a narrow range (80-180 mg/dl). In Fig. 1, glucose level, insulin level, and o — cell mass with low glu-
cose concentrations in people with diabetes decrease by decreasing fractional values, while the 8— cell which
produces insulin and glucagon, starts rising by decreasing fractional values. Similar behavior can be seen in Fig 2
with minor change in the initial condition. Similarly, by changing the initial condition again as a third case to be
considered to see its behavior within the bounded domain. It is observed that glucose levels decrease due to the
rise in insulin by B— cells, which will be helpful for diabetes patients. Diabetes patients will approach a stable
position due to a rise in insulin level and maintain it after a certain period. It also demonstrates that when there
is hypoglycemia, the a-cells secrete glucagon to keep the blood sugar levels within the normal range. This finding
highlights the value of fractional calculus in explaining the intricate and persistent behaviour of the model and
reveals the system’s innate stability and resilience. As such, the fractional dimension v becomes crucial in the
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Figure 2. Simulation of the diabetes model compartments at initial condition (120, 10, 05, 03, 0.16).

100

50

300

diabetes mellitus model simulation tests carried out in this work. It predicts what should happen in the future
through this research and how we will be able to reduce the spread of diabetes in society. The fractal-fractional
method provides reliable findings for all compartments according to steady state at non-integer order derivatives
as compared to classical derivatives.

Conclusion

In this work, the fractional order diabetes model is studied to impact inulin and glucagons for administrations
of gulose in the human body. In this regard, qualitative and quantitative properties of the analysis, such as global
stability, uniqueness of the solution, and positivity with fixed point theory, result. Results through figures are
derived with the help of a fractal fractional operator utilising the Mittag-Leffler kernel, which provides us with
continuous monitoring of the glucose-insulin relationship in the human body at different fractional order val-
ues. It is observed that maintaining the glucose level within the usual range is the major responsibility of the g
and « cells in the pancreas to produce the hormones insulin and glucagon, respectively. However, diabetes can
result from B-cell and a-cell malfunction. The research on how glucose, insulin, 8-cells, a-cells, and glucagon
interact has been avoided. These results play a key role in the study of the glucose-insulin-glucagon relationship,
which is helpful for close-loop design (artificial pancreas) to control type 1 diabetes. A closed-loop design for
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Figure 3. Simulation of the diabetes model compartments at initial condition (220, 15, 05, 03, 0.16).

a glucose-insulin pump plays an important role in overcoming the risk of hypoglycemia and hyperglycemia in
humans. Research in this area will advance as a result of this method’s improved understanding of the dynam-
ics and behaviour of diabetes mellitus. In the future, we will analyse the prediction model for treating and
controlling diabetes in society with novel and modified fractional operators. Using non-local and non-singular
kernel operators, such as Caputo-Fabrizio and ABC differential (integral) operators, can better capture empiri-
cal events than traditional mathematical operators, leading to deeper insights into the diabetes mellitus model.
These fractional operators can be used to represent the diabetes mellitus disease, and their relative advantages
and disadvantages can be evaluated. It would therefore be beneficial for aspiring young researchers to compare
their findings with the findings of this study.

Data availibility

All data generated or analysed during this study are included in this Manuscript.
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