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Use of artificial intelligence 
to develop predictive algorithms 
of cough and PCR‑confirmed 
COVID‑19 infections based 
on inputs from clinical‑grade 
wearable sensors
Jessica R. Walter 1, Jong Yoon Lee 2,3, Lian Yu 2,3, Brandon Kim 2,3, Knute Martell 4, 
Anita Opdycke 5, Jenny Scheffel 5, Ingrid Felsl 5, Soham Patel 4, Stephanie Rangel 4, 
Alexa Serao 4, Claire Edel 4, Ankit Bharat 6 & Shuai Xu 2,3,4*

There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are 
asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological 
wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough 
detection and (2) early detection of COVID-19, through the retrospective analysis of prospectively 
collected physiological data from longitudinal wear of ANNE sensors in a multicenter single arm 
study of subjects at high risk for COVID-19 due to occupational or home exposures. The study 
employed a two-fold approach: cough detection algorithm development and COVID-19 detection 
algorithm development. For cough detection, healthy individuals wore an ANNE One chest sensor 
during scripted activity. The final performance of the algorithm achieved an F-1 score of 83.3% in 
twenty-seven healthy subjects during biomarker validation. In the COVID-19 detection algorithm, 
individuals at high-risk for developing COVID-19 because of recent exposures received ANNE One 
sensors and completed daily symptom surveys. An algorithm analyzing vital parameters (heart rate, 
respiratory rate, cough count, etc.) for early COVID-19 detection was developed. The COVID-19 
detection algorithm exhibited a sensitivity of 0.47 and specificity of 0.72 for detecting COVID-19 in 
325 individuals with recent exposures. Participants demonstrated high adherence (≥ 4 days of wear per 
week). ANNE One shows promise for detection of COVID-19. Inclusion of respiratory biomarkers (e.g., 
cough count) enhanced the algorithm’s predictive ability. These findings highlight the potential value 
of wearable devices in early disease detection and monitoring.

More than 769 million cases and 6.9 million deaths have been attributed to the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) or COVID-19, since the onset of the pandemic1. As 50% of infected individuals 
are asymptomatic and viral shedding occurs 5–6 days before symptom onset, pre-symptomatic transmissibility 
is one of the greatest causes of widespread disease2–4. Laboratory confirmation of diagnosis by reverse transcrip-
tion-polymerase chain reaction (RT-PCR), though considered the gold standard, is most often performed after 
symptom onset and is not scalable or practical for daily testing. Results can require up to 72 h of turnaround 
time and are not reliable at detecting early or asymptomatic disease5.

Wearable devices—non-invasive technologies mounted on the human body that continuously capture physi-
ological data—are of growing interest as a resource to understand individual well-being and infectious disease 
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spread6–10. These devices gained greater traction during the pandemic11. Fitness trackers and smartwatches, worn 
by 20% of Americans12, emerged as naturally scalable methods to remotely monitor patients in real-time. Further 
inquiry demonstrated subtle changes in biomarkers may signal impending or worsening infection, informing 
targeted testing, contact tracing, isolation, or escalation of care without risking exposure to the overburdened 
healthcare system.

A low-profile system aiding in pre-symptomatic detection could mitigate the spread of new infections8,13. 
Previous studies leveraged different wearable platforms to detect pre-symptomatic or asymptomatic carriers of 
disease10,14–16. These studies suffered from few positive cases, self-reporting alone, and retrospective design. Fur-
thermore, many wearable systems used finger or wrist-mounted fitness or wellness devices and were not designed 
or optimized to capture critical biomarkers relevant to a respiratory virus, including pulse oxygenation, cough 
count, respiratory rate (RR), and effort, potentially limiting confidence in predictive algorithms.

Earlier identification of disease by comprehensive physiological biomarkers, including those specific to res-
piratory illness, prior to symptom onset may help contain asymptomatic spread of disease and expedite initiation 
of medications. Moreover, systems providing real-time physiological data in diagnosed individuals can identify 
those needing higher acuity care. A South African study of high-risk COVID-19 patients using a pulse oximeter 
after confirmed infection had lower mortality rates compared to other high-risk patients17.

The purpose of this study was twofold, (1) develop an artificial intelligence (AI) algorithm for cough detection 
in a clinical-grade, FDA-cleared physiological wearable monitoring system (ANNE One, Sibel Health) and (2) 
develop an AI algorithm for detection of PCR confirmed COVID-19 infection.

Methods
Novel respiratory biomarker validation18

The ANNE system has multiple FDA clearances (K211305, K220095, and K223711) for monitoring the follow-
ing parameters: heart rate (HR), RR, pulse oxygenation, skin temperature, body temperature, apnea–hypopnea 
index, total sleep time, core body position, and snoring in adults19–22. Previous studies describe the system’s 
validation23–26.

Cough is a key symptom of COVID-19. We undertook development of an AI algorithm for automated cough 
detection and count. Healthy subjects at least 18 years old were recruited to wear the ANNE One sensor at the 
suprasternal notch on the chest and complete a series of activities simulating physiological and environmental 
signals.

Only features from the chest sensor were used during participants’ performance of scripted activities, includ-
ing coughing, talking, and resting. Manually labeled coughs were considered ground truth and used to assess the 
accuracy of the algorithm. Analysis was performed of events to refine the algorithmic discrimination of cough 
using accelerometry from the chest sensor.

The algorithm used a single channel 400–1600 Hz accelerometer with the axis normal to the attachment 
surface. The high frequency channel captured the acousto-mechanic signal of vocal and respiratory activity. 
The signal was filtered and converted into audio files. Researchers manually listened to waveform audio files 
obtained from the accelerometer signal to identify and label coughing events. Inclusion of non-coughing, poten-
tial confounding activities ensured that the level of uncertainty driven by these activities fell within an acceptable 
range. The labeled data were randomly split into training and testing sets in 3:1 ratio by subject. We trained a 
convolutional recurrent neural network. We applied a short time Fourier transform on the 1666 Hz accelerometer 
z-axis data and took the log magnitude. The length of the short-time Fourier transform (STFT) was 128 and 
the overlap was 64. The model computed a cough probability every 0.192 s. For training, we labeled a time step 
as cough if the previous 1 s data was annotated as cough. The cough index was calculated as the average cough 
probability over a second. Since most of the STFT features were above the frequency range of motion, our model 
was not sensitive to motion artifacts.

Home‑based COVID‑19 detection program
We performed a multicenter single arm prospective study to describe the predictive capacity of an AI-enabled 
algorithm using ANNE One system outputs for early detection of PCR-confirmed COVID-19 infection among 
a cohort of subjects at high infection risk. Participants were eligible if they were 18 years or older and if they 
had an occupational or home exposure to an individual with a new diagnosis of COVID-19 infection within 
the past 7 days. Enrolled patients had to be able and willing to provide written consent and comply with the 
study’s procedures. Patients were excluded if they were pregnant, nursing, or planning pregnancy. Individuals 
with prior known COVID-19 infection and complete symptomatic resolution or with known active COVID-19 
infection were excluded.

To recruit individuals with exposures, patients who tested positive for COVID-19 at Northwestern Memorial 
Hospital or Northwestern University Health Service COVID-19 testing centers were provided study and recruit-
ment information to share with interested household contacts or caregivers. Additionally, healthcare providers 
caring for COVID-19 positive patients were also informed about the study.

At the time of enrollment, participants provided demographic information and baseline medical history 
including smoking history, previous history of COVID-19 infection, number, date, and type of COVID-19 
vaccination(s), and co-morbidities. Subjects underwent baseline PCR-testing for COVID-19 with a nasopharyn-
geal swab performed by trained study coordinators. Participants were offered an optional enzyme immunoassay 
for SARS-CoV-2 antibodies from red blood spot samples by either fingerstick or peripheral blood draw27.

Study coordinators completed in-person or virtual training on application and wear of the wireless sensors. 
Participants were instructed to wear the chest sensor as consistently as possible, including during regular daytime 
activities and sleeping. The limb unit was worn while sleeping and intermittently throughout the day as much as 
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was convenient to subjects. Subjects were provided a sensor charger and tablet preloaded with the companion 
application. Subjects removed the sensors once daily to recharge the device. Data upload occurs concurrently 
with device charging.

Subjects completed electronic surveys of COVID-19 symptoms, inquiries about interval COVID-19 diagnosis 
and COVID-19 vaccination, and the Wisconsin Upper Respiratory Symptom Survey daily. Participants without 
data uploads or surveys for 2 or more consecutive days were contacted by a study coordinator.

Full study participation concluded after monitoring for 4 weeks. Participants underwent repeat PCR COVID-
19 testing via nasopharyngeal swab, an optional blood antibody test for COVID-19, and completed a survey on 
their experiences with the sensors. Study subjects concluding participation early underwent repeat nasopharyn-
geal COVID-19 PCR testing if participation exceeded 1 week. The electronic medical record (EMR) was reviewed 
for interval infection and vaccination receipt.

All specimens collected for COVID-19 testing were processed as received and were analyzed per the hospital’s 
universal policy for all clinically collected COVID-19 swabs. The study was approved by the Institutional Review 
Board at Northwestern University (Protocol #STU00213040), and all methods were performed in accordance 
with relevant guidelines and regulations. All participants provided written informed consent. The datasets used 
and/or analyzed during the current study available from the corresponding author on reasonable request.

Statistical analysis
The primary endpoint of the COVID-19 detection program was to develop AI-algorithms based on labeled 
data with positive and negative COVID-19 infection. We conducted a retrospective analysis of all data endpoint 
outputs from the sensors and survey results for all COVID-19 positive individuals prior to molecular diagnostic 
confirmation and age matched negative controls from the same cohort who tested COVID-19 negative. Subse-
quent primary outcomes included determination of the sensitivity, specificity, and accuracy of asymptomatic, 
pre-symptomatic, or early symptomatic COVID-19 infection detection by the ANNE One system and PCR 
testing. Sample size was determined from a power analysis with each subject generating 336 h of data with 48 
positive cases expected. Assuming a secondary attack rate of 15%, we required at least 48 positive cases to train 
our machine learning algorithms reaching 322 subjects. A sample size of 322 would achieve an 80% power for 
a Pearson correlation of 0.8 assuming significance of 0.05.

Home‑based COVID‑19 detection program algorithm development
Data collection
For each raw data collection session, skin temperature, HR, heart rate variability (HRV), RR, pulse rate, perfu-
sion index, physical activity, pulse oximetry, speech, and cough activity were generated at one-second intervals. 
Data with low signal quality or data collected during times when the sensors were unattached were eliminated 
from the model. To minimize the effect of missing data due to malposition, lost leads, or poor signal quality, 
we used a grid representation of the time series as the input for the model. Two hour long vital snapshots were 
taken with 30-min intervals. Each interval had a 90-min overlap between adjacent data points. These snapshots 
were then labeled based on the subject’s PCR and antibody testing results (as ground truth) from the beginning 
and end of the study and the time of data collection with respect to these results. Each vital parameter was then 
mapped into a 2D grid matrix with predefined dimension. Any data with missing testing results or snapshots 
with more than 50% of data missing were discarded from classification.

Variable labeling
We created an expanded label set for all observed possible daily outcomes for subjects to better reflect complex 
health status changes throughout the study. Subjects were labeled based on changes in COVID-19 PCR testing, 
antibody status, symptomatic report, and interval receipt of vaccinations from baseline compared to study exit. 
Subjects without symptoms, negative PCR testing, and no change in baseline antibody status were designated 
NN. Subjects with positive baseline or exit antibody testing, but otherwise negative PCR testing and no symptoms 
were also defined as NN. Infection cases were designated as P if subjects were symptomatic and had positive PCR 
testing upon study enrollment. Subjects with self-reported mild to severe symptoms and a documented change 
in antibody status without interval vaccination were also designated as P. Subjects with self-reported mild to 
severe symptoms but without confirmatory testing were labeled NP. Those with antibody change but without 
record of vaccination nor without noticeable symptoms were labeled as U. Afterwards those with negative PCR 
results at the end of the study are labeled as N. Those with insufficient survey and lab testing results to perform 
imputations were labeled as X. The NN class was used as the negative class, and the P class was used as the posi-
tive class during training. The reported accuracy was using the average probability in the first 5 days to predict 
the PCR test result on the first day.

Subjects were split into train and test groups with five-fold cross validation. Datasets for subjects in the train-
ing group were further split into training and validation sets for hyperparameter tuning and overfitting detection. 
Training datasets were used to create the convolutional neural network model and to evaluate which features 
generate the highest predictive value (Fig. 1).

Results
Respiratory biomarker validation
A study was conducted in 27 healthy subjects to evaluate the functionality of the ANNE Chest sensor for cough 
detection. An automated algorithm quantified cough through analysis of the chest accelerometer signal dem-
onstrating final performance on the test data of 83.3% for the F1 score (Fig. 2).



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8072  | https://doi.org/10.1038/s41598-024-57830-4

www.nature.com/scientificreports/

Figure 1.   This figure demonstrates generation, validation, and testing of the model. In panel (A) the grid 
representation of each vital is fed into individual convolution modules. Additional information such as the 
subject’s gender, age, and vitals without significant time varying components were fed in as one-hot vectors. 
Temperature values were rounded to the nearest integer. Chest temperature greater than or equal to 30 Celsius 
and smaller than 40 Celsius, and limb temperature greater than or equal to 28 Celsius and smaller than 38 
Celsius are one-hot coded (values outside of the range would be set to zero, otherwise the value is set to one). 
In panel (B) we demonstrate that subjects were split into train and test groups with five-fold cross validation. 
Datasets for subjects in the training group were further split into training and validation sets for hyperparameter 
tuning and overfitting detection. Training datasets were used to create the convolutional neural network model 
and to evaluate which features generate the highest predictive value.
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Home‑based COVID‑19 detection program
Between November 5, 2020, and March 31, 2021, a total of 325 patients were enrolled generating 69,170 h of data 
collected from the sensors. The study population consisted of 62.2% (n = 202) women, and 62% self-identifying 
as White, 14% as Asian, and 12% as Black. The mean age of participants was 29.4 years (SD 12.2) (Table 1). 
Overall, 92% of participants wore the sensors for at least 4 days per week and 99% wore the sensors for at least 
3 days per week.

At baseline, of the 325 patients enrolled, 268 underwent PCR testing, demonstrating a positivity rate of 23.1% 
(n = 75 patients). Of those not formally tested, an additional 20 patients self-reported positive COVID-19 testing 
results, for an overall baseline positive rate of 29.2%. Furthermore, 33.5% (n = 109 of 316 tested) of participants 
were antibody positive. At the conclusion of the study 4.3% (n = 14) had positive PCR testing, and 49.5% (n = 161 
of 273 tested) had a positive antibody status. A total of 22.8% (n = 74) of patients seroconverted by the conclu-
sion of the study. Overall, 16 individuals (n = 4.9%) received interval COVID-19 vaccinations. An additional 15 
participants (n = 4.6%) were excluded due to insufficient or missing data. Variable distributions of vital signs by 
disease status were compared (Fig. 3).

We conducted a subject-wise fivefold cross validation using class P as the positive class, and class NN as the 
negative class. The mean area under the curve (AUC) for the receiver operating (ROC) is 0.56 ± 0.06 (Fig. 4). 

Sensitivity 0.754

Precision 0.929

F-1 Score 0.833

Specificity 0.996

Figure 2.   The tables present performance of the cough detection algorithm via analysis of the sensor’s 
accelerometer signal. Final performance of the test data demonstrated a F-1 Score of 83.3%.

Table 1.   This table displays basic demographic information for enrolled subjects.

Factor Value

N 325

Age, mean (SD) 29.4 (12.2)

Age distribution

 < 25 years 127 (41.1%)

 25–35 years 111 (35.9%)

 35–45 years 12 (3.9%)

 45–55 years 22 (7.1%)

 > 55 years 37 (12.0%)

Sex

 Female 202 (62.2%)

 Male 122 (37.5%)

 Prefer not to identify 1 (0.3%)

Race

 White 202 (62.2%)

 Asian 44 (13.5%)

 Black 40 (12.3%)

 American Indian/Alaskan Native 2 (0.6%)

 More than one race 19 (6.0%)

 Unknown 2 (0.6%)

 Choose not to identify 10 (3.1%)

Ethnicity

 Hispanic or Latino 33 (10.2%)

 Not Hispanic or Latino 277 (85.2%)

 Unknown 15 (4.6%)
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Figure 3.   This figure demonstrates the variable vital sign distribution (A), (B), and self-reported symptoms 
(C) distribution among those subjects who were infected (red) and non-infected (green). The Jensen-Shannon 
Divergence and P-value of each vital type is presented (D). The P-values of the vitals except cough index and 
snore index are calculated using a clustered T-test. The P-values of cough index and snore index are calculated 
using a clustered Wilcoxon rank sum test. The figures demonstrate a measurable difference in objective and 
subjective measures obtained by the ANNE system.
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Using the trained model, we took the average class P probability of all 2-h data windows during the first 5 days 
of the study for each subject in the test set. The average probability is used to predict the PCR test result on the 
first day. The predictive capabilities in the ANNE One system compared to the COVID-19 PCR test is illustrated 
in the ROC. The mean AUC for the ROC is 0.62 ± 0.08 (Fig. 5). The accompanying table includes sensitivity, 
specificity, accuracy, AUC, and F1 score for each fold. The developed algorithm had a sensitivity of 0.47 and 
specificity of 0.72 for detection of asymptomatic, pre-symptomatic, or early symptomatic COVID-19 infection.

To assess the difference in performance on asymptomatic, pre-symptomatic and symptomatic data windows, 
we created a new set of labels for the test data based on the PCR test results at the enrollment and the end of the 
study. Those with positive PCR testing at the enrollment and the end of the study are labeled positive. Those with 
negative PCR testing at the enrollment and the end of the study are labeled negative. For the rest of the patients, 
they are labeled according to the PCR result for the 14 days following the enrollment and the 7 days prior to the 
end. The model performance is summarized in Table 2.

Over the course of the study, two syncopal events were recorded when subjects self-administered a finger stick 
for a COVID-19 antibody test. No other serious adverse events were noted outside of temporary skin irritation 
in 8 subjects (2%).

Discussion
This study developed an algorithm to detect cough and a second algorithm to detect infection with COVID-19 
among a cohort of high-risk subjects with recent environmental or occupational exposures.

The cough detection algorithm described herein is based on a reusable flexible, accelerometer-based sen-
sor, worn at the suprasternal notch, achieved an accuracy of 98% for cough detection, with 75% sensitivity and 
greater than 99% specificity in twenty-seven healthy subjects during biomarker validation. This performance is 
comparable with prior reports but achieves detection via a low-profile chest sensor28,29. Automation of objective 
cough detection by wearable devices has potential benefits for patients for patients with chronic respiratory effects 
and acute infections. Sensors measuring general physiological parameters in addition to more novel respira-
tory biomarkers, such as cough, may have improved detection of infectious processes or disease identification.

The developed COVID-19 detection algorithm incorporating heart rate, body temperature, respiratory bio-
markers, and daily patient-reported symptoms, demonstrated a sensitivity of 0.47 and specificity of 0.72 for 
detection of COVID-19 infection. We demonstrated high acceptability of the ANNE One sensors given high 
adherence and daily wear, despite previous studies suggesting a preference for wrist-mounted wearables. The chest 
sensor provided respiratory biomarkers unobtainable by finger or wrist mounted devices potentially improving 
algorithm accuracy.

Wearable devices as tools for remote monitoring have been previously reported. A South African study of 
high-risk, infected patients monitoring pulse oxygenation at home compared to those who did not demonstrated 
a mortality benefit, attributed to earlier hospital presentation17. Wearables may also mitigate disease spread via 
detection of pre-symptomatic or asymptomatic disease30. Early studies used single biomarkers (e.g. Temperature 
or RR) to identify known, early symptomatic cases of COVID-19 and relied on retrospective self-reported tim-
ing of symptoms and testing30,31. A retrospective study with Fitbit found abnormal resting HR as early as 7 days 
prior to symptom onset in 23/25 self-reported positive cases16. Mishra et al. similarly reported an HR, step count, 
and sleep data from Fitbit smartwatches demonstrated f63% of COVID-19 cases had aberrant signals prior to 
symptom onset (n = 32)14. In the TemPredict study, physiological data from the Oura Ring, developed an algo-
rithm identifying COVID-19 2.8 days before participants pursued testing (sensitivity of 82% and specificity of 

D

Vital Type Jensen-Shannon Divergence (bit) P-Value

RR(rpm) 0.18 0.02*

HR(bpm) 0.15 0.59

HRQ 0.10 0.19

HRV SDNN(ms) 0.17 0.22

SpO2(%) 0.16 <0.01*

Chest Temp(°C) 0.09 0.88

Cough Index 0.11 0.15

Snore Index 0.12 0.40

Figure 3.   (continued)
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63%)32. Dried blood spots were used for antibody testing, and derivation of RR via photoplethysmography may 
compromise accuracy compared to chest wall movement, particularly at higher respiratory rates. Algorithms 
did not incorporate pulse oxygenation or cough count33. In a cohort of 3318 individuals (of whom 84 contracted 
COVID-19), HR and step count abstracted from any smartwatch and combined with patient-reported symptoms 
successfully generated an alert for 80% of COVID-19 cases at a median of 3 days prior to symptom onset34.

Furthermore, a secondary analysis from the Digital Engagement and Tracking for Early Control and Treat-
ment (DETECT) study, a large, prospective app-based, device agnostic cohort of individuals who electively 
shared data and self-reported symptoms, testing, and vaccination status, demonstrated biomarkers from wearable 
devices showed deviations in HR, sleep and activity, predicting reactogenicity and immune response following 
COVID-19 vaccination35. A secondary analysis of the TemPredict Study similarly found deviations in resting 
HR, HRV, and temperature measured by the Oura ring predicting post-vaccination antibody levels36.

This is one of the first studies leveraging FDA-cleared biomarkers from a wearable to provide early detection 
of COVID-19 using molecularly confirmed positive RT-PCR COVID-19 testing14,15,30,31,37. The TemPredict study 
performed SARS CoV-2 antibody testing with dried blood spots which though offered confirmatory laboratory 
diagnosis, is not the gold standard and was only available in a small proportion of patients (3664 participants 
of 63,000 enrolled)32. In addition to molecularly confirmed disease, the presented study is one of the first to 
incorporate respiratory biomarkers into a predictive algorithm with all core vitals FDA-cleared. The ANNE 
One System collected more biomarkers, including novel respiratory vital signs not captured by wristwatches or 
rings (e.g. cough count) with value in determining infectiousness based on cough frequency38. A chest-mounted 

A

B

Fold #
True 
Positives

True 
Negatives

False 
Positives

False 
Negatives Accuracy Sensitivity Specificity Precision

F1 
Score AUC

0 78 4997 741 672 0.78 0.10 0.87 0.10 0.10 0.48

1 238 4960 489 934 0.79 0.20 0.91 0.33 0.25 0.55

2 90 5099 322 420 0.87 0.18 0.94 0.22 0.20 0.57

3 64 6653 1165 316 0.82 0.17 0.85 0.05 0.08 0.58

4 202 4893 683 328 0.83 0.38 0.88 0.23 0.29 0.65

Mean 134.4 5320.4 680 534 0.82 0.21 0.89 0.18 0.18 0.56

Figure 4.   (A) The performance of the ANNE system for prediction of COVID-19 in 2-h data windows is 
illustrated in the receiver operating (ROC) curves shown in panel (A) with the corresponding sensitivity, 
specificity, precision accuracy, AUC, and F1 score for each fold in panel (B). We conducted a subject-wise 
fivefold cross validation using class P as the positive class, and class NN as the negative class. The model is 
trained to predict the class label for each 2-h window.
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A

B

Fold #
True 
Positives

True 
Negatives

False 
Positives

False 
Negatives Accuracy Sensitivity Specificity Precision

F1 
Score AUC

0 6 19 9 7 0.61 0.39 0.46 0.68 0.40 0.63

1 5 20 10 8 0.58 0.42 0.38 0.67 0.33 0.58

2 8 25 4 7 0.75 0.25 0.53 0.86 0.67 0.72

3 5 20 6 9 0.63 0.38 0.36 0.77 0.45 0.51

4 8 17 10 5 0.63 0.38 0.62 0.63 0.44 0.60

Mean 6.4 20.2 7.8 7.2 0.64 0.36 0.47 0.72 0.46 0.62

Figure 5.   (A) The performance of the ANNE system for prediction of COVID-19 compared to the 
gold standard PCR test is illustrated in the receiver operating (ROC) curves shown in panel (A) with the 
corresponding sensitivity, specificity, accuracy, precision, AUC, and F1 score for each fold in panel (B). Using 
the trained model (performance shown in Fig. 4), we took the average class P probability of all 2-h data windows 
during the first 5 days of the study for each subject in the test set. The average probability is used to predict the 
PCR test result on the first day.

Table 2.   Comparison of model performance on asymptomatic, pre-symptomatic, and symptomatic data 
windows, where TP (true positive), FP (false positive), TN (true negative), FN (false negative).

Fold #

Asymptomatic Pre-symptomatic Symptomatic

TP TN FP FN F1 TP TN FP FN F1 TP TN FP FN F1

0 0 1168 167 0 0 1 690 167 6 0.0114 160 2108 285 955 0.205

1 25 1220 90 167 0.163 0 616 72 0 0.0000 267 2950 325 957 0.294

2 13 933 116 51 0.135 20 666 78 162 0.1429 181 3042 109 1092 0.232

3 27 972 112 144 0.174 0 351 19 0 0.0000 202 3962 502 1026 0.209

4 1 972 91 11 0.019 0 745 42 0 0.0000 296 2260 258 1117 0.301

Mean 13.2 1053 115.2 74.6 0.098 4.2 613.6 75.6 33.6 0.0309 221.2 2864.4 295.8 1029.4 0.248
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system, less sensitive to ambient temperature changes, may more accurately measure body temperature. Previous 
studies show some patients have an unstable baseline, and higher-resolution, information dense models may 
improve accuracy and specificity of algorithm performance34.

There are important limitations to this study. Though the study utilized laboratory testing to identify posi-
tive cases, the specific variant of COVID-19 was not determined. Patients were recruited primarily during the 
Delta wave in 2020. Subsequent variants, such as Omicron, may have variable biological presentations with mild 
disease and less robust biological signals, affecting sensitivity and specificity of the algorithm39. Additionally, it 
is possible some positive cases of COVID were misclassified as negatives given missing laboratory data. Efforts 
were made to mitigate the risk of misclassification through serological testing and interrogation of the EMR. 
Collection of interval vaccination was performed to prevent misclassification. The study only documented test-
ing for COVID-19 and it will be important to build libraries of patients with other diseases. The ability of the 
algorithm to distinguish COVID-19 from other infectious or respiratory diseases (e.g. Asthma) was outside the 
study’s scope.

As we progress to new stages of the COVID-19 pandemic, devices serving multiple roles from asymptomatic 
disease detection, monitoring well-being in the setting of known infections, and measures associated with immu-
nization response will become only more relevant. Low-profile devices measuring respiratory biomarkers and 
incorporating patient symptoms may be best suited to build scalable, population-level pre-symptomatic detection 
programs and assess for deterioration of infected individuals.

Data availability
The data for the development of a cough detection algorithm and COVID-19 study are available upon request 
to Shuai Xu MD at stevexu@northwestern.edu.
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