
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8438  | https://doi.org/10.1038/s41598-024-58125-4

www.nature.com/scientificreports

Unveiling the potential of diffusion 
model‑based framework 
with transformer for hyperspectral 
image classification
Neetu Sigger 1, Quoc‑Tuan Vien 2, Sinh Van Nguyen 3, Gianluca Tozzi 4 & Tuan Thanh Nguyen 5*

Hyperspectral imaging has gained popularity for analysing remotely sensed images in various fields 
such as agriculture and medical. However, existing models face challenges in dealing with the complex 
relationships and characteristics of spectral–spatial data due to the multi‑band nature and data 
redundancy of hyperspectral data. To address this limitation, we propose a novel approach called 
DiffSpectralNet, which combines diffusion and transformer techniques. The diffusion method is able 
extract diverse and meaningful spectral–spatial features, leading to improvement in HSI classification. 
Our approach involves training an unsupervised learning framework based on the diffusion model to 
extract high‑level and low‑level spectral–spatial features, followed by the extraction of intermediate 
hierarchical features from different timestamps for classification using a pre‑trained denoising U‑Net. 
Finally, we employ a supervised transformer‑based classifier to perform the HSI classification. We 
conduct comprehensive experiments on three publicly available datasets to validate our approach. 
The results demonstrate that our framework significantly outperforms existing approaches, achieving 
state‑of‑the‑art performance. The stability and reliability of our approach are demonstrated across 
various classes in all datasets.

Hyperspectral images (HSI) are now being captured more effectively by imaging spectrometers aboard satellites 
and aircraft. Unlike regular optical images with just three channels, Red, Green, Blue, each pixel of HSI contains 
abundant and continuous spectral information. This allows for the identification of complicated spectral char-
acteristics of subjects that might be unnoticed. HSI is extensively used in various earth remote sensing applica-
tions, including land use and land cover  classification1, precision  agriculture2,3, object  detection4, tree species 
 classification5, brain cancer  detection6, and more.

The challenges of classification in HSI arise from their high dimensionality, strong correlations between adja-
cent bands, a nonlinear data structure, and limited training  samples7. To address these challenges and improve 
classification accuracy, researchers have proposed several  methods8. While traditional approaches like Maxi-
mum Likelihood Classification have been foundational, they often face challenges with high-dimensional data 
spaces, known as the curse of  dimensionality9. Initially, spectral information for each pixel was fed into neural 
networks to identify the corresponding  class10. As data dimensionality increased, feature selection and dimen-
sionality reduction became crucial. Techniques like principal component analysis (PCA)11 and support vector 
machine (SVM)12 were often employed to achieve better classification results. However, traditional techniques 
faced difficulties in effectively utilising the spatial–spectral relationships and capturing complex information in 
HSI. By considering the neighbouring pixels along with their corresponding spectral values, we can gain valu-
able insights into their underlying structures and extract meaningful information of different materials which 
ultimately enhance accurate analysis.

Convolutional neural networks (CNNs)13,14 have better feature representation and high accuracy in clas-
sification and have demonstrated promising performance in HSI classification. The CNNs can automatically 
extract hierarchical features from  HSI15. As datasets become larger, deeper architectures like residual networks 
(ResNets)16 were introduced, specifically adapted to capture complex patterns in HSI data for  classification17. 
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Advanced architectures such as autoencoders were later developed to extract a compressed representation of 
HSI data for classification  purposes18. Attention mechanisms were integrated into CNN architectures to enhance 
the accuracy of classification by weighing the importance of different spectral  bands19. Furthermore, advance-
ments in the CNNs led to the introduction of novel pooling and unpooling mechanisms that better preserve 
spatial information during  classification20. In recent years, the CNNs have been shown to be effective in HSI 
classification; however, there are still several limitations. For instance, the convolutional operations handle a 
local neighborhood. Hence, the number of layers and kernel size restrict the CNNs’ receptive field, making it less 
effective at capturing long-range dependencies in input  data21. As a result, learning the long-range dependencies 
of the HSI, often consisting of hundreds of spectral bands, is challenging.

Recurrent neural network (RNNs)22 are capable of capturing the spatial–spectral relationship from long-range 
sequence data, they face challenges such as vanishing gradients and dependency on the order of spectral bands. 
 Transformers23, originally designed for natural language processing (NLP), have shown promising results when 
integrated into HSI classification. They effectively capture long-range dependencies in hyperspectral  data24,25. 
Here, CNN is a vector-based method that considers the inputs as collection of pixel  vectors26, and thus it can 
lead to information loss when processing with hyperspectral pixel  vectors27. In the  work28, a multispectral image 
classification framework was introduced to overcome the limitations of the CNNs in pixel-wise remote sens-
ing classification and spectral sequence representation and, integrates fully connected (FC) layers, CNNs, and 
transformers. Unlike the classic transformers that focus on band-wise representations,  SpectralFormer24 is an 
example of such a framework that captures spectrally local sequence information, creates group-wise spectral 
embeddings, and introduces cross-layer skip connections to retain crucial information across layers through 
adaptive residual fusion. Another novel model, namely  SS1DSwin29, is based on transformers and implements 
the network architecture of swin  transformer30. It was shown to effectively capture reliable spatial and spectral 
dependencies for HSI classification.

Effectively learning rich representations and addressing the complexities of spectral–spatial relations in 
high-dimensional data are crucial for achieving optimal HSI classification results. However, transformer-based 
methods face challenges in directly capturing reliable and informative spatial–spectral representations available 
in HSI. They generally do not fully leverage spatial  information31 and have limitations in extracting fine-grained 
local feature  patterns32. Recently, the denoising diffusion probabilistic model (DDPM)33 has emerged as a ground-
breaking class of generative models, adept at modeling complex relationships and effectively learning high-level 
and low-level visual features.  SpectralDiff34 leveraged a diffusion model to extract potent features. However, it 
employed a pixel-wise classification approach, which limits the ability to effectively capture and identify distinct 
spatial–spectral relationships in HSI.

To overcome these challenges, we have thoroughly re-evaluated the process of extracting features of the HSI 
data from different perspectives. Consequently, we have developed a novel HSI classification method that incor-
porates diffusion and transformer techniques leveraging their respective advantages. The features’ representation 
learned from the diffusion models have been demonstrated to be highly effective in various discriminating tasks 
with impressive performance like semantic  segmentation35, object  detection36, and face  generation37.

This paper presents a novel classification framework called DiffSpectralNet, combining a diffusion-based 
spectral–spatial network with transformers. This diffusion model, a type of generative models, excels in captur-
ing the relationships between spectral and spatial information in HSI data. Deep features are extracted both 
effectively and efficiently to make the most of the spectral–spatial information present in the data. The main 
stages of the framework are summarized as follows: first, we ultilise forward and reverse diffusion processes to 
learn high-level and low-level features from HSI. Second, to make effective use of the extensive timestamps-
wise features, we extract intermediate hierarchical features from the denoising U-Net at different timestamps. 
Subsequently, we employ a proposed supervised transformer-based classifier for performing HSI classification.

We examine the effectiveness of the proposed method conducted on three widely known datasets that their 
download link can be found in the Data availability section. Our results clearly demonstrate that the proposed 
method significantly improves classification results and outperforms other advanced HSI classification meth-
ods. Moreover, this study also opens the way for further investigations into the potential of diffusion models in 
learning high- and low-level spectral–spatial features with significant flexibility in HSI. Ongoing research will 
likely enhance the application of diffusion models in processing complex, high-dimensional hyperspectral data, 
opening up promising prospects for diverse applications.

Results
In this section, we begin by providing an introduction to three different experimental datasets for HSI. After 
that, we delve into the details of the experimental results that have been produced by our proposed model. In 
addition, we conduct a thorough analysis of parameters of the framework to gain a better understanding of their 
significance and implications.

Dataset
Three well-known available datasets, Indian Pines, Pavia University and Salinas Scene, were used to examine the 
classification performance. Number of categories and their correspondent samples were shown in Table 1. First, 
the Indian Pines dataset collected in 1992 using the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 
Sensor, covering the northwestern region of Indiana in the United States. It consists of 145× 145 pixels with each 
pixel having a spatial resolution of 20 metres (m) and 220 spectral bands in the wavelength range of 400–2500 
nm. The dataset contains labeled pixels with 16 categories. We use 10% of the labeled samples for training and the 
rest for testing. The second HSI dataset, Pavia University, was acquired by the Reflective Optics System Imaging 
Spectrometer (ROSIS) sensor. The ROSIS sensor acquired 103 bands covering the spectral range from 430 to 860 
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nm, and the dataset consists of 610× 340 pixels at GSD of 1.3 m. Moreover, there are 9 land cover classes in the 
dataset. We use 5% of the labeled samples for training and the rest for testing. Lastly, Salinas Scene dataset was 
collected using the AVIRIS sensor and is situated in Salinas Valley, California. The spatial resolution is set at 3.7 
m. and the dataset includes 16 crop types and has been widely utilized in classification. After the exclusion of 20 
bands associated with water vapor and noise, a total of 204 bands remained, resulting in a data size of 512× 217 . 
We use 5% of the labeled samples for training and the rest for testing.

Training process
We used the PyTorch framework to implement and train the DiffSpectralNet model. The training was done on 
a basic hardware setup, which consists of a POWER8NVL production-grade CPU with 128 CPU threads spread 
across 2 sockets for efficient processing. Additionally, four NVIDIA Tesla P100 GPUs were used for enhanced 
graphical computations, each offering a memory of approximately 16 GB.

The diffusion model was optimised using the Adam optimizer and trained for 30, 000 epochs for all datasets. 
We set the learning rate to 1× 10−4 , with a batch size of 128 and a patch size of 32× 32 . Due to hardware 
limitations, we use batch size 64 for the Salinas scene dataset. To determine the amount of spectral information 
preserved in the compressed data, we employed PCA. Given that each dataset presents a distinct number of 
features post-pre-training with the diffusion model, the range of PCA components varies among three datasets. 
The classification model was trained using the Adam optimizer, maintaining the same learning rate of 1× 10−4 
and a batch size of 128 for Indian Pines, Pavia University, and 64 for Salinas Scene. The size of feature patch is 
empirically set as 7 × 7. The number of epochs was set to 300 for Indian Pines and 600 for Pavia University and 
Salinas Scene datasets.

Performance evaluation
We evaluate the performance using three prominent metrics: overall accuracy (OA), average accuracy (AA), and 
Kappa coefficient ( κ ). OA gives a direct insight into general model performance, and AA ensures each class has a 
balanced contribution, especially in imbalanced datasets. On the other hand, κ measures the reliability between 
the ground truth and model predictions.

To demonstrate the effectiveness of our proposed DiffSpectralNet, we compare its classification performance 
with various state-of-the-art approaches, and the following methods were chosen:  DMVL38, similar to our 
proposed model, follows the two-stage algorithms. It performs unsupervised feature extraction followed by 
classification using an SVM classifier.  3DCAE39 is an unsupervised method to learn spectral–spatial features. 
It uses the encoder–decoder backbone with 3D convolution operations, GSSCRC 40 algorithm incorporates 
the cooperative representation classification model and introduces the geodesic distance calculation method 
to select spectral nearest-neighbour information, thereby effectively utilising the neighbour information in 
HSI. This approach facilitates the exploration and utilization of the spatial–spectral neighbourhood structure 
of HSI data for classification.  SS1DSwin29 design reveals local and hierarchical spatial–spectral links through 
two modules: the Groupwise Feature Tokenization Module (GFTM) and the 1DSwin Transformer with Cross-
Block Normalized Connection Module (TCNCM). GFTM processes overlapping cubes and uses multihead self-
attention for spatial–spectral relationships. Meanwhile, TCNCM utilises window-based strategies for spectral 
relationships and cross-block feature fusion.  SpectralFormer24 uses transformers from a sequential perspective for 
classification, learns spectrally local sequence information from neighbouring bands of HSI, yielding group-wise 

Table 1.  Details of Indian Pines, Pavia University, and Salinas Scene Datasets.

Indian Pines Dataset Pavia University Dataset Salinas Scene Dataset

Land cover type Samples Land cover type Samples Land cover type Samples

Alfalfa 46 Asphalt 6631 Brocoli_green_weeds_1 2009

Corn-notill 1428 Meadows 18649 Brocoli_green_weeds_2 3726

Corn-min 830 Gravel 2099 Fallow 1976

Corn 237 Trees 3064 Fallow_rough_plow 1394

Grass/pasture 483 Painted metal sheets 1345 Fallow_smooth 2678

Grass/trees 730 Bare Soil 5029 Stubble 3959

Grass/pasture-mowed 28 Bitumen 1330 Celery 3579

Hay-windrowed 478 Self-Blocking Bricks 3682 Grapes_untrained 11,271

Oats 20 Shadows 947 Soil_vinyard_develop 6203

Soybeans-notill 972 Corn_senesced_green_weeds 3278

Soybeans-min 2455 Lettuce_romaine_4wk 1068

Soybeans-clean 693 Lettuce_romaine_5wk 1927

Wheat 205 Lettuce_romaine_6wk 916

Woods 1265 Lettuce_romaine_7wk 1070

Bldg-grass-tree-drives 386 Vinyard_untrained 7268

Stone-steel towers 93 Vinyard_vertical_trellis 1807

Total 10,349 Total 42,776 Total 54,129
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spectral embeddings. Also, to reduce the possibility of losing valuable information in the layer-wise propagation 
process, a cross-layer skip connection is devised from shallow to deep layers by adaptively learning across layers. 
We conducted experiments on the Salinas dataset, not covered in the  SpectralFormer24, using the same train-
test split ratio employed in our experiments for consistent comparison.  SpectralDiff34 employs an unsupervised 
feature extraction using a spectral–spatial diffusion module. These features are then processed per pixel by the 
supervised attention-based classification module.

It is worth mentioning that we directly used the outcomes reported in the papers of each of these methods. 
Both CNN-based and transformer-based methods produced good classification results.

Based on the analysis of classification results obtained for the Indian Pines, Pavia University, and Salinas Scene 
datasets presented in Table 2, the DiffSpectralNet algorithm proposed in this study shows improved classifica-
tion accuracy for most ground objects when compared to other classification methods. The proposed method 
achieves the best OA, AA, and κ values, with OA reaching 99.06%, 99.74%, and 99.87% on the Indian Pines, Pavia 
University and Salinas Scene datasets, respectively. Visualisation in the Fig. 1 clearly shows DiffSpectralNet out-
performed others. Moreover, we conducted additional statistical analyses using Analysis of Variance (ANOVA) 
and Mann-Whitney U Test, both with a confidence score of 95% . The p value from these tests were lower than 
0.05, indicating that DiffSpectralNet’s performance is significantly different across three measurement metrics. 
All of these results proves that the DiffSpectralNet algorithm efficiently and effectively learns low and high-level 
features using the diffusion model. Additionally, the DiffSpectralNet algorithm leverages the combination of 
spectral and spatial information, enabling it to extract a greater amount of information for classification. There-
fore, the DiffSpectralNet algorithm proposed in this study demonstrates promising potential for improving the 
accurate classification of ground objects.

In addition to the above quantitative metrics, classification maps in the proposed method have been 
produced, as shown in Figs. 2, 3 and 4. Compared with ground truth, the proposed method obtains more 
accurate classification results, which further proves the effectiveness of the proposed method in the classification 
of hyperspectral data.

Figure 2 illustrates the classification results obtained using the DiffSpectralNet and the comparison algorithms 
on the Indian Pines dataset. The map highlights that the algorithm proposed in this study exhibits classification 
performance that closely resembles the actual terrain map of the Indian Pines dataset. The misclassification of 
terrain pixels is observed to be relatively minimal, resulting in a smoother overall effect. Notably, the algorithm 
demonstrates superior performance in classifying Grass-pasture-mowed, Oats, Wheat, and Woods features.

Table 2.  Classification results of different HSIs, and the best result is bolded.

Model

Indian Pines Pavia University Salinas Scene

OA (%) AA (%) κ OA (%) AA (%) κ OA (%) AA (%) κ

DMVL + SVM 78.01 84.98 0.7531 86.96 80.10 0.8246 94.60 94.59 0.9400

3DCAE 92.35 92.04 – 95.39 95.36 - 95.81 97.45 –

GSSCRC 91.33 93.81 0.9013 95.77 94.13 0.9438 95.62 97.30 0.9384

SS1DSwin 89.66 94.13 0.8819 93.04 91.92 0.9068 95.45 97.78 0.9493

SpectralFormer 81.76 87.81 0.7919 91.07 90.20 0.8805 96.27 97.82 0.9585

SpectralDiff 93.15 96.43 0.9217 94.77 93.84 0.9306 98.97 99.46 0.9885

Ours 99.06 98.00 0.9893 99.74 99.18 0.9965 99.87 99.82 0.9986

Figure 1.  The boxplots to visualise the performance of each model using three prominent metrics. Note that, 
there is no published result of 3DCAE on these datasets, therefore it was not included in the visualisation.
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Moving forward, Fig. 3 provides a visual representation of the classification performance of the proposed 
model on the Pavia University dataset. The algorithm exhibited fewer misclassifications in the dataset, resulting 
in a smoother overall effect. Notably, in the classification of the Meadows, Metal sheets, and Bare soil features, 
the performance of the proposed algorithm is superior. This observation highlights the capability of the DiffSpec-
tralNet to extract spectral and spatial information more comprehensively with the usage of the diffusion model.

Figure 4 presents the classification effect maps of the proposed model and the comparison algorithms on the 
Salinas Scene dataset. By observing the classification effect map of the model, it can be concluded that in the 
Brocoli_green_weeds_1, Brocoli_green_weeds_2, Fallow, Soil_vinyard_develop, Lettuce_romaine_4wk, Lettuce_
romaine_5wk, Lettuce_romaine_6wk and Vinyard_vertical_trellis regions, there are fewer misclassified pixels 
of ground features compared with the comparison algorithms, resulting in a smoother overall effect map. This 

Figure 2.  Classification results of on the Indian Pines dataset (a) Original HSI (b) ground truth (c) proposed 
method.

Figure 3.  Classification results of on the Pavia University dataset (a) original HSI (b) ground truth (c) proposed 
method.
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demonstrates that the DiffSpectralNet proposed in this paper can effectively reveal the intrinsic features hidden 
behind a HSI by learning low and high-level features.

For a comprehensive examination of the detailed performance metrics of each class for all three datasets, 
readers are directed to the Supplementary materials provided. In supplementary sections, we thoroughly 
compare our classification performance across various classes against a range of state-of-the-art methodologies 
to demonstrate the stability and reliability of our approach.

Discussion
In this section, we explore further experiments and discussions on the following three aspects to explore the 
optimal classification performance and the application of the proposed model in practical remote sensing 
classification. First, we conduct experiments to discuss how to extract features from the pre-trained diffusion 
model to achieve optimal performance at various Timestamp and Feature index values. Second, we analyse the 
impact of the number of training samples directly affecting the network’s performance. Finally, we examine the 
influence of the quantity of PCA components on the spectral information in HSI datasets.

• Sensitivity analysis of Timestamps and Feature index: In order to analyse the features obtained from the dif-
fusion pre-trained model, we have conducted classification experiments on various Timestamp and Feature 
index values and then recorded the change in the classification performance. Using the DDPM, we monitored 
classification efficacy alterations when Timestamp and Feature Index varied, and the optimal combination of 
Timestamp and Feature Index is essential to ensure accurate outcomes. Table 3 showcases the performance is 
sensative to Timestep and FeatureIndex. For the Indian Pines and Pavia University datasets, there is a certain 
correlation between Timestamp and FeatureIndex. When considering the Timestamp dimension, a decreasing 
trend in classification performance is observed when using features with larger Timestamps, and the optimal 

Figure 4.  Classification results of on the Salinas Scene dataset (a) original HSI (b) ground truth (c) proposed 
method.
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performance generally occurs in smaller Timestamp groups. Considering the FeatureIndex dimension, both 
datasets (Indian Pines and Pavia University) performed better at FeatureIndex 1 than at FeatureIndex 0 and 
2. For Salinas Scene, there are some fluctuations in classification performance for different Timestamp and 
FeatureIndex values but no significant changes.

• Percentage of training samples: It is common knowledge that the number of training samples directly 
affects the performance of the network. To verify this with the proposed DiffSpectralNet, We evaluated the 
training dataset using random proportions ranging from 10 to 100% with increments of 10% , and depict the 
comparative results in Fig. 5a. As expected, the classification accuracy gradually improves with an increase 
in training samples. It is worth noting that OA tends to be stable when the percentage of training samples 
is greater than 50% . However, when the percentage of training samples in the Indian Pines dataset is less 
than 50% , the performance is unsatisfactory may be due to the insufficient number of samples for a proper 
training. Therefore, it is reasonable to extrapolate that DiffSpectralNet is reliable and stable for this task.

• Effect of PCA components on diffusion feature: We investigate the impact of the number of PCA components 
on the compressed spectral data. The data retain more spectral details with more PCA components but at 
the cost of increased computational demand and redundancy. The number of diffusion features varies across 
datasets, influencing the range of PCA components, which varies from D/6 to D/15, where D represents the 
diffusion features in a dataset. The results in Fig. 5b suggest optimal performance with D/8 PCA components.

Methods
In this section, we describe a novel method called DiffSpectralNet that consists of two stages: an unsuper-
vised diffusion process and a supervised classification. The unsupervised diffusion process is derived from the 
DDPM with the purpose to learn spectral–spatial representations effectively. In this process, we extract plenty 
of spectral–spatial features from various time steps t during the reverse diffusion process of DDPM to capture 
the characteristics of different objects in HSI data. Finally, these features are inputted into the supervised clas-
sification model for classification.

Table 3.  The performance of different layer indices and timestamps in the Indian Pines, Pavia University, and 
Salinas Scene. Significant values are in bold.

FeatureIndex Timestamp

Indian Pines Pavia University Salinas Scene

OA (%) AA (%) κ OA (%) AA (%) κ OA (%) AA (%) κ

0

5 98.47 95.37 0.9826 98.94 97.93 0.9860 99.74 99.73 0.9971

10 98.41 96.40 0.9818 99.15 98.68 0.9887 99.87 99.82 0.9985

100 97.92 96.85 0.9762 99.03 98.27 0.9871 99.71 99.67 0.9967

200 97.62 94.45 0.9728 98.63 97.91 0.9818 98.63 97.91 0.9818

400 98.15 96.38 0.9789 92.86 89.98 0.9053 98.29 97.74 0.9809

1

5 99.06 98.00 0.9893 99.74 99.16 0.9965 99.83 99.76 0.9981

10 98.34 96.20 0.9811 99.63 99.09 0.9951 99.76 99.73 0.9973

100 98.40 96.30 0.9817 99.54 99.18 0.9939 99.87 99.81 0.9986

200 98.45 97.48 0.9823 98.79 97.53 0.9839 98.45 97.48 0.9823

400 98.29 96.35 0.9805 92.61 88.75 0.9015 98.06 97.70 0.9784

2

5 98.59 95.17 0.9839 98.52 97.07 0.9803 99.26 99.32 0.9917

10 98.82 94.99 0.9865 97.32 95.29 0.9644 98.95 99.00 0.9883

100 98.01 96.05 0.9773 95.19 91.13 0.9361 98.04 97.98 0.9782

200 96.37 93.26 0.9587 93.54 90.25 0.9139 96.37 93.26 0.9587

400 95.71 92.52 0.9510 86.66 81.28 0.8202 91.84 88.39 0.9089

Figure 5.  Classification accuracy (OA) achieved by the proposed DiffSpectralNet with (a) varying percentages 
of training samples (b) different PCA components on three benchmark datasets.
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Diffusion‑based unsupervised spectral–spatial feature learning
In order to capture complex spectral–spatial relations and label-agnostic information of HSI data effectively, 
the first step of our proposed approach is to train a diffusion model in an unsupervised manner, as shown in 
Fig. 6a. We introduce the detailed formulation of our unsupervised feature learning procedure, which involves 
diffusion-based forward and backward processes with the HSI data.

• Forward diffusion process: DDPM represents a category of models based on likelihood estimations. In 
the forward process, Gaussian noise is added to the original training data. In our proposed model, we aim 
to learn spectral–spatial features effectively in an unsupervised manner. We start by training our DDPM 
using unlabeled patches randomly cropped from the HSI dataset. To prepare the data for training, the data 
is pre-processed by patch cropping operation. Next, patches are randomly sampled from HSI for DDPM 
training. Formally, given an unlabeled patch x0 ∈ R

P×P×B , where P denote the height and width of patch x0 , 
B represents the number of spectral channels, respectively. During the forward diffusion process, Gaussian 
noise is gradually added to the HSI patch according to the variance schedule {βt}Tt=0 in the diffusion process 
where T is the total number of the timestep. The process follows the Markov  chain33 process: 

Figure 6.  Overview of our proposed DiffSpectralNet (a) unsupervised spectral–spatial feature learning 
network. x0 and xT represent HSI patches of timestep 0 and timestep T . q(xt | xt−1) and p(xt−1 | xt) represent 
forward and reverse spectral–spatial diffusion processes, respectively. (b) Supervised classification (1) extracting 
hierarchical features from the pretrained denoising U-Net decoder in terms of different timestep t. (2) Using the 
patch-wise feature vectors to train an cross-layer transformer for HSI classification.
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 where N is a Gaussian distribution. The above formulation leads to the probability distribution of the HSI 
at a given time t+ 1 is obtained by its state at time t. During the first diffusion, the spectral–spatial instance 
with noise is expressed as follows: 

 At the tth step, the spectral–spatial instance incorporated with noise is expressed as follows: 

 where αt = 1− βt and, αt represents the product of α1 to αt . Given these inputs, the hyperspectral instance 
at timestep t can be straightforwardly produced by Eq. (3).

• Reverse diffusion process: In the reverse diffusion process, a spectral–spatial U-Net41 denoising network is 
employed is trained to predict the noise added on xt−1 , taking noisy patch xt and timestep t as inputs. And 
xt−1 is calculated by subtracting the predicted noise from xt . DDPM uses a Markov chain process to remove 
the noisy sample xT to x0 step by step. Under large T and small βt , the probability of reverse transitions is 
approximated as a Gaussian distribution and is predicted by a U-Net as follows: 

 where the reverse process can be re-parameterized by estimating µθ(xt , t) and σθ (xt , t) . σθ (xt , t) is set to σ 2
t I , 

where σ 2
t  is not learned. To obtain the mean of the conditional distribution pθ (xt−1|xt) , we need to train the 

network to predict the added noise. The mean of µθ(xt , t) is derived as follows: 

 where εθ (·, ·) denote the spectral–spatial denoising network whose input is the timestep t and the noisy 
hyperspectral instance xt at timestep t. The denoising network takes in the noisy hyperspectral instance 
along with the timestep to produce the predicted noise. The U-Net denoising model εθ (xt , t) is optimised by 
minimising the loss function of the spectral–spatial diffusion process can be expressed as follows: 

Supervised classification using spectral–spatial diffusion feature
After training the network using unsupervised spectral–spatial methods, we start extracting useful diffusion 
features from the pre-trained DDPM. Next, we employ a transformer-based classifier for classification.

During the feature extraction step, we utilize the U-Net denoising network to extract a spectral–spatial 
timestep-wise feature. The pre-training of DDPM enables it to capture rich and divers information from the 
input data during the reverse process. As a result, we extract features from the intermediate hierarchies of DDPM 
at various timesteps to create robust representations that encapsulate the salient features of the input HSI. The 
parameters of the pre-trained DDPM remain constant, as shown in Fig. 6b. We gradually add Gaussian noise 
to the input patch x0 ∈ R

P×P through the diffusion process. For a noisy input patch xt at timestep t  , the noisy 
version xt can be directly determined using Eq. (3). Subsequently, xt is fed into the pre-trained spectral–spatial 
denoising U-Net to derive hierarchical features from the U-Net decoder. Diffusion features from various decoder 
layers are collectively upsampled to P × P and then merged to form the feature ft in RP×P×L at timestep t  , where 
P represents the height and width of the patch and L denotes the feature channel. For each feature fti ∈ R

P×P×L , 
we retain only the vector associated with the center pixel, indexed as Ci ∈ R

p×p×L . This approach significantly 
reduces the computational cost due to a decrease in parameters. We input the extracted diffusion features (C(fti) 
patch-wise to learn group-wise spectral embeddings. By proposing to learn group-wise spectral embeddings, we 
aim to precisely identify and classify the diverse features based on their distinct spectral properties. The group-
wise spectral embedding features use a linear projection layer for mapping features to a token sequence for the 
transformer. Positional embedding is added to the input token sequence before feeding it to the transformer. This 
provides the transformer with information about the relative positions of the patches. Therefore, the abundant 
features contain diverse and multi-level information of the input HSI data, which we use for classification.

After mapping the patch representation, a network is needed to predict the classification label. Transformer-
based classifiers are trained based on the inspiration  from24, as shown in Fig. 6b. The classification module 
combines the CNN and transformer structures to form an effective classifier. These classifiers take positionally 
embedded feature patches as inputs and use an MLP head to predict the final classification scores. Inspired by 
the success of skip connection in U-Net42, and  ResNet16 for image segmentation and recognition, respectively. 
A cross-layer skip connection is introduced in the classifier to minimise the possibility of losing valuable 
information in the layer-wise propagation process and enhance the information transitivity between layers. The 
classifier model utilises skip connection, multi-head attention mechanisms, feed-forward neural networks to 
spectral–spatial feature mapping, and a transformer structure for deep feature extraction, resulting in outstanding 
classification performance.

(1)q(xt |xt−1) = N

(

√

(1− βt)xt−1,βt I
)

(2)x1 =
√
α1x0 +

√
1− α1ε

(3)xt =
√
αtx0 +

√
1− αtε, ε ∼ N(0, I)

(4)pθ (xt−1|xt) = N(xt−1;µθ(xt , t), σθ (xt , t))

(5)µθ(xt , t) =
1

√
αt

(

xt −
1− αt√
1− αt

εθ (xt , t)

)

(6)L (θ) = Et,x0,ε

[

(

ε − εθ
(√

αtx0 +
√
1− αtε, t

))2
]
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Conclusion
HSI contains rich spectral–spatial information and complex relations, which are critical for classification tasks. 
The proposed method provides a unique viewpoint for the spectral–spatial diffusion process, which is capable 
of modeling complex relationships for understanding inputs and learning both high-level and low-level features. 
In conclusion, most current methods for HSI classification rely on CNN or Transformer models, which may not 
efficiently extract patterns and information. In contrast, our proposed method, employing the diffusion model, 
effectively and efficiently learns discriminative spectral–spatial features. This approach allows us to explore and 
utilise the spatial–spectral neighborhood structure of hyperspectral data, resulting in the effective extraction of 
deep features. Instead of processing on a pixel-by-pixel basis, the diffusion features are introduced in patches to 
improve the ability to capture details for more accurate classification. We employed a transformer-based model 
with a cross-layer skip connection, which reduces the possibility of losing valuable information in the layer-wise 
propagation process. We demonstrated the superiority of our proposed DiffSpectralNet approach by achieving 
state-of-the-art results in HSI classification based on quantitative trials conducted on three HSI datasets. In future 
studies, we aim to validate and enhance the performance of our proposed model on additional hyperspectral 
datasets across various domains, such as the medical field. Our model can be generalised and shows promise in 
HSI classification due to its ability to capture complex relationships between bands.

Data availability
The datasets analysed during the current study are available in the Grupo de Inteligencia Computacional (GIC) 
Hyper spect ral Remot e Sensi ng Scenes. Supplementary information is available on the online version of the paper 
which shows the detailed information of these three datasets.
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