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GEFormerDTA: drug target affinity 
prediction based on transformer 
graph for early fusion
Youzhi Liu 1, Linlin Xing 1*, Longbo Zhang 1, Hongzhen Cai 2 & Maozu Guo 3

Predicting the interaction affinity between drugs and target proteins is crucial for rapid and accurate 
drug discovery and repositioning. Therefore, more accurate prediction of DTA has become a key area 
of research in the field of drug discovery and drug repositioning. However, traditional experimental 
methods have disadvantages such as long operation cycles, high manpower requirements, and 
high economic costs, making it difficult to predict specific interactions between drugs and target 
proteins quickly and accurately. Some methods mainly use the SMILES sequence of drugs and the 
primary structure of proteins as inputs, ignoring the graph information such as bond encoding, 
degree centrality encoding, spatial encoding of drug molecule graphs, and the structural information 
of proteins such as secondary structure and accessible surface area. Moreover, previous methods 
were based on protein sequences to learn feature representations, neglecting the completeness of 
information. To address the completeness of drug and protein structure information, we propose 
a Transformer graph-based early fusion research approach for drug-target affinity prediction 
(GEFormerDTA). Our method reduces prediction errors caused by insufficient feature learning. 
Experimental results on Davis and KIBA datasets showed a better prediction of drugtarget affinity 
than existing affinity prediction methods.

Abbreviations
SS  Secondary structure
ASA  Accessible surface area
DTI  Drug-target interactions
DTA  Drug-target affinity
GCN  Graph convolutional neural
ESC  Encoder for feature extraction for edge coding, spatial position coding and centrality coding

The global pharmaceutical industry today is facing enormous challenges. Intense product competition, patent 
expiration, shorter exclusivity periods, and price constraints pressure pharmaceutical companies to reduce costs 
, increase productivity, and accelerate  growth1,2. It takes companies more than $500 million and approximately 
12–15 years to bring new compounds to  market1,3–5. Less than 5% of all compounds screened enter preclinical 
development, and only 2% of these candidates enter clinical  testing1,4. Approximately 80% of all drugs that enter 
phase I trials fail in  development1. To address these challenges, many research institutions and pharmaceutical 
companies have turned their attention to the drug repositioning  model6, which involves analyzing the economic 
benefits and drawbacks identified by experts. Therefore, we are strongly motivated to develop a computational 
model that can predict the affinity of new drug-target pairs based on previously existing drugs and targets.

Drug-target affinity (DTA) prediction is crucial for speeding up the drug screening process. Various com-
putational  methods7 have been proposed for this purpose. Mainstream methods include ligand/receptor-based 
 methods8, gene ontology-based  methods9, text mining-based  methods10, and reverse docking  methods11. These 
methods are continuously being improved under different conditions. Receptor-based methods often employ 
docking  simulations6,12, which require 3D structures of target  proteins13. However, obtaining such structures 
can be expensive and challenging. Ligand-based approaches suffer from poor predictions when the number of 
known ligands for the target protein is small. This approach relies on the similarity between candidate ligands 
and known ligands. Gene ontology-based and text mining-based approaches face similar limitations due to the 

OPEN

1Department of Computer Science and Technology, Shandong University of Technology, Zibo 255000, 
China. 2Department of Agricultural Engineering and Food Science, Shandong University of Technology, 
Zibo 255000, China. 3Department of Electrical and Information Engineering, Beijing University of Architecture, 
Beijing 102616, China. *email: xinglinlin@sdut.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-57879-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7416  | https://doi.org/10.1038/s41598-024-57879-1

www.nature.com/scientificreports/

content reported in the text. Moreover, redundant names of drugs and target proteins complicate these methods. 
Text mining methods are also limited to existing academic literature, making it difficult to discover and acquire 
new knowledge.

Machine learning has addressed limitations over time. For instance, SimBoost models utilize known drug 
association/similarity networks and known target protein association/similarity networks to create new features 
for predicting the DTA of unknown drug-target  pairs14. Alternatively, similarity can be derived from other known 
information instead of training data affinity. Kernel-based approaches, such as regularized least squares regres-
sion (RLS) with kernels constructed from drug and target molecular descriptors, are  used15. KronRLS models 
are calculated from the Kronecker product of drug and protein kernels into pairs of  K15 (any similarity metric 
can be used) to speed up model training. Predicting drug-target interactions (DTI) can also aid in DTA predic-
tion. Research in this area includes DTI-CDF16 (a cascaded deep forest model),  MLCLB17 (a new multi-label 
classification framework), and DTI-MLCD18 (multi-label learning to support community detection).

Some approaches utilize shallow neural networks on drugs and proteins.  DeepAffinity19 employs seq2seq self-
encoders20 for unsupervised learning of protein and compound feature representations. The learned encoder’s 
output is then passed to the attention layer and further to the 1D convolution layer. The outputs of the protein and 
compound convolutional layers are combined and fed into the fully connected layer. Similarly, the  DeepDTA21 
model adopts a 1D representation and a 1D convolutional layer (with pooling) to capture data patterns. The 
final convolutional layers are connected, followed by multiple hidden layers, and regression is performed using 
drug-target affinity scores.

Deep learning models are among the best-performing models for DTA prediction. Many  works22–25 have been 
carried out in deep learning models. However, these models use drug SMILES as direct input, which may not 
capture the complete uniqueness of the molecular structure of drugs. By using data in string format, molecular 
structure information is lost, which may reduce the functional relevance between potential drug molecules, 
which in turn can reduce the predictive power of the model. The development of graph convolutional neural 
 networks26,27 has migrated from other fields to biological information. It has been used for drug  discovery28 , 
including interaction  prediction29, affinity prediction, synthesis prediction, and drug  repositioning30. Since pro-
tein biomechanics inherently contains more structural information, previously proposed methods mainly use 
protein sequence information directly as input to the model, and these methods lose a large amount of protein 
structural information.

This paper introduces GEFormerDTA, a novel neural network model that integrates drug and protein struc-
ture information. It leverages four forms of feature representation (node, degree center, space, and edge encoded 
features) to effectively utilize their roles in the graph task. Secondary structure information and ASA information 
of the target protein are incorporated, enabling comprehensive utilization of protein structural information. An 
early fusion mechanism is employed to handle the binding affinity between drugs and proteins, reducing predic-
tion errors caused by information redundancy.

Materials and methods
Problem definition
The drug-target binding affinity (DTA) problem aims to predict the binding affinity between a drug and a target 
protein. This is a mathematical regression problem:

where D = {d1, d2, d3, . . . , di} , P = {p1, p2, p3, . . . , pi} , and θ is a learnable parameter in the prediction model 
F . Our task is to predict the affinity score between ti and D or T and dj , given a new drug ti and target protein dj.

Dataset
We evaluated our proposed model on two different datasets, the kinase dataset  Davis31 and the KIBA  dataset32, 
both of which have been used as gold standard datasets for prediction assessment in DTI and DTA  studies14,33.

The Davis dataset contains selective assays of kinase protein families, related inhibitors, and their respective 
dissociation constant ( Kd ) values. It contains the interactions of 442 proteins and 68 ligands. On the other hand, 
the KIBA dataset was derived from a method called KIBA, which combines the biological activities of kinase 
inhibitors from different sources (e.g., Ki , Kd , and IC50)32. The study of predicting these kinase inhibitors can 
be explored  through34. KIBA scores were constructed to optimize the concordance between Ki , Kd , and IC50 by 
exploiting the statistical information they contain. The KIBA dataset initially contained 467 targets and 52498 
 drugs14. Removing these drugs and targets can mitigate the impact of noise on model training, balancing the 
dataset and preventing an undue focus on specific drugs and targets during the model training process. Tables 1 
summarizes these datasets we used in our experiments. To demonstrate the properties of the drugs and proteins 
more visually in Table 1, we depict the breadth and length of the two gold standard data through Fig. 1.

Regarding data density, the model performs well in handling sparse graphs, considering only the immedi-
ate neighbors of nodes. Therefore, the model performs better when dealing with the low-density KIBA dataset. 
However, its performance is poorer in the high-density Davis dataset. Concerning data size, the model utilizes 
self-attention mechanisms to handle small-scale data, capturing global information about the molecular graph 
neighborhood and aiding in extracting key node information. However, when dealing with large-scale data, the 
model has longer training cycles.

While33 directly uses the Kd values from the Davis dataset as binding affinity values, we employ the trans-
formed values into logarithmic space, denoted as pKd , similar to the equation (2) described.

(1)A = Fθ (P,D),
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Drug representation
In the dataset, the pairs of affinity primarily consist of drugs and proteins. The input for drug compounds 
mainly utilizes two data formats: SMILES and SDF. In our proposed method, the molecular graph of a drug is 
constructed based on the SMILES string and SDF file data. Specifically, the SDF format molecular data is parsed 
using the RDKit  tool35 to obtain the two-dimensional structural information of the molecule. In the molecular 
graph representation, atoms represent the nodes of the graph. The combination of node features encompasses 
a variety of properties, including atom symbol, atom degree, atom implicit valence, the number of free valence 
electrons, atom hybridization type, and atom aromaticity. These attribute features are concatenated to form a 
multidimensional feature. The edges in the graph represent the chemical bonds of the molecule, and the pres-
ence or absence of an edge between two nodes indicates whether there is an interaction between the atoms. We 
construct an adjacency matrix based on these edges, which encapsulates the positional information of the node 
with respect to other nodes. In our study, we use Gd = (Vd ,Ed) to represent the graph representation of the 
drug compound, where Vd represents the atoms of the drug compound, and Ed represents the chemical bonds 
of the drug compound.

We define the set of attributes of atom j of the i-th drug di in the entire drug set D of the database as xdij  , which 
is a vector of nine attributes, denoted as follows:

where xdij  represents the mathematical expression of atom j of drug di , a1 represents the number of atoms in drug 
di , a2 represents chiral information including R-type, S-type, axial chirality, planar chirality, and helical chirality, 
and [a3, a4, . . . , a9] represents, in order, the atomic degree (number of chemical bonds), formal charge, number 
of connected hydrogen atoms, free radical number of electrons, type of atomic hybridization, whether or not an 
aromatic bond is formed, and whether or not an a-ring is present. xdij  in these properties can be obtained by the 
RDKit tool and embedded as integers under the guidance of a predefined dictionary.

Degree centrality encoding
We first extracted the atomic and chemical bonding information of the drug using the RDKit  tool35,36. The more 
edges an atom exists, the more critical the atom becomes, or the more complex the interconnections with other 
atoms are to the model. In this paper, we characterize the degree features in the molecular graph by atomic degree 
centrality as an additional signal for the neural network. Since the degree centrality habit encoding (see Fig. 2) is 
used for each node, we only need to combine it with the atomic node corpora to form the degree centrality 
features of the atoms. This encoding allows the model to capture the semantic relevance and importance of the 
atoms more confidently and pass them into the attention mechanism, as shown in the following mathematical 
equation:

where e− , e+ ∈ R
d denote the incoming and outgoing degrees of atomic nodes specifying the learnable 

embedding vectors, respectively, Additionally, h(di)j  denotes the atomic features of atom j in drug di . Here, d 
denotes the modulation factor, and WQ and WK are the weight matrices for atoms (nodes) i and j, respectively.

For undirected graphs, the incoming degree deg−
(
vj
)
 and outgoing degree deg+

(
vj
)
 can be uniformly denoted 

as deg(vj) . By adding the degree-centric encoding feature to the nodes, softmax attention can capture the critical 
information of the nodes in K and Q. Therefore, the model can capture the semantic relevance and the critical 
information of the nodes in the attention mechanism.

Atomic spatial position encoding
The Transformer possesses globality, but it relies too heavily on positional information for encoding. When 
solving sequential data present in natural language problems, it is possible to encode each position (i.e., absolute 
position encoding)37,38 or to encode any two positions in the Transformer layer (i.e., relative position encoding)39.

(2)pKd = − log 10

(
Kd

1e9

)
,

(3)xdij = [a1, a2, . . . , a9],

(4)hdij = xdij + e−
deg−(vj)

+ e+
deg+(vj)

,

(5)Featruedegij =
(hiWQ)(hjWK )

T

√
d

,

Table 1.  Dataset summary.

proteins drugs links

Davis ( Kd) 422 68 30056

KIBA 229 2111 118254
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However, when we use the graph information built based on the spatial structure as the input to the Trans-
former model, it is instead detrimental to the prediction of the model. We introduce the spatial location encod-
ing to capture the spatial structure information of the drug graph. First, we write down the set of drug nodes as 
Vd = {vj | vj ∈ R

N }j=l , given a function φ(vi , vj) ∈ R
N representing the spatial relationship between vi and vj . 

Figure 1.  Summary of the Davis (left panel) and KIBA (right panel) datasets. (A) Distribution of binding 
affinity values. (B) Length distribution of SMILES strings. (C) The number of atoms of drug molecules. (D) 
Length distribution of protein sequences.
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We describe the function φ(vi , vj) as a connectivity definition graph between nodes. In the drug diagram, we set 
the pathway φ(vi , vj) ∈ R

N between vi and vj to denote

where SPD(vi , vj ) denotes the shortest dependency path (SDP) reachable between vi and vj.
After we encode by degree center and spatial location, we obtain the embedding matrix of the atomic pair 

(node pair) ( vi , vj ) as

where W (i,j)
φ  is the weight of the spatial location feature of the drug node pair, and Featruepij is the embedding 

of the spatial structure feature.

Interatomic chemical bonding coding
Edges are also an important component in handling graph tasks. For example, in molecular graphs of drug 
compounds, features describing the types of chemical bonds can be assigned to atom pairs. These features are 
as crucial as node features in representing the graph and are indispensable for encoding in graph tasks. Previ-
ous approaches to graph tasks mainly include two methods: (1) Edge features are added to the associated node 
 features40. (2) For each node, the features of its associated edges are used together with the aggregated node 
 features41. However, these approaches only propagate edge information to their associated (neighbor) nodes, 
which may not effectively utilize edge information to represent the entire graph.

We introduce atomic compound chemical bond encoding to encode edge features into the attention layer 
better. For the adjacent atom-pairs edge encoding approach is defined:

where b1 denotes the bond type, b2 denotes the steric bond, and b3 denotes whether the bond is conjugate. b1 , b2 
and b3 can be obtained by the RDKit tool. If the shortest path of i and j is P = (e1, e2, . . . , ek) , then

Protein representation
Previous  studies25,42 typically used protein sequences as input for deep learning models, where protein residues 
were encoded into a vector space using techniques like one-hot encoding or BPE encoding. These studies 
employed a lightweight 1D convolutional layer encoder to extract valuable features from the protein. However, 
these methods solely captured the primary structure information of proteins. Predicting the 3D structure from 
a 1D sequence is a formidable task, making 1D representations inadequate for capturing the spatial structural 
features of proteins. Obtaining 3D structures for certain proteins is challenging due to their limited representation 
in  databases43. Moreover, representing the irregular 3D structure requires a large-scale 3D matrix, resulting in 
computationally expensive model execution. Additionally, experimentally determined 3D structures may suffer 
from low quality since they depend on the intricate and demanding process of co-crystallization of protein-ligand 
pairs. Hence, it is necessary to shift our focus towards the secondary structure and other protein information.

(6)φ
(
vi , vj

)
=

{
SPD(vi , vj), | vi → vj

−1, | vi �→ vj
,

(7)Featruepij = W
(i,j)
φ φ

(
vi , vj

)
,

(8)e(vi ,vj) = [b1, b2, b3],

(9)Featruee(vi ,vj ) =
1

k

k∑

t=1

WedgePt.

Node Feature

Linear Linear
Q K V

MatMul

Scale Spatial Encoding

Edge Encoding

SoftMax

Centrality Encoding

MatMul
Attention Block

Linear

Figure 2.  Diagrammatic representation of centrality coding, spatial coding and edge coding used for the 
structure of drug molecules.
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To tackle the complexity and accessibility challenges, we employ SS and  ASA44 for representing the protein graph 
structure. SS determines the backbone structure of the target protein, while ASA indicates the degree of contact or 
exposure of amino acid residues to the solvent in its three-dimensional structure. The interaction between non-
adjacent residues is denoted as DM, which serves as a protein feature. The pairwise distance matrix of residues 
efficiently captures contact information in the protein structure and can be calculated using SPOT-Contact45.DM 
has proven successful in predicting various protein spectra, such as  solubility46,  DTI47 and DTA. Contact between 
two non-adjacent residues occurs when their distance is less than 8 Å . However, simply vectorizing each residue in 
the protein sequence using unique thermal encoding lacks information about element similarity and treats them 
as equal in distance. This representation also limits the model learning capability by disregarding the dependency 
information between residues. In many protein datasets, only a limited number of target proteins provide available 
information, while most of the protein information remains untapped, leading to detrimental DTA prediction results.

The  TAPE48 approach utilizes amino acid embeddings in a continuous vector space and employs the self-atten-
tion mechanism of the Transformer to capture contextual relationships and information in protein sequences. 
Instead of one-hot encoding, TAPE uses embedded representations learned from unlabeled protein sequences 
to represent protein graph nodes. Fusion of embedding vectors from TAPE, secondary structure, and solvent 
accessibility feature vectors represents node features in the protein graph (see Fig. 3). Each amino acid residue 
is assigned to one of eight categories, providing detailed secondary structure information. Given a protein 
sequence of M residues, the node feature set Vp = {vi | vi ∈ R

h}Mi=l , where h is the length of the embedding 
vector vi provided by TAP, captures context-dependent residues. Protein secondary structure, formed by coiled 
folding of peptide chains, contains vital information about protein activity, function, and stability, benefiting 
model predictions. Distance map as global structure information may be important in future DTA identifica-
tion.47 introduced super nodes connecting other nodes in the composite structure graph.

Proposed model
The general architecture of our proposed method is shown in Fig. 4. Our GEFormerDTA takes the drug molecule 
graph structure Gd and the target protein graph structure Gp as inputs and outputs the final prediction results. In 
processing the graph structure information, we use a graph convolutional neural network model (GCN). Our 
GEFormerDTA model consists of five main key steps: information preprocessing (Fig. 4a), drug ESC encoding 
(Fig. 4b), drug Graph encoding (Fig. 4c), drug-target protein graph early fusion (Fig. 4d), drug-target protein 
graph refinement (Fig. 4e) and affinity scoring (Fig. 4f). In the steps of Fig. 4b,c,e, we also added residual jumps 
to slow down the generalization performance of our network.

GEFormerDTA overview
Before we input the drug into the GEFormerDTA model, we need to encode the drug by two types of encoders: (1) 
ESC encoder; (2) Mol. encoder. For the ESC encoder, we mainly use the global sensory field of the Transformer to 
capture the global information of the drug molecule, while the Mol. encoder captures the main node information 
in the drug graph information. Meanwhile, we fuse the obtained protein feature maps with the drug feature 
maps extracted by the Mol. encoder features. The fused drug-protein fusion map is fed to the drug target protein 
fractionation process to obtain the fractionated drug-protein map, and finally the results are obtained by DTA 
prediction.

ESC encoder
As shown in Fig. 2, after obtaining the node features, spatial position features, and edge features of the molecular 
graph, if we use traditional attention models, we will face the challenge of high dimensionality and many 
molecular nodes, which seriously affects the efficiency of model training. In addition, to address the issue of 
memory overhead, we introduce the Sparsepro self-attention molecular graph encoder to extract important Q 
and reduce model complexity. Meanwhile, we use self-attention distillation to reduce feature dimensionality and 
the number of network parameters. As shown in Fig. 4b, our drug molecule encoder is a sandwich model that 
includes 3 layers of Sparsepro self-attention and 2 layers of GCN. Our Sparsepro self-attention can attach great 
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Figure 3.  Summary of protein features that can be used to study drug target interaction affinity.
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importance to atoms or edge matrices that make significant contributions, while ignoring others. Sparsepro 
self-attention can be expressed by the following mathematical formula:

where Q̄ is a sparse matrix of the same size as Q, which contains only top-S queries. We compute all queries in 
Q and sort them based on the sparsity of KL scattered  points49. This paper adopts S=25 to form Q̄ and replace Q. 
The time complexity of point-wise computation in Sparsepro self-attention is O

(
lnLQ

)
 , and the memory usage 

for each Q-K lookup and each block is O
(
LK lnLQ

)
49. After improving Formula (10), we obtain the following 

expression:

After inputting all the features of the drug molecule graph into the model, we employ an expression to calculate 
the self-attentiveness of Sparsepro is

In addition, we set a GCN distillation operation immediately after each Sparsepro self-attentive block to prioritize 
mappings with focal features and capture the focal feature map as input at the next layer. The specific operation 
flow equation is as follows:

(10)Atn(Q,K ,V) = Softmax

(
Q̄KT

√
d

)
V ,

(11)Featruedegij =
(hiWQ̄)(hjWK )

T

√
d

,

(12)Attn(i,j) = Softmax

(
Featruedegij + Featruepij + Featruee(vi ,vj )

)
(WVhi),

(13)Xj+1 = MaxPool

(
ELU

(
Conv1d

([
Xj

]
ops

)))
,

(b)ESC Encoder

(d)Graph Early Fusion

(a)Data Factory (e)Refined DTG

(f)DTA-prediction

(c)Mol. Encoder

Figure 4.  Diagram of the proposed model architecture. (a) is the data pre-processing stage of the proposed 
model. (b) is the encoder of the drug ESC. (c) is the encoder of the drug graph. (d) is our proposed graph feature 
early fusion process. (e) is the drug-target protein graph refinement process. (f) is our DTA final prediction 
process.
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where [·]ops denotes the output of Sparsepro self-attentive block after having some column operations, Xj denotes 
the input of the j-th self-attentive block, Conv1d denotes the 1D convolutional layer, ELU is the activation func-
tion, and MaxPool is the maximum pooling layer.

We need to transform the SMILES sequence of the drug into a 2D structure by scripting before inputting the 
drug into the GEFormerDTA model, and then we extract the atomic structure information from the 2D structure 
information of the drug, after which we convert the atomic information into an information encoding that can 
be applied to the attention mechanism  by50 three encoding designs.

Mol. encoder
For the accuracy of model prediction, we also leverage the graph information of drug molecules as inputs to the 
model. This approach differs from the treatment of drug data mentioned in 2.5.2, where the atomic features of 
the drugs (element types, atomic degrees, atomic indices, atomic implicit valence, formal charge, hybridization 
types) are directly fed into the Mol. encoder.

Due to the strong affinity of GCN networks for graph information, we use the GCN neural network layer as 
the first feature extraction network layer for drug graph information, with the mathematical expression given by

where Hi represents the feature matrix of the molecular graph Gd = (Vd,Ed) for the drug, where A(N×N) denotes 
the adjacency matrix. Â = D̃− 1

2 ÃD̃− 1
2 . represents the symmetric normalization of the adjacency matrix, where 

Ã = A+ IN , introducing self-loops to the nodes by adding the identity matrix IN , ensuring that node features 
are included during convolution operations. D̃ =

∑
j Ãij is a degree matrix used for normalizing Ã to prevent 

the occurrence of gradient explosions. W (i) and W (i−1) represent the weight matrices of the current layer and the 
previous layer, respectively. σ(·) is the ReLU activation function. Subsequently, the graph information extracted 
from GCN is distilled through multiple residual processes to obtain the refined feature representation of the 
drug molecule. In mathematical terms, the residual operation is defined as

After that, to reduce the network complexity and improve the training accuracy, we use the graph pooling layer to 
scale down the redundant information. Finally, after the 2-layer linear layer output of the Mol. encoder, we obtain 
the feature representation of the drug. The mathematical formulas for the two-step operations are as follows

where V ′
d represents the node features of the drug graph after the application of GCN. Wi∈{0,1} and bi∈{0,1} denote 

the weights and biases of the two linear layers, respectively. The obtained vector xd ∈ R
N ′ is referred to as the 

drug molecule node, where N ′ is the dimensionality of xd.

DTG distillation
After encoding through the Mol. encoder, a new drug graph G ′

d  is obtained, represented as G ′
d = (xd ,E ′

d ) , and 
a protein graph Gp = (Vp,Ep) . The feature fusion of these graphs forms a heterogeneous graph, resulting in an 
information-rich pool GDTG = (VDTG ,EDTG) , where VDTG = concat(xd ,Vp) and EDTG = concat(E ′

d ,Ep) . 
The data in these information pools are high-dimensional and redundant. To streamline our data dimensions 
and expedite model training, the DTG in the information pool will utilize GCN to capture essential feature 
information. Mathematically, the expression is obtained by

Then, the DTG is subjected to dimensionality reduction using residual blocks, resulting in the refined drug-
protein hetero-network. Mathematically, the expression is as follows

Finally, we separate the refined bipartite graph into drug and protein graphs using a masking approach. 
Mathematically, this is expressed by

(14)Hi = f (Hi−1,A) = σ
(
ÂHi−1W

(i−1)),

(15)Hi =F(Hi−1) = Wi · σ
(
W (i−1) · f (Hi−2,A)+ b(i−1)),

(16)Hi =σ(F(Hi−1)+Hi−1),

(17)v′max =MaxPool(V ′
d),

(18)xd =(W0v
′
max + b0)W1 + b1,

(19)H
GDTG

i = f
(
H

GDTG

i−1 ,AGDTG

)
= σ

(
ÂGDTG

H
GDTG

i−1 W
(i−1)
GDTG

)
,

(20)H
GDTG

i =F(H
GDTG

i−1 ) = W
(i)
GDTG

· σ
(
Wi−1 · f

(
H

GDTG

i−2 ,AGDTG

)
+ b

(i−1)
GDTG

)
,

(21)H
GDTG

i =σ(F(H
GDTG

i−1 )+H
GDTG

i−1 ),

(22)V
masked
p =Masked(V ′

DTG),

(23)V
masked
d = ∼ Masked(V ′

DTG),
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where Vmasked
d

 and Vmasked
p  represent the separated sets of drug nodes and protein nodes, respectively.

DTA score
At the final stage of the model, the separated bipartite graphs flow into their respective data channels, resulting 
in the drug representation X(final+1)

d  and the protein representation X(final+1)
p  . The mathematical expressions 

are given by

To improve predictive accuracy, we combine the drug features before feature fusion with those obtained after the 
separation of the bipartite graph. This integration results in a new set of drug features. Subsequently, we employ a 
fully connected block to concatenate these drug features with protein features for the prediction of protein-drug 
affinity values. Mathematically, the expression is formulated as

Results and discussion
Evaluation indicators
Many metrics exist for assessing model performance and capacity in current research in the DTA/DTI field. 
However, the selection of different metrics for different research questions with different contextual information 
often leads to different measures. Therefore, we use mean squared error (MSE), root mean square error (RMSE), 
Pearson, Spearman, consistency index (CI)51 and r2 (coefficient of determination) to assess the performance of 
our models.

MSE: MSE is used to measure the squared average difference between the model’s predicted values and the 
actual observed values. For a set of actual observed values (or target values) yi and their corresponding predicted 
values (or model outputs) ŷi , the calculation of MSE is as follows:

RMSE: A measure of the square root of the mean squared difference between the predicted and actual values.

Pearson: Measures the linear correlation between the predicted value X and the underlying true value Y.

where, cov(X,Y) is the covariance between the predicted value and the underlying fact, σ(X) is the standard 
deviation of X, and σ(Y) is the standard deviation of Y. µX , µY are the mean values of the distributions of X,Y, 
respectively.

Spearman: A statistic obtained by arranging the sample values of two random variables in order of their data 
magnitude, using the ranks of the individual sample values instead of the actual data.

where R(ŷi) is the predicted value ranking, R(yi) is the true value ranking, R(ŷ) is the average of the predicted 
value ranking, and R(y) is the average of the true value ranking, A = R(yi)− R(y) , B = R(ŷi)− R(ŷ).

CI: Measures the probability of correctly predicting unequal pairs according to the order.

(24)X
final
d =concat(Xj+1,G (Vmasked

d ,E masked
d )),

(25)X
final+1
d =MaxPool(X

final
d ),

(26)X
final
p =G

(
V

masked
p ,E masked

p

)
,

(27)X
final+1
p =Linear

(
ReLU

(
Pooling(X

final
p )

))
,

(28)DTAscore = Linear
(
concat

(
X
final+1
d ,X

final+1
p

))
,

(29)MSE = 1

n

n∑

i=1

(yi − ŷi)
2,

(30)RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2,

(31)Pearson = E(XY)− E(X)E(Y)√
E(X2)− E2(X)

√
E(Y2)+ E2(Y)

,

(32)ρ =
1
n

∑n
i=1 A · B√( 1

n

∑n
i=1 A

2
)
·
( 1
n

∑n
i=1 B

2
) ,

(33)CI = 1

Z

∑

δi>δj

h
(
xi − xj

)
,
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where xi is the predicted value of the larger affinity δi , xj is the predicted value of the smaller affinity δj , Z is the 
number of unequal pairs as the normalization constant, and h(x) is the step  function33:

This metric measures whether the predicted binding affinity values for any drug-target pair are predicted in 
the same order as their true values. We used paired t-tests to perform statistical significance tests with 95% 
confidence intervals.

r
2 : Given the varying scales of different datasets, it’s challenging to compare them using metrics like MSE and 

RMSE mentioned above. This metric calculates the R2 value with a reference to the mean model for comparing 
the quality of models. The formula for calculating the r2 is as follows:

where ŷi is the predicted value, yi the real value, and y the mean of the real values.

Experiment setup
We evaluate the performance of our proposed model on benchmark  datasets31,32. We will use the same nested 
cross-validation as the  DeepDTA21 method to determine the best parameters for the validation and test sets. 
To train the generalized linear model with enhanced generalization, we randomly partition the dataset into 
6 equal parts (4:1:1), designating one part as the independent test set. The remaining parts are utilized for 
hyperparameter tuning through 5-fold cross-validation. We conducted special processing for the KIBA dataset. 
To accelerate model training, we divided the KIBA dataset into four parts and trained each of the four subsets 
with identical parameters.  KronRLS33,  Simboost14, and others use folds with the same settings as the training, 
test, and validation sets for a fair comparison.

We set different filter sizes for drug compounds and proteins instead of generic sizes for the experiments 
because they have different contextual representations. In Table  2, the hyperparameter combination 
corresponding to the best CI score provided on the validation set is selected as the best hyperparameter 
combination for modeling the test set.

Results
Comparison experiments
In Tables 3 and 4, KronRLS, SimBoost, DeepDTA, and DeepCDA are mainly based on token-based SMILES 
representations and token-based FASTA sequence representations, while GraphDTA-GCNNet, GraphDTA-
GINNet, GLFA, and GEFA are mainly base on representations of drug graphs or protein graphs.

In Table 3, We report some work on Transformer graph early fusion methods on the benchmark datasets 
Davis and KIBA. Our proposed method achieves the best performance among all listed methods, which is in 
line with our expectations. To validate the validity and feasibility of the GEFormerDTA method, we evaluated 
and compared the predictive accuracy of different state-of-the-art binding affinity regression models. The per-
formance of the GEFormerDTA model compared with existing baseline models on the Davis independent test 
set is depicted in Table 3. The proposed method achieved good results in three of the six metrics. The change in 
the CI metric is less significant compared to the best-performing existing methods, showing an improvement 
of only 0.4 percentage points. The Pearson correlation coefficient and r2 value increased by 3.2 and 2.3% points, 
respectively. Our ESC drug encoder fully uses information such as atomicity center encoding, chemical bond 
encoding, and spatial information encoding in the drug feature map. MSE, RMSE, and Pearson did not yield 
satisfactory results, being 1.7, 1.8, and 15 percentage points lower than the optimal performance across all base-
lines, respectively. Transformer has global information awareness, which is very beneficial to obtain complete 

(34)h(x) =
{

1, if x > 0
0.5, if x = 0
0, if x < 0

,

(35)r2 = 1−
∑

i

(
ŷi − yi

)2
∑

i

(
y − yi

)2 ,

Table 2.  Hyperparameter settings for GEFormerDTA.

Parameters Value

Number of res. blocks [2; 3; 4]

Number of GCNConv. Blocks [1; 2]

NUM_EPOCHS 2000

Hidden Neurons [256; 512]

TRAIN_BATCH_SIZE [64; 128]

TEST_BATCH_SIZE 256

DROPOUT [0.2; 0.5]

OPTIMIZER Adam

LR [0.0005; 0.001; 0.01]
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drug features containing richer informa- tion than GCN. This also demonstrates the advantage of applying a 
Transformer to graph problems.

Table 4 compares the performance of the GEFormerDTA model with the existing baseline model using the 
KIBA independent test set. We conducted experiments with our model on four subsets of the KIBA dataset. The 
proposed method showed good performance in the split3 subset, achieving strong results across four metrics 
(MSE = 0.06, RMSE = 0.244, Spearman = 0.884, r2 = 0.898). The CI metric performed best in the split2 subset 
with a value of 0.896. Our model, GraphDTA-GINNet, achieved the best result in the Pearson metric, with a score 
of 0.872. Compared to the highest levels of existing methods, the change in the Pearson metric is minimal, with 
an improvement of only 0.16% points in the split1 subset. The maximum improvement in the r2 metric, when 
compared to other models, is 4.5% points. In Table 4, GEFormerDTA outperforms baseline models in terms of 
performance, and the comparison with GEFA in Table 3 highlights the reliability and effectiveness of drug encod-
ing in our method. In recent articles, CI has been used as the primary evaluation metric in models. Although we 
did not achieve the best performance in some metrics, our model achieved the best CI on two datasets.

To visually represent the predictive performance of our model, Fig. 5a illustrates the fit of the predicted bind-
ing affinity values to the true values on the Davis dataset. The scatter plot shows that data points are distributed 
on both sides of the line ŷ = y , indicating a reasonable fit. Figure 5b displays the kernel density estimates of the 
predicted binding affinity values compared to the true values. The dense distribution of curves suggests a high 

Table 3.  Predicted binding affinity for the Davis independent test set (“underlined” means suboptimal; 
“bolded” means optimal). * Reference original data.

Method ↓MSE ↓RMSE ↑Pearson ↑Spearman ↑CI ↑ r
2

KronRLS∗25 0.443 0.665 – 0.624 0.847 0.473

SimBoost∗25 0.277 0.526 – 0.694 0.891 0.670

DeepDTA21 0.196 0.442 0.850 0.845 0.866 0.712

DeepCDA∗22 0.248 – 0.857 – 0.891± 0.003 0.649± 0.009

GraphDTA-GCNNet51 0.293 0.541 0.797 0.660 0.863 0.635

GraphDTA-GINNet51 0.261 0.511 0.821 0.691 0.884 0.674

GLFA52 0.241 0.491 0.839 0.693 0.886 0.699

GEFA52 0.250 0.500 0.832 0.69460 0.887 0.688

GEFormerDTA 0.212 0.461 0.889 0.69465 0.895 0.735

Table 4.  Predicted binding affinity for the KIBA independent test set (“underlined” means suboptimal; 
“bolded” means optimal). * Reference original data.

Method ↓MSE ↓RMSE ↑Pearson ↑Spearman ↑CI ↑ r2

KronRLS∗22 0.411 – – – 0.782± 0.0009 0.342± 0.001

SimBoost∗22 0.222 – – – 0.836± 0.001 0.629± 0.007

DeepDTA21 0.082 0.287 0.710 0.645 0.849 0.504

DeepCDA∗22 0.176 – 0.855 – 0.889± 0.002 0.682± 0.008

GraphDTA-GCNNet51 0.188 0.433 0.856 0.845 0.862 0.724

GraphDTA-GINNet51 0.163 0.404 0.872 0.863 0.873 0.760

GLFA52

split_avg 0.215 0.463 0.822 0.826 0.858 0.673

split 1 0.227 0.476 0.829 0.818 0.852 0.685

split 2 0.226 0.476 0.850 0.842 0.867 0.719

split 3 0.187 0.432 0.827 0.835 0.862 0.679

split 4 0.221 0.470 0.782 0.808 0.851 0.609

GEFA52

split_avg 0.217 0.466 0.821 0.820 0.855 0.669

split 1 0.236 0.486 0.822 0.809 0.849 0.671

split 2 0.220 0.469 0.852 0.840 0.864 0.725

split 3 0.191 0.438 0.826 0.831 0.862 0.673

split 4 0.222 0.471 0.783 0.800 0.844 0.607

GEFormerDTA

split_avg 0.081 0.284 0.835 0.871 0.877 0.844

split 1 0.091 0.302 0.821 0.8819 0.870 0.805

split 2 0.099 0.314 0.832 0.8817 0.896 0.819

split 3 0.060 0.244 0.851 0.884 0.879 0.898

split 4 0.076 0.276 0.837 0.839 0.864 0.854
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degree of data density. The circular curves generally have an oval shape, and their long axes roughly align with 
the curve ŷ = y.

Figures 6 and 7 show the performance comparison of our method with other methods on two gold standard 
datasets. As can be seen from the figure, the CI metric improves on both datasets compared to the baseline 
model. Among the six evaluation metrics, the proposed method significantly improves Pearson on four subsets 
of KIBA. In contrast, on the Davis data set, the improvement of r2 is more obvious, which shows that our model 
has stronger generalization ability on the Davis data set.

Figure 5.  (a) Linear regression fitted straight lines for true and predicted values on the Davis dataset. (b) Kernel 
density estimation plots of the true and predicted values on the Davis data set. where the horizontal coordinates 
indicate the true binding affinity, and the vertical coordinates indicate the predicted binding affinity. The upper 
and right bars show the distribution characteristics of the sample size.
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Figure 6.  Comparison of the levels of our method and other methods on the Davis dataset under the six-
evaluation metrics.
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Ablation studies
It is well known that the way drug data are encoded is important for the predictive performance of the model 
during the study of DTA. To verify the importance of each substructure of drug coding in the drug preprocess-
ing stage and the effect on the model performance, we performed ablation experiments on each substructure. In 
Table 5, the GEFormerDTA model without encoding substructures (first three rows) all performed worse than the 
model with both three encoding substructures. The GEFormerDTA model without protein secondary structure 
and accessible surface area feature encoding (fourth row) perform worse than the model with protein structural 
features. This is enough to show that the protein structure has a positive effect on improving the performance of 
the proposed model. In order to visually represent the progress of centroid encoding, edge encoding, and spatial 
encoding more intuitively, we present the results from Table 5 in the form of bar charts in Fig. 8.

Conclusion
In this paper, we propose a novel deep learning approach using Transformer to solve graph structure data to solve 
the problem of drug affinity prediction, which can accelerate the development of physical drugs and repurposing 
of old drugs. After our analysis of model prediction results, we found that GEFormerDTA is very effective in 
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Figure 7.  Comparison of the levels of our method and other methods on the KIBA dataset under the six-
evaluation metrics.

Table 5.  Ablation experiments based on drug coding modalities in the Davis independent prediction dataset 
(“underlined” means suboptimal; “bolded” means optimal).

Method ↓MSE ↓RMSE ↑Pearson ↑Spearman ↑CI ↑ r
2

GEFormerDTA_with_DegreeC 0.3383 0.5816 0.8366 0.6436 0.8605 0.5779

GEFormerDTA_with_SpatialP 0.3404 0.5834 0.8346 0.6341 0.8539 0.5753

GEFormerDTA_with_Edge 0.3315 0.5758 0.8436 0.6494 0.8636 0.5864

GEFormerDTA_withou_SS_ASA 0.3364 0.5800 0.8411 0.6493 0.8641 0.5803

GEFormerDTA 0.2124 0.4609 0.8885 0.6946 0.8947 0.7350
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grasping drug molecule graph structure information (degree centrality encoding, atomic space encoding and 
edge encoding) without prior knowledge for model performance improvement.

Considering the potential representation changes due to protein metastability during the binding process, 
we use an early fusion approach between drug and target. The early fusion technique transforms the parallel 
processing of drug and protein into a serial processing of affinity problems by integrating drug representation 
into protein representation co-learning. The interpretability of the model can be enhanced by using the self-
attentive values of the hidden features of protein nodes as edge weights connecting drug nodes and residue nodes 
in the target protein graph, which quantifies which residues play a role for the binding process and the level of 
contribution of each residue. Early fusion is shown to be more competitive than late fusion by comparative tests. 
Exploiting the molecular map structural information of a drug is more advantageous than solo thermal coding. 
Experiments show that our method outperforms other advanced methods.

However, there are still many potential limitations to our current work. Our approach has not been able 
to address the conformational changes caused by protein-drug contact. The study of protein conformational 
changes is an important area of current biological research, which provides the basis for in-depth exploration in 
the life sciences. In addition, the study of protein conformational change mechanisms may also have important 
implications for drug development, disease prevention and control, and health management. Therefore, there 
is still great potential and space for future research in protein conformational changes. If we can learn residue-
edge attachment changes, we can explain the conformational changes arising from drug-protein binding. Our 
approach is portable and scalable. In the prediction of protein-RNA interactions, we can share the structural 
coding information of some of the proteins in our work and additionally can incorporate the electrostatic patch 
(EP) information of the proteins.

Data availability
The datasets generated and/or analysed during the current study are available in the github repository, https:// 
github. com/ CellN est/ GEFor merDTA/.
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