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Quantum transport 
of massless Dirac fermions 
through wormhole‑shaped curved 
graphene in presence of constant 
axial magnetic flux
F. Naderi 1 & K. Hasanirokh 2*

In this work, we have studied the spin‑dependent quantum transport of charged fermion on (2+ 1)

‑dimensional spacetime, whose spatial part is described by a wormhole‑type geometry in the presence 
of constant axial magnetic flux. Choosing the solutions of the Dirac equation associated with real 
energy and momentum, we explored the spin‑dependent transmission probabilities and giant 
magnetoresistance (GMR) through a single layer of wormhole graphene with an external magnetic 
field, using the transition matrix (T‑Matrix) approach. The spin‑up and spin‑down components within 
the A and B sublattices of graphene in the matrix of 4× 1 wave function are coupled to each other due 
to the wormhole structure and the magnetic field. We have found that transport properties strongly 
depend on the magnetic field, incident energy, and geometric parameters of the system. We observed 
that the transmission probability increases as the radius of the wormhole increases, and the length of 
the wormhole decreases. The higher energies lead to a decrease in the transmission probabilities of 
particles. Furthermore, we observed that the probability of the spin‑flip effect is almost larger than 
that of the non‑spin‑flip effect, illustrating that electrons lose their spins during transmission. These 
findings highlight the complex and interesting behavior of wormhole graphene in the presence of 
external magnetic fields and suggest that these nano structures can have potential applications in 
electronic and spintronic devices.

In recent years, the study of fermions on 2-dimensional surfaces has been a significant area of research. This 
field has revealed intriguing boundary phenomena that do not have analogs in the bulk, such as the quantum 
(spin) Hall effect, topological matters, and the physics of  graphene1. The physics of graphene has led to numer-
ous practical applications in various fields. Graphene’s high electrical conductivity and strength make it an ideal 
material for the development of faster and more efficient electronic devices. Graphene-based transistors, for 
example, have the potential to revolutionize the field of electronics by enabling faster and more energy-efficient 
computers. In addition, graphene’s unique properties also make it a promising material for energy storage and 
conversion. Graphene-based batteries and supercapacitors have shown promise for high-capacity energy storage, 
while graphene-based solar cells have the potential to be more efficient and cheaper than traditional silicon-based 
solar  cells2–4. Graphene sheets are highly flexible and can be curved, rolled, stretched, twisted, and deformed 
without losing their unique properties. Even puncturing holes into graphene sheets is possible, and these holes 
can be connected to nanotubes to create a curved structure called wormhole that bridges two graphene sheets. 
By connecting multiple wormholes, a network of entangled electronic structures can be formed, allowing mul-
tiple graphene sheets to be interconnected with each  other5. Researchers have even produced cage structures of 
graphene wormholes called “schwarzites,” which have promising  properties6,7.

Generally, the studies on curved graphene take advantages of the gauge field theory approaches, where 
interpreting the geometrical curvature of the 2D structure as pseudo gauge fields, the Dirac field equation in a 
(2+ 1)-dimensional curved spacetime provides the dynamics of quasi-particles dynamics in  graphene8–13. In fact, 
presence of gauge fields can significantly impact the behavior of quantum particles on a curved  surface8,13. By 
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applying gauge fields, such as electric and magnetic fields, to these systems, unique and intriguing 2D phenom-
ena can emerge, including the well-known Landau quantization of fermionic states on a  plane14,15. It has been 
demonstrated that the effects of strain and gauge fields can be similar in  2D8,16. The geometric curvature effects 
of 2D surface can mimic gauge fields, and the curvature and gauge connection appear with equal importance 
in the equation of  motion17–21. The behavior of quantum particles on a curved surface in the presence of gauge 
fields can be significantly different from the flat  situation22,23. For instance, fermions on a 2-dimensional sphere 
and wormhole experience spin-orbit coupling induced by the surface curvature, even in the absence of extra 
gauge  fields24. Adding an axial magnetic field, generates Landau quantization that is distinct from the planar 
 case25. Particularly, the graphene wormholes in presence of an external magnetic field have been studied  in25–28.

Beside graphene, wormhole surface has been also considered in further 2D structures, for instance the liquid 
crystal film which has been studied to construct optical wormhole from hollow disclinations  in29. Meanwhile, 
electromagnetic wormholes and virtual magnetic monopoles have also attracted the attention of many researches. 
Based on the Maxwell’s equations, the tunneling of electromagnetic wave between two points has been investi-
gated in these devices. The growing development of metamaterials designed for microwave and optical applica-
tions such as optical cables, 3D video displays and optical computers requires the study of the electromagnetic 
 wormholes30. It should be noted that the 2-dimensional wormhole is fundamentally different from those appear 
in (3+ 1)-dimensional spacetimes in General Relativity (see, for example,31), as there is no time dilation in the 
2-dimensional wormhole under consideration.

The unique properties of quantum particles on curved surfaces in the presence of gauge fields have led to the 
development of several promising technologies, such as topological quantum computing, quantum sensors, and 
quantum communication. In this area, the study of charged fermions in wormholes is a relatively new area of 
research, and practical applications are still being explored. However, there are some potential applications that 
could emerge from this research in the future. One possible application is in the development of new materials 
with unique electronic properties. The behavior of charged fermions in a wormhole is influenced by the geometry 
of the wormhole, which can be controlled in certain materials. This could potentially lead to the development of 
materials with novel electronic properties that could be useful in a wide range of applications, from electronics to 
energy storage. Another possible application is in the development of new quantum technologies. The behavior 
of charged fermions in a wormhole can exhibit quantum effects such as entanglement, which could potentially 
be useful for the development of new quantum technologies such as quantum computing and quantum com-
munication. There are several challenges that researchers face when studying charged fermions in wormholes: 
mathematical complexity, experimental limitations, unconventional behavior, and limited understanding of 
wormholes.

The study of GMR has numerous practical applications in the field of spintronics. GMR refers to the phe-
nomenon where the electrical resistance of a magnetic material changes significantly in response to an external 
magnetic field. This effect can be exploited in the design of magnetic sensors, magnetic random access memory 
(MRAM), and other spintronics devices. One practical application of GMR is in the development of hard disk 
drives (HDDs). GMR sensors are used to read the magnetic data stored on the disk platters in an HDD. The 
GMR effect allows for higher data storage densities and faster data transfer rates, making HDDs more efficient 
and cost-effective.

The behavior of Dirac fermions in graphene wormholes without gauge fields has been discussed in Ref.5,32. 
In Ref.25,26, authors investigated the effects of an axial magnetic field on a charged fermion in a (2+ 1)-dimen-
sional wormhole spacetime. For the scenario of a constant magnetic flux, the system can be solved analytically 
to provide exact solutions that contain both “normal” modes (real energy but complex momentum) and qua-
sinormal modes.

Our research focuses on exploring the spin-dependent quantum transport characteristics of a charged fermion 
as it travels through the surface of a wormhole, while an external magnetic field is present along the axis direction 
of the wormhole. Following the formalism presented  in26, we first extend the class of solutions for Dirac equa-
tion to provide the wave functions to be used in T-matrix method. Then, limiting our attention to the solutions 
with real energy and momentum, the spin-dependent transmission probabilities and giant magnetoresistance 
(GMR) through a single layer of wormhole graphene in the presence of an external magnetic field are studied.

In “Theoretical model and calculations” section, the mathematical formalism is established to obtain the solu-
tions of Dirac equation on the (2+ 1)-spacetime constructed by the wormhole type spatial part, tacking into the 
account the magnetic field associated with a constant axial flux. Then, “Results and discussion” section contains 
the discussion of the obtained results. Finally, some concluding remarks are presented in “Conclusion” section.

Theoretical model and calculations
The curved graphene structures can be considered as 2D pseudo-relativistic systems, which in the long wave-
length continuum limit at which graphene sheet can be seen as a continuum with characteristic Fermi velocity vF , 
is described by massless Dirac action, whose variation gives the equations of motion for the pseudo-relativistic 
Dirac spinors �8–11,33. The curvature of spacetime is usually interpreted as an effective potential experienced by 
the fermion, which appears in the Dirac equation by modifying the partial derivative.

In this section, providing the formalisim of massless Dirac equation on (2+ 1)-dimensional curved worm-
hole spacetime in presence of a magnetic field with constant axial flux, the four dimensional Dirac spinor are 
obtained by solving the massles Dirac equation. Also, matching conditions in the scattering are studied in the 
T-Matrix approach.
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Dirac equation on curved spacetimes
The general form of Dirac equation on curved spacetime in the presence of an additional electromagnetic four-
potential Aµ  is33

where � represents the Dirac spinor field, e is electric charge, a = 0, 1, 2 are flat coordinate basis indices, 
µ = 0, 1, 2 are curved spacetime indices, γ̂ a denote flat γ-matrices, ∇µ is the covariant derivative, and eaµ are the 
vielbeins, which are obtained by writing the curved spacetime metric gµν in terms of flat Minkowski metric, 
ηab = diag(−1, 1, 1) in the following form

Defining γ̂ a = ηab γ̂b , in which ηab denotes the inverse of the Minkowski metric, the γ̂ a matrices should satisfy 
the standard Clifford algebra 

{

γ̂ a, γ̂ b
}

= 2 ηab � . The covariant derivative ∇µ is defined as  follows33

where Ŵµ , standing for the spin connection of the spinor field, plays the role of an effective gauge field and is 
given by

where the Christoffel symbols Ŵβµν are defined by

Considering the (2+ 1)-dimensional curved spacetime to be described by the line element

the non-zero components of Ŵβµν are

which lead to

For the Dirac matrices, the following representation will be adopted

where σ k are the Pauli matrices. The γ matrices obey the Clifford algebra {γ̂ a, γ̂ b} = 2ηab , using the identity of 
Pauli matrices σ iσ j = δij + iǫijkσ k , in which ǫijk is Levi-Civita symbol.

Geometric and gauge description of the wormhole
We follow the geometric and gauge setup provided  in26, where the curved graphene is considered to be con-
structed by two flat planes connected by a hyperbolic bridge, as shown in Fig. 1. In doing so, the metric (5) is 
described by the following R(u) function

in which a and q are constants, coshq(x) ≡ ex+qe−x

2  is the q-deformed hyperbolic function defined  by34, and 
up,m denote the values of u at which the wormhole ends and connects to the upper and lower planes, where 
R′(up,m) = ±1 , and

Rp,m ≡ R(up,m) stand for the corresponding radial distance at the boundary of the upper and lower plane. At the 
midpoint of wormhole located at u0 = 1

2 ln q , R(u) = a that is the minimum of R(u) function. The wormhole is 
symmetric with respect to u0 . Also, the v coordinated is in the range of v ∈ [0, 2π] . When q = 1 , the deformed 
hyperbolic functions reduce to hyperbolic functions.

To apply an external magnetic field with constant flux through the circular area enclosed by the wormhole 
at a fixed z, the four-potential in the wormhole coordinates is considered to  be26

(1)γ̂ aeµa

(

−�∇µ + i
e

c
Aµ

)

� = 0,

(2)gµν(x) = e a
µ (x) e

b
ν (x) ηab.

(3)∇µ ≡ ∂µ − Ŵµ,

(4)Ŵµ = −1

4
γ̂ aγ̂ beνa

[

∂µ

(

gνβe
β

b

)

− e
β

bŴβµν

]

,

Ŵβµν = 1

2

(

∂µgβν + ∂νgβµ − ∂βgµν
)

.

(5)ds2 = gµυdx
µdxυ = −c2dt2 + du2 + R2(u)dv2,

(6)−Ŵuvv = Ŵvuv = Ŵvvu = 1

2
∂uR

2 = RR′,

(7)Ŵt = 0, Ŵu = 0, Ŵv =
1

2
γ̂ 1γ̂ 2R′.

γ̂ 0 =
(

i 0
0 − i

)

, γ̂ k =
(

0 iσ k

−iσ k 0

)

,

(8)R(u) =
{ u− up + Rp, for up < up

a coshq(u/r) for up ≤ u ≤ um
−(u− um)+ Rm, for u < um,

(9)up,m = r ln
(

√

q+ r2

a2
± r

a

)

and Rp,m =
√

qa2 + r2.
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whose associated magnetic filed in z direction is Bz ∝ 1
R2

 , leads to constant magnetic flux, φ =
∫ �B.d�a = πR2B.

Dirac equation in the wormhole in presence of constant magnetic flux
In the described geometry, the Dirac equation (1)  reads26

where D is a differential operator

Considering a stationary state of the Dirac spinor

where m = 0,±1,±2, . . . , is the orbital angular momentum quantum number, and the up and d indices refer to 
spins up and down, respectively, the equation (11) leads to the following coupled set of equations

(10)Aµ(t, u, v) =
∂xν

′

∂xµ
Aν′(t, x, y, z) =

(

0, 0,
1

2
BR2

)

,

(11)
(

i∂ct iD
−iD − i∂ct

)

� = 0,

(12)D ≡ σ 1

(

∂u +
R′

2R

)

+ σ 2

(

1

R
∂v −

ie

2�c
BR

)

.

(13)�(t, u, v) = e−
i
�
Eteimv







χup(u)
χd(u)
ϕup(u)
ϕd(u)






,

(14)ϕ′
up(u)+

R′ − 2m′

R
ϕup(u)+

iE

�c
χd(u) = 0,

(15)ϕ′
d(u)+

R′ + 2m′

R
ϕd(u)+

iE

�c
χup(u) = 0,

(16)χ ′
up(u)+

R′ − 2m′

R
Xup(u)+

iE

�c
ϕd(u) = 0,

(17)χ ′
d(u)+

R′ + 2m′

R
Xd(u)+

iE

�c
ϕup(u) = 0,

Figure 1.  A wormhole created by smooth connection of a hyperbolic bridge to two flat planes at u = up and 
u = um.
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where m′ = m− φ

φ0
 , φ is the constant magnetic flux, and φ0 ≡ hc/e is the magnetic flux quantum. Combining 

these equations, one can get the following equation for ϕ(u) functions

where σ is the spin-state index, and ϕup(u) and ϕd(u) are associated with σ = +1 and σ = −1 , respectively. Also, 
k2 ≡ E2/�2c2 is the momentum parameter.

The φup(u) and φd(u) functions obtained by solving the equation (18) can be used to determine the the χ(u) 
functions, via equations (16) and (17).

Solutions in the hyperbolic throat of wormhole
The equation (18) have been solved  in26 by defining the variable X(u) ≡ rR′(u)/a = sinhq(u/r) and considering 
weighting function solution ϕ(X) = (

√
q+ iX)α(

√
q− iX)β�(X) . Setting X = −i

√
qY  , the equation (18) is 

then rewritten in terms of Y as follows

which is the Jacobi Differential Equation. The energy levels  are26

where n is a real constant and the powers in the weight factors of φ functions are

in which κ1, κ2 = ±1 . We consider the solution of (18) given by the following combination(The term associated 
with C2 is not included in the solutions provided  in25,26)

where A and B are constants. On the other hand, by rewriting the equations (16) and (17) in terms of X as follows

we obtain the χup(u) and χd(u) functions by substituting (22) into (23) and (24) as follows

where σ = ±1 are associated with χup and χd , respectively.
Depending on the sign choices of κ1 and κ2 , the the spin-orbit coupling term ∼ σmr/a

√
q can be present or 

absent at the energy levels described by (20), in such a way  that26

(18)ϕ′′(u)+R′

R
ϕ′(u)+

(

R′′

2R
−

(

R′

2R

)2

+ m′σR′ −m′2

R2
+ k2

)

ϕ(u) = 0,

(19)

(1− Y2)�′′(Y)+ 2
[
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]
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4
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)2

,
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1

4
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√
q
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)

,
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for κ1 = κ2 = 1,

for κ1 = κ2 = −1,

for κ1 = −κ2 = 1 , and

for κ1 = −κ2 = −1 . Accordingly, the momentum k is generally complex-valued, which shows that the solu-
tions are quasi-normal modes. As it is shown  in26, the solutions can be analytically continued to the cases with 
negative n, where the n = − 1

2 yields normal modes with real energy and momentum in the (28) and (29) cases.
Hence, in the hyperbolic bridge with um ≤ u ≤ up , where the components of � are given by (22) and (25), 

the general solution with real energy can be expressed as

where X = sinhq(u/r) , the ± signs denote the values of κ1 and κ2 chosen to have real values k and E, and the 
condition En,σ = En′ ,σ ′ is required.

Solutions in the upper and lower flat surfaces
Noting (8), in the flat area outside the hyperbolic region, where R′(u) = ±1 for upper and lower planes, respec-
tively, the equations of motion (18) take the form

with � = 1 and � = −1 indicate the upper and lower planes, respectively, and ϕup and ϕd are associated with 
σ = ±1 , respectively. Also, the equations (16) and (17) read

By solving (31), we obtain the ϕ(u) in terms of the Hankel function of the first and second kind, where for u ≥ up 
in the upper plane are given by

and for u ≤ um in the lower plane

Then, (32) gives the χ(u) at the upper and lower planes, respectively, by

where ϕup and χup ( ϕd and χd ) are associated with σ = 1 ( σ = −1 ). The Hankel function of the first and second 
kinds correspond to the waves propagating in the positive and negative directions of u, respectively.

Matching conditions in the scattering
Having found the four components of �(t, u, v) (13), where each of the components is considered to include four 
terms at the upper and lower flat planes and the curved hyperbolic wormhole throat, the matching conditions at 

(26)kn,m′ r = i(n+ 1), E2 = −�
2c2

r2
(n+ 1)2,
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(
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√
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(
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a
√
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(
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(
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,
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the boundaries that connect these three regions need to be considered. The matching conditions to be employed 
on the wave functions are the equality of angular momentum (m′ ), energy (E), and consequently the momentum 
k due to the relation (20). In addition, the wave functions are required to be smooth continued (i.e., C1 continued) 
at the boundaries connecting three regions of the wormhole.

Our analysis assumes that incoming electrons with energy E propagate from the upper graphene layer and 
interact with the wormhole surface. When the propagating waves in the upper plane, considered to be the 
incoming waves that scatter with the wormhole, reach the upper boundary at up , the waves will be partially 
transmitted into the wormhole and partially reflected back. At the lower boundary um , the transmitted waves 
will be again undergo the partial reflection and transmission. This scenario implies R(m)

σ = 0 , since it does not 
include incoming waves at the lower plane. Then, the normalization of Iσ ≡ 1 and R(p)

σ ≡ Rσ can be applied, 
where the outgoing and incoming waves are associated with the Hankel function of the first and second kinds.

Accordingly, by applying m′
p = m′

m = m′ , as a boundary condition at the upper plane we have

while at the lower plane

where Ru and Rd are the reflection coefficients and Tu and Td are transmission coefficients for up and down spins, 
respectively.

T‑matrix
Aimed at investigating the spin-dependent transmission probabilities and GMR of a single layer of wormhole 
graphene under the external magnetic field with constant flux, the T-matrix  method35 can be utilized here to 
obtain the transmission and reflection probabilities.

The T-Matrix method is a mathematical technique used to analyze the propagation of waves through layered 
structures. It is commonly employed in optics, electromagnetics, and solid-state physics to study the transmis-
sion and reflection properties of multilayer systems. Once the overall transfer matrix is obtained, it can be used 
to calculate various properties of interest, such as the transmission and reflection coefficients, GMR, the phase 
shift, and the intensity distribution within the structure. By manipulating the transfer matrix or modifying the 
properties of individual layers, researchers can analyze and optimize the performance of multilayer systems, 
such as optical coatings, photonic devices, or thin film structures.

Here, considering the wave functions of the upper plane, given by (38) and (39), at the upper boundary 
u = up , where R(u) = Rp and the Rp is given by (9), we define the following matrix

in which H(i)
± = H

(i)
m′±1/2

(

kRp
)

 with i = 1, 2 . Also, for the lower plane, at the boundary u = um , where R(u) = Rm 
and the Rm is given by (9), we define based on (40) and (41)

in which H(i)
± = H

(i)
m′±1/2(−kRm) with i = 1, 2.

Furthermore, for the hyperbolic wormhole, considering the wave functions (22), we consider the terms accom-
panied with Aκ1,κ2,σ and Bκ1,κ2,σ in (22) as ϕ1(κ1, κ2) and ϕ2(κ1, κ2) , respectively. Then, we define h1 = ϕ1

up(+,−) , 
h2 = ϕ1

up(−,+) , h3 = ϕ2
up(+,−) , h4 = ϕ2

up(−,+) , g1 = ϕ1
d(+,−) , g2 = ϕ1

d(−,+) , g3 = ϕ2
d(+,−) , g4 = ϕ2

d(−,+) . 
Also considering the wave functions (25), we consider the terms accompanied with Aκ1,κ2,σ and Bκ1,κ2,σ in 
(22) as χ1(κ1, κ2) and χ2(κ1, κ2) , respectively. Then, we set k1 = χ1

up(+,−) , k2 = χ1
up(−,+) , k3 = χ2

up(+,−) , 

(38)
ϕ(p)(u) =Ru

(

i − eiπ m′)
H

(1)

m′− 1
2

(kR(u))− Rd

(

i + eiπ m′)
H

(1)

m′+ 1
2

(kR(u))

+ 1√
2

(

i + e−iπ m′)
H

(2)

m′− 1
2

(kR(u))+ 1√
2

(

−i + e−iπ m′)
H

(2)
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2

(kR(u)),

(39)
χp(u) =Ru

(

1− ieiπ m′)
H
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(kR(u))+ Rd

(
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H
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H
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(40)ϕ(m)(u) =Tu
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H
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(−kR(u))+ Td
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(41)χm(u) =Tu
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k4 = χ2
up(−,+) , f1 = χ1

d (+,−) , f2 = χ1
d (−,+) , f3 = χ2

d (+,−) , f4 = χ2
d (−,+) . Accordingly, the following 

matrix can be considered for the hyperbolic wormhole

The matrix will be evaluated at the upper and lower boundaries, where at u = up and u = um , given by (9), we 
have Xp = r

a and Xm = − r
a , respectively.

Then, the boundary conditions requires

Also, A1 = A+,−,+ , A2 = A−,+,+ , B1 = B+,−,+ , and B2 = B−,+,+ . According to (45), we can also have

The provided equations can be used to obtain the Tu , Td , Ru and Rd . Then, either of equations in (45) can be used 
to identify the A1 , A2 , A3 , and A4 coefficients.

Using the Td and Tu obtained via T-matrix method, we can determine the GMR as

The study of GMR in quantum structures has garnered significant attention due to its potential applications in 
spintronics and magnetic memory devices. GMR refers to the large change in electrical resistance observed when 
a magnetic field is applied to a layered structure containing magnetic and non-magnetic materials. GMR effects 
in nano systems can be used to create spin filters, spin valves, and other spintronic devices that utilize the spin 
of electrons for information storage and processing.

Results and discussion
In this section, we present the numerical results obtained for the described graphene wormhole structure in the 
following figures.

Studying wave functions in nano structures is crucial for understanding the energy levels, size and shape 
effects, electron behavior, device design, and fundamental quantum mechanics associated with these nanostruc-
tures. The knowledge gained from such studies enables the development of novel technologies and applications 
based on quantum structures. Researchers often employ theoretical models to describe the behavior of elec-
trons in quantum structures. These models, such as the effective mass approximation or the density functional 
theory, provide mathematical frameworks to calculate and predict wave functions. In cases where exact analytical 
solutions are not feasible, numerical simulations are employed. Experimental techniques like scanning probe 
microscopy can provide direct information about the wave functions in quantum structures. By combining 
theoretical calculations with experimental techniques, researchers can analyze and determine the wave func-
tions in quantum structures. These approaches provide valuable insights into the electronic properties, behavior 
of electrons, and energy levels in these nano-scale systems. In Fig. 2, we show the real and imaginary parts of 
ϕup−up with and without spin-flip ϕup−d for m = 1 and (a) a = 8nm and (b) a = 10nm . As mentioned, ϕup > 
and χd > are coupled to each other, so describing the behavior of a single component of such a four-component 
wave function is very complicated.

Figure 3 displays the dependence of the transmission coefficients Tu and Td on the effective angular quantum 
number m′ . The coupling between spin-up and spin-down wave functions is due to the wormhole structure. This 
coupling can also arise due to the presence of magnetic fields or other interactions that can affect the spin of the 
particles. The coupling between spin-up and spin-down wave functions leads to the spin-up and spin-down states 
being related to each other and cannot be treated as independent. The coupling between spin-up and spin-down 
wave functions is a fundamental aspect of quantum mechanics that has important consequences for the behavior 
of many physical systems. One example of a spintronics device that utilizes the coupling between spin-up and 
spin-down wave functions is the magnetic tunnel junction (MTJ). The coupling between spin-up and spin-down 
wave functions means that the spin-up and spin-down states are related to each other and cannot be treated as 
independent in some systems. In other words, the behavior of one spin state can affect the behavior of the other 
spin state. There are several practical applications of the coupling between spin-up and spin-down wave func-
tions, especially in the field of spintronics such as Magnetic memory devices, Spin filters, and Spin qubits. Our 
findings indicate that as the value of m′ increases, the transmission probabilities initially decrease until reaching 
a minimum, after which they increase again for high values of m′ . Moreover, we observed that the probability 
of spin-flip is almost larger than that of non-spin-flip, indicating that electrons lose their spins during transmis-
sion. This feature is particularly important for magnetic information storage and fabrication. The observed m′
-dependence of the transmission probabilities can be attributed to the interference between the incoming and 
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reflected waves at the upper and lower Hilbert horizons, which leads to resonant transmission and reflection for 
certain values of m′ . The spin-flip effect, on the other hand, arises from the presence of the magnetic field, which 
causes the spin orientation of the electrons to process as they propagate through the material. Overall, our results 
suggest that wormhole graphene under external magnetic fields can exhibit interesting spin-dependent transport 
properties that may have potential applications in spintronics and magnetic information storage.

Figure 4 illustrates the dependence of the transmission probability Tu on the angular quantum number m′ , 
energy E, and radii a and r. Our results demonstrate that these parameters can strongly influence the transport 
properties of the wormhole graphene system. As expected, we found that Tu decreases as the value of m′ increases, 
reflecting the interference between the incoming and reflected waves at the Hilbert horizons. We also observed 
that the transmission probability increases as the radius a of the wormhole increases, due to the increased cross-
sectional area available for electron transmission. Conversely, the transmission probability decreases as the length 
of the wormhole increases, which occurs when the radius r increases. This effect can be attributed to the increased 
amount of scattering and reflection that occurs as the electrons propagate over a longer distance. The higher 
energies lead to a decrease in the radius a. This decrease in radius can in turn lead to a decrease in the transmis-
sion probabilities of particles. Together, our results suggest that the transport properties of wormhole graphene 
can be effectively controlled by tuning the angular quantum number, energy, and geometric parameters of the 
system. These findings may have potential applications in the design of novel electronic and spintronic devices.

In addition to the results obtained for Tu , we also investigated the behavior of the transmission coefficient Td 
as a function of the angular quantum number m′ , energy E, and radii a and r, as depicted in Fig. 5. Interestingly, 
we observed a different behavior for Td compared to Tu , suggesting that the spin-dependent transport properties 
of the wormhole graphene system are highly sensitive to the specific details of the system. Our findings suggest 
that by applying an external magnetic field to the wormhole graphene system, it is possible to further control 
the transmission probabilities and spin-dependent transport properties. Additionally, modifying the geometry 
of the wormhole, such as introducing additional constrictions or widenings, can lead to resonant transmission 

Figure 2.  Real and imaginary parts of wave function ϕup as the function of u for (a) radius a = 8nm , (b) 
a = 10nm.

Figure 3.  Transmission coefficients Tu and Td as the function of the effective angular quantum number m′ for 
r = 3 nm and a = 5 nm.
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or reflection for specific values of energy or angular momentum. Overall, these results highlight the rich and 
complex behavior of wormhole graphene under external magnetic fields, and suggest that this material may 
have potential applications in spintronics and electronic devices. The ability to tune and control the transport 
properties of the system through external and internal parameters may enable the development of novel devices 
with enhanced functionality and performance.

While the authors showed that T(m′) and R(m′) exhibit oscillating behavior for m′26, we found that the 
transmission coefficients exhibit a different behavior. The reason may lie in the fact that we have not used the 
asymptotic forms of the wave functions at the boundaries, and not only the eimv plays the m′-dependence role, 
but also the Jacobi polynomials contributed significantly in our analysis. The spin-dependent transmission coef-
ficient plots provide valuable tool for analyzing and designing spin-dependent transport systems. These plots 
provide information on how the transmission of particles with different spin orientations changes as a function 
of the parameters of the system. This information is important for understanding the behavior of spin-dependent 
transport in various materials and devices, and for designing new materials and devices with specific spin-
dependent properties. In a system where the spin-dependent transmission coefficient is present, the transmis-
sion of particles with different spin orientations can be influenced differently. By adjusting the parameters that 
affect the spin-dependent transmission coefficient, we can manipulate the spin transport properties of a system 
and thus design devices with desired functionalities. The spin-dependent transport properties of a graphene 
wormhole can be controlled by adjusting the size and shape of the hole, the spin-orbit coupling strength, and 
the magnetic field applied to the system.

In Figs. 6 and 7, Tu and Td are plotted as a function of radii a and r in panel (a), and as a function of m and 
E in panel (b). As expected, Td is higher than Tu with increasing parameter m′ . While Td is lesser than Tu with 
increasing radii a and r. These parameters can effectively control the spin-dependent transmission coefficient.

In the following, we investigated the effects of wormhole size, incident energy, and magnetic field on GMR. 
In general, the GMR effect arises from the spin-dependent scattering of electrons at interfaces between mag-
netic and non-magnetic materials. The size of the wormhole can affect the electronic properties of the material 
and the spin-dependent scattering of electrons, which can in turn affect the magnitude of the GMR effect. The 
incident energy of the electrons can also affect the GMR effect, as higher energy Electrons can penetrate deeper 
into the material and interact differently with the magnetic and non-magnetic regions. Finally, the magnetic 
field can directly influence the GMR effect by altering the relative orientation of the magnetic and non-magnetic 

Figure 4.  Transmission probability Tu as the function of the (a) radius a, (b) angular quantum number m′ , (c) 
radius r, and (d) energy E.
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regions and thus affecting the spin-dependent scattering of electrons. Overall, the effects of wormhole size, inci-
dent energy, and magnetic field on GMR are complex and depend on the specific system under study. Further 
research is needed to fully understand the interplay between these parameters and their effects on GMR in vari-
ous spintronics devices. Figure 8 shows that the size of the wormhole, incident energy, and magnetic field can 
all simultaneously affect the GMR. The size of the wormhole can affect the electronic properties of the material 
and thus the magnitude of the GMR effect. We observed that as the radius of the wormhole increases, the GMR 
exhibits oscillatory behavior (Fig. 7a) and as r increases, GMR decreases (Fig. 7c). Previous studies have shown 
that there are several other factors that can affect the oscillatory behavior of GMR. In addition to the size of 
the wormhole, other factors that can influence the oscillations in GMR include the strength and direction of 
the magnetic field, the spin polarization of the injected current, and the geometry of the  device36,37. The energy 
of the electrons can affect the GMR effect by altering the penetration depth of the electrons into the magnetic 
and non-magnetic regions of the material. Higher energy Electrons can penetrate deeper into the material, and 

Figure 5.  Transmission probability Td as the function of the (a) radius a, (b) angular quantum number m′ , (c) 
radius r, and (d) energy E.

Figure 6.  Transmission probability Tu as the function of the (a) radii a and r, (b) angular quantum number m′ 
and energy E.
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thus the GMR effect can be affected by the energy of the electrons. The strength and direction of the magnetic 
field can directly influence the magnitude of the GMR effect. When the magnetic field is applied perpendicular 
to the plane of the material, the GMR effect is maximized. The GMR effect decreases as the angle between the 
magnetic field and the plane of the material increases. As the energy increases from zero to 100, GMR exhibits a 
similar behavior for m′ values of 1, 3, and 5 (Fig. 7d). For higher magnetic fields (m′ = 2, 3) , GMR remains nearly 
constant, while for weaker magnetic fields, GMR increases. As the energy of the electrons in the device increases, 
the spin-dependent scattering of the electrons by the magnetic fields becomes more efficient, which results in 
an increase in GMR. This behavior is due to the fact that the scattering of the carriers is strongly dependent on 
the relative orientation of the magnetic field in the graphene layers.

The magnetic field can affect the GMR effect in several ways. First, the magnetic field can directly influence 
the orientation of the magnetic moments in the magnetic and non-magnetic regions of the material. When the 
magnetic field is applied perpendicular to the plane of the material, the magnetic moments in the magnetic and 
non-magnetic regions become aligned, resulting in an increase in the GMR effect. Conversely, when the mag-
netic field is applied parallel to the plane of the material, the magnetic moments become anti-aligned, resulting 

Figure 7.  Transmission probability Td as the function of the (a) radii a and r, (b) angular momentum number 
m′ and energy E.

Figure 8.  GMR as the function of the (a) radius a, (b) angular quantum number m′ , (c) radius r, and (d) energy 
E.
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in a decrease in the GMR effect. Second, the magnetic field can alter the spin-dependent scattering of electrons 
passing through the material. In a typical GMR device, a current of spin-polarized electrons is injected into 
the magnetic layer, where it interacts with the magnetic moments. The scattered electrons then pass through a 
non-magnetic layer, where their spin polarization is detected. The magnetic field can affect the spin-dependent 
scattering of electrons by altering the relative orientation of the magnetic moments in the magnetic layer and 
thus affecting the probability of electron scattering. Finally, the strength of the magnetic field can also affect the 
magnitude of the GMR effect. In general, a stronger magnetic field can result in a larger GMR effect by increasing 
the degree of magnetic moment alignment in the magnetic and non-magnetic regions of the material.

Conclusion
We have studied the spin-dependent quantum transport of massless Dirac fermion on (2+ 1)-dimensional 
curved spacetime in the presence of constant axial magnetic flux is explored. The geometric and gauge setup 
provided  in26 has been used, where the geometry of spatial part of spacetime is considered to be a wormhole 
created by connection of a hyperbolic bridge between two upper and lower plane, while a constant magnetic 
flux is applied. In order to employ the T-matrix method to study the transmission probability, we found four-
component Dirac spinor as the solution of Dirac equation on curved spacetime. The class of solutions associated 
with real energy and momentum are then chosen to be utilized. The coupling between spin-up and spin-down 
wave functions is due to the wormhole structure. Also, the magnetic field enhances this coupling and thus 
causes the spin orientation of the electrons to precess as they propagate through the material. Our numerical 
results indicate that the magnetic field, incident energy and wormhole dimension can effectively control the 
spin-dependent transport properties.
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