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On topological indices and entropy 
measures of beryllonitrene network 
via logarithmic regression model
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Chemical graph theory, a subfield of graph theory, is used to investigate chemical substances 
and their characteristics. Chemical graph analysis sheds light on the connection, symmetry, and 
reactivity of molecules. It supports chemical property prediction, research of molecular reactions, 
drug development, and understanding of molecular networks. A crucial part of computational 
chemistry is chemical graph theory, which helps researchers analyze and manipulate chemical 
structures using graph algorithms and mathematical models. Beryllonitrene , a compound of interest 
due to its potential applications in various fields, is examined through the lens of graph theory and 
mathematical modeling. The study involves the calculation and interpretation of topological indices 
and graph entropy measures, which provide valuable insights into the structural and energetic 
properties of Beryllonitrene’s molecular graph. Logarithmic regression models are employed to 
establish correlations between these indices, entropy, and other relevant molecular attributes. The 
results contribute to a deeper understanding of Beryllonitrene’s complex characteristics, facilitating 
its potential applications in diverse scientific and technological domains. In this study, degree-based 
topological indices TI are determined, as well as the entropy of graphs based on these TI.
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Graph theory is a subfield of mathematics concerned with the study of graphs. A graph is a mathematical struc-
ture composed of a collection of objects known as vertices or nodes and a set of connections between these items 
known as edges. Relationships between distinct items are shown and analyzed using  graphs1. The vertices of a 
graph represent items like cities, individuals, or molecules, while the edges reflect the connections or interactions 
between these entities. Edges can be directed (for a one-way connection) or undirected (for a two-way connec-
tion)2. Weights can also be added to graph edges to signify the strength or expense of the connections. the totla 
number of edges incident to a vertex is called the degree of that vertex and denoted by §(τ )3.

Graph theory provides a strong foundation for modeling and understanding complex systems and relation-
ships. It provides tools and approaches for solving problems involving connectivity, optimization, and structure 
in graphs, and it has a wide range of real-world  applications4. Topological indices are mathematical descriptors 
that analyze a molecule’s molecular graph to determine its connectivity and structural  characteristics5. On the 
other hand, a compound’s physicochemical qualities are its physical and chemical characteristics that control 
how it behaves and interacts with other  systems6. The connection between topological indices and a molecule’s 
physicochemical characteristics is supported by the idea that molecular structure affects molecular properties. 
Different topological indices capture distinct molecular structure components, which may affect or correlate 
with different physical  properties7.

Topological indices such as the Wiener, Randic, and Zagreb indices reflect a molecule’s size or  shape8,9. Higher 
values of these indices generally indicate larger or more complicated molecules, which can be related to quali-
ties such as molecular weight, boiling temperature, or  viscosity10,11. The topological polar surface area (TPSA) 
index measures the polar surface area of a molecule. Because of greater polarity, hydrogen bonding capacity, 
and interactions with solvent molecules, compounds with higher TPSA tend to have higher water  solubility12. 
The logarithm of the octanol-water partition coefficient (logP) is a standard indicator of a compound’s lipophi-
licity or hydrophobicity. Some topological indices, such as the Balaban index and the connection index, have 
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been discovered to correlate with logP values, implying a link between molecular structure and hydrophobic 
 characteristics13.

Topological indices can reveal information about a molecule’s chemical reactivity. The Szeged index, for 
example, or the edge-connectivity index, can be used to predict a compound’s stability or reactivity. Liu et al.14,15 
analyses of some structural properties of networks. Higher values of these indices may imply stronger chemical 
stability or  resistance16. While topological indices can provide useful information about molecular structure and 
potential correlations with physicochemical features, they can not capture the full complexity of intermolecular 
 interactions17,18. Nadeem et al.19 discussed the topological aspects of metal-organic structures. Ahmad et al.20,21 
analysis the theoretical study of energy of phenylene and anthracene. Koam et.al22 computed the valency-based 
topological descriptor for Hexagon Star Networks. Liu et al.23,24 compute Hosoya index of some graphs based 
on connection number.They cannot predict all aspects of compound behavior. Other elements that influence 
physicochemical qualities include electronic structure, stereochemistry, and intermolecular  forces25. As a result, 
a thorough understanding of compound properties frequently necessitates the consideration of many elements 
in addition to topological indices. Some Topological index are given in Table 1.

Topological indices for beryllonitrene BeN
4

The structural organization of the chemical beryllonitrene is distinctive and fascinating. It is made up of a 
covalently linked network of beryllium (Be) and nitrogen (N) atoms. In a typical beryllonitrene molecule, four 
nitrogen atoms are connected to each beryllium atom, which forms the core of a tetrahedral  coordination35. A 
crystal lattice or molecular network that resembles a three-dimensional honeycomb pattern is produced as a 
result of this arrangement shown in Fig. 1. Beryllonitrene has unique electrical and mechanical properties due to 
the alternation of beryllium and nitrogen atoms. Because of its extraordinary stability and electrical conductivity 
capabilities, beryllonitrene is of interest in a variety of sectors, including materials science and electronics. This 
is because beryllium, which is lightweight, forms strong covalent bonds with  nitrogen36.

Table 1.  Topological indies TIs along with their general formulas.

Index General formula

Randic Index26 Rα(G) =
∑

τς∈E(G)(§(τ )× §(ς))α

Atom Bond Connectivity Index27,28
ABC(G) =

∑
τς∈E(G)

√
§(τ )+§(ς)−2
§(τ )×§(ς)

Geometric Arithmetic Index29
GA(G) =

∑
τς∈E(G)

2
√
§(τ )×§(ς)

§(τ )+§(ς)

First Zagreb Index30–32 M1(G) =
∑

τς∈E(G) §(τ )+ §(ς)

Second Zagreb Index M2(G) =
∑

τς∈E(G) §(τ )× §(ς)

Harmonic Zagreb Index33 HM(G) =
∑

τς∈E(G)(§(τ )+ §(ς))2

Forgotton Index13 F(G) =
∑

τς∈E(G)(§(τ )
2 + §(ς)2)

First Redefined Zagreb Index34
ReZG1(G) =

∑
τς∈E(G)

§(τ )+§(ς)
§(τ )×§(ς)

Second Redefined Zagreb Index ReZG2(G) =
∑

τς∈E(G)
§(τ )×§(ς)
§(τ )+§(ς)

Third Redefined Zagreb Index ReZG3(G) =
∑

τς∈E(G)

(

(§(τ )× §(ς))(§(τ )+ §(ς)

)

Figure 1.  Beryllonitrene BeN4 sheet with unit  cell35.
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Let G = BeN4 be the molecular graph of Beryllonitrene having 5mn+m+ n+ 1 number of vertices and 
8mn− n number of edges. The vertex division of the molecular graph is given in Table 2, while the edge division 
is given in Table 3.

• General randic index
  For α = 1

  For α = −1

  For α = 1
2

  For α = − 1
2

  The numerical and graphical representation of R1(BeN4) , R−1(BeN4) , R1
2
(BeN4) and R− 1

2
(BeN4) is shown 

in Table 4 and Fig. 2, respectively.
• Atom bond connectivity index

R1(BeN4) = (2)(1× 2)+ (2)(1× 3)+ (2n− 2)(2× 2)+ (4m+ 4n− 6)(2× 3)

+ (4mn− 3n)(3× 3)+ (4mn− 4m− 4n+ 4)(3× 4)

= (2)(2)+ (2)(3)+ (2n− 2)(4)+ (4m+ 4n− 6)(6)+ (4mn− 3n)(9)

+ (4mn− 4m− 4n+ 4)(12)

= 84mn− 24m− 52n+ 14

R−1(BeN4) = (2)

(
1

1× 2

)

+ (2)

(
1

1× 3

)

+ (2n− 2)

(
1

2× 2

)

+ (4m+ 4n− 6)

(
1

2× 3

)

+ (4mn− 3n)

(
1

3× 3

)

+ (4mn− 4m− 4n+ 4)

(
1

3× 4

)

= (2)

(
1

2

)

+ (2)

(
1

3

)

+ (2n− 2)

(
1

4

)

+ (4m+ 4n− 6)

(
1

6

)

+ (4mn− 3n)

(
1

9

)

+ (4mn− 4m− 4n+ 4)

(
1

12

)

= 0.7778mn+ 0.3333m+ 0.3889n+ 0.5

R1
2
(BeN4) = (2)(

√
1× 2)+ (2)(

√
1× 3)+ (2n− 2)(

√
2× 2)+ (4m+ 4n− 6)(

√
2× 3)

+ (4mn− 3n)(
√
3× 3)+ (4mn− 4m− 4n+ 4)(

√
3× 4)

= (2)(
√
2)+ (2)(

√
3)+ (2n− 2)(

√
4)+ (4m+ 4n− 6)(

√
6)

+ (4mn− 3n)(
√
9)+ (4mn− 4m− 4n+ 4)(

√
12)

= 25.8564mn− 4.0584m− 12.0584n+ 1.4519

R− 1
2
(BeN4) = (2)

(
1

√
1× 2

)

+ (2)

(
1

√
1× 3

)

+ (2n− 2)

(
1

√
2× 2

)

+ (4m+ 4n− 6)

(
1

√
2× 3

)

+ (4mn− 3n)

(
1

√
3× 3

)

+ (4mn− 4m− 4n+ 4)

(
1

√
3× 4

)

= (2)

(
1
√
2

)

+ (2)

(
1
√
3

)

+ (2n− 2)

(
1
√
4

)

+ (4m+ 4n− 6)

(
1
√
6

)

+ (4mn− 3n)

(
1
√
9

)

+ (4mn− 4m− 4n+ 4)

(
1

√
12

)

= 2.4880mn+ 0.4783m+ 0.1449n+ 0.2741

Table 2.  The vertex division for the chemical graph of beryllonitrene BeN4.

§(τ ) 1 2 3 4

Frequency 4 2m+ 4n− 4 4mn− 2n mn−m− n+ 1

Table 3.  The edge division for the chemical graph of beryllonitrene BeN4.

(§(τ ), §(ς)) (1, 2) (1, 3) (2, 2) (2, 3) (3, 3) (3, 4)

Frequency 2 2 2n− 2 4m+ 4n− 6 4mn− 3n 4mn− 4m− 4n+ 4
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• Geometric arithmetic index

  
• First zagreb index

  
• Second zagreb index

ABC(BeN4) = (2)

(√
1+ 2− 2

1× 2

)

+ (2)

(√
1+ 3− 2

1× 3

)

+ (2n− 2)

(√
2+ 2− 2

2× 2

)

+ (4m+ 4n− 6)

(√
2+ 3− 2

2× 3

)

+ (4mn− 3n)

(√
3+ 3− 2

3× 3

)

+ (4mn− 4m− 4n+ 4)

(√
3+ 4− 2

3× 4

)

= (2)

(√
1

2

)

+ (2)

(√
2

3

)

+ (2n− 2)

(√
2

4

)

+ (4m+ 4n− 6)

(√
3

6

)

+ (4mn− 3n)

(√
4

9

)

+ (4mn− 4m− 4n+ 4)

(√
5

12

)

= 5.2486mn+ 0.2464m− 1.0060n− 0.0276

GA(BeN4) = (2)

(
2
√
1× 2

1+ 2

)

+ (2)

(
2
√
1× 3

1+ 3

)

+ (2n− 2)

(
2
√
2× 2

2+ 2

)

+ (4m+ 4n− 6)

(
2
√
2× 3

2+ 3

)

+ (4mn− 3n)

(
2
√
3× 3

3+ 3

)

+ (4mn− 4m− 4n+ 4)

(
2
√
3× 4

3+ 4

)

= (2)

(
2
√
2

3

)

+ (2)

(
2
√
3

4

)

+ (2n− 2)

(
2
√
4

4

)

+ (4m+ 4n− 6)

(
2
√
6

5

)

+ (4mn− 3n)

(
2
√
9

6

)

+ (4mn− 4m− 4n+ 4)

(
2
√
12

7

)

= 7.9589mn− 0.0793m− 2.0397n− 0.3021

M1(BeN4) = (2)(1+ 2)+ (2)(1+ 3)+ (2n− 2)(2+ 2)+ (4m+ 4n− 6)(2+ 3)

+ (4mn− 3n)(3+ 3)+ (4mn− 4m− 4n+ 4)(3+ 4)

= (2)(3)+ (2)(4)+ (2n− 2)(4)+ (4m+ 4n− 6)(5)+ (4mn− 3n)(6)+ (4mn− 4m− 4n+ 4)(7)

= 52mn− 8m− 24n+ 4

Table 4.  The numerical representation of R1(BeN4) , R−1(BeN4) , R1
2
(BeN4) and R− 1

2
(BeN4).

[m, n] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9] [10, 10]

R1(BeN4) 22 198 542 1054 1734 2582 3598 4782 6134 7654

R1(BeN4) 2 5.06 9.67 15.83 23.56 32.83 43.68 56.06 70.00 85.50

R 1
2
(BeN4 11.19 72.64 185.81 350.69 567.28 835.58 1155.59 1527.33 1950.77 2425.92

R− 1
2
(BeN4) 3.39 11.47 24.54 42.57 65.59 93.58 126.55 164.49 207.41 255.31

Figure 2.  The graphical representation of R1(BeN4) , R−1(BeN4) , R1
2
(BeN4 and R− 1

2
(BeN4).
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  The numerical and graphical representation of ABC(BeN4) , GA(BeN4) , M1(BeN4) and M2(BeN4) is shown 

in Table 5 and Fig. 3, respectively.
• Harmonic zagreb index 

  
• Forgotton index

  
• Augmented zagreb index

M2(BeN4) = (2)(1× 2)+ (2)(1× 3)+ (2n− 2)(2× 2)+ (4m+ 4n− 6)(2× 3)

+ (4mn− 3n)(3× 3)+ (4mn− 4m− 4n+ 4)(3× 4)

= (2)(2)+ (2)(3)+ (2n− 2)(4)+ (4m+ 4n− 6)(6)+ (4mn− 3n)(9)+ (4mn− 4m− 4n+ 4)(12)

= 84mn− 24m− 52n+ 14

HM(BeN4) = (2)(1+ 2)2 + (2)(1+ 3)2 + (2n− 2)(2+ 2)2 + (4m+ 4n− 6)(2+ 3)2

+ (4mn− 3n)(3+ 3)2 + (4mn− 4m− 4n+ 4)(3+ 4)2

= (2)(3)2 + (2)(4)2 + (2n− 2)(4)2 + (4m+ 4n− 6)(5)2 + (4mn− 3n)(6)2 + (4mn− 4m− 4n+ 4)(7)2

= (2)(9)+ (2)(16)+ (2n− 2)(16)+ (4m+ 4n− 6)(25)+ (4mn− 3n)(36)+ (4mn− 4m− 4n+ 4)(49)

= 340mn− 96m− 208n+ 64

F(BeN4) = (2)(12 + 22)+ (2)(12 + 32)+ (2n− 2)(22 + 22)+ (4m+ 4n− 6)(22 + 32)

+ (4mn− 3n)(32 + 32)+ (4mn− 4m− 4n+ 4)(32 + 42)

= (2)(1+ 4)+ (2)(1+ 9)+ (2n− 2)(4+ 4)+ (4m+ 4n− 6)(4+ 9)+ (4mn− 3n)(9+ 9)

+ (4mn− 4m− 4n+ 4)(9+ 16)

= (2)(4)+ (2)(10)+ (2n− 2)(8)+ (4m+ 4n− 6)(13)+ (4mn− 3n)(18)+ (4mn− 4m− 4n+ 4)(25)

= 172mn− 48m− 104n+ 36

Table 5.  The numerical representation of ABC(BeN4) , GA(BeN4) , M1(BeN4) and M2(BeN4).

[m, n] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9] [10, 10]

ABC(BeN4) 4.46 19.44 44.93 80.91 127.38 184.36 251.83 329.80 418.27 517.23

GA(BeN4) 5.53 27.29 64.97 118.56 188.07 273.50 374.85 492.11 625.29 774.39

M1(BeN4) 24 148 376 708 1144 1684 2328 3076 3928 4884

M2(BeN4) 22 198 542 1054 1734 2582 3598 4782 6134 7654

Figure 3.  The graphical representation of ABC(BeN4) , GA(BeN4) , M1(BeN4) and M2(BeN4).
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• First redefined zagreb index

  
  The numerical and graphical representation of HM(BeN4) , F(BeN4) , AZI(BeN4) and ReZG1(BeN4) is 

shown in Table 6 and Fig. 4, respectively.
• Second redefined zagreb index

AZI(BeN4) = (2)

(
1× 2

1+ 2− 2

)3

+ (2)

(
1× 3

1+ 3− 2

)3

+ (2n− 2)

(
2× 2

2+ 2− 2

)3

+ (4m+ 4n− 6)

(
2× 3

2+ 3− 2

)3

+ (4mn− 3n)

(
3× 3

3+ 3− 2

)3

+ (4mn− 4m− 4n+ 4)

(
3× 4

3+ 4− 2

)3

= (2)(
2

1
)+ (2)

(
3

2

)

+ (2n− 2)

(
4

2

)

+ (4m+ 4n− 6)

(
6

3

)

+ (4mn− 3n)

(
9

4

)

+ (4mn− 4m− 4n+ 4)

(
12

5

)

= 100.8585mn− 23.2960m− 52.8585n+ 14.0460

ReZG1(BeN4) = (2)(
1+ 2

1× 2
)+ (2)(

1+ 3

1× 3
)+ (2n− 2)(

2+ 2

2× 2
)+ (4m+ 4n− 6)(

2+ 3

2× 3
)

+ (4mn− 3n)(
3+ 3

3× 3
)+ (4mn− 4m− 4n+ 4)(

3+ 4

3× 4
)

= (2)(
3

2
)+ (2)(

4

3
)+ (2n− 2)(

4

4
)+ (4m+ 4n− 6)(

5

6
)

+ (4mn− 3n)(
6

9
)+ (4mn− 4m− 4n+ 4)(

7

12
)

= 5mn+m+ 0.3333n+ 1

Table 6.  The numerical representation of HM(BeN4) , F(BeN4) , AZI(BeN4) and ReZG1(BeN4).

[m, n] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9] [10, 10]

HM(BeN4) 100 816 2212 4288 7044 10480 14596 19392 24868 31024

F(BeN4) 56 420 1128 2180 3576 5316 7400 9828 12600 15716

AZI(BeN4) 38.75 265.17 693.30 1323.16 2154.73 3188.02 4423.03 5859.75 7498.19 9338.35

ReZG1(BeN4) 7.33 23.66 49.99 86.33 132.66 188.99 255.33 331.66 417.99 514.33

Figure 4.  The graphical representation of HM(BeN4) , F(BeN4) , AZI(BeN4) and ReZG1(BeN4).
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• Third redefined zagreb index

  
  The numerical and graphical representation of ReZG2(BeN4) and ReZG3(BeN4) is shown in Table 7 and 

Fig. 5, respectively.

Graph entropy
Entropy is the measurement of disorders of a system while the measurement of unpredictability of information 
content or the measurement of uncertainty of a system also called the entropy of a system, the concept was intro-
duce in  194837. The concept of graph entropy was applied in chemistry, biology, and other  sciences38. There are 
different types of graphs for measuring entropy, for exploring the network the degree power is most significant.

where ̟ d =
∑m

i=1 �iI(ρi̺i) is topological index �i is frequency m is number of edges I(ρ̺) is the weight of the 
edge ρ  ̺ see37. By using Tables 1 and 3 and Eq. (1), we have following formulas and their calculation.

In chemistry and related sciences, topological indices are mathematical descriptors that describe the topol-
ogy of molecular structures. In relation to these indices, entropy may be defined as the degree of randomness 
or disorder in the distribution of specific structural characteristics. The calculation of entropy using topological 
indices in the context of molecular structures can offer several benefits.

ReZG2(BeN4) = (2)(
1× 2

1+ 2
)+ (2)(

1× 3

1+ 3
)+ (2n− 2)(

2× 2

2+ 2
)+ (4m+ 4n− 6)(

2× 3

2+ 3
)

+ (4mn− 3n)(
3× 3

3+ 3
)+ (4mn− 4m− 4n+ 4)(

3× 4

3+ 4
)

= (2)(
2

3
)+ (2)(

3

4
)+ (2n− 2)(

4

4
)+ (4m+ 4n− 6)(

6

5
)

+ (4mn− 3n)(
9

6
)+ (4mn− 4m− 4n+ 4)(

12

7
)

= 12.8571mn− 2.0571m− 6.0571n+ 0.4905

ReZG3(BeN4) = (2)((1+ 2)(1× 2))+ (2)((1+ 3)(1× 3))+ (2n− 2)((2+ 2)(2× 2))

+ (4m+ 4n− 6)((2+ 3)(2× 3))

+ (4mn− 3n)((3+ 3)(3× 3))+ (4mn− 4m− 4n+ 4)((3+ 4)(3× 4))

= (2)(3× 2)+ (2)(4× 3)+ (2n− 2)(4× 4)+ (4m+ 4n− 6)(5× 6)

+ (4mn− 3n)(6× 9)+ (4mn− 4m− 4n+ 4)(7× 12)

= (2)(6)+ (2)(12)+ (2n− 2)(16)+ (4m+ 4n− 6)(30)

+ (4mn− 3n)(54)+ (4mn− 4m− 4n+ 4)(84)

= 544mn− 208m− 392n+ 152

(1)ENTI = −
m∑

i=1

�i
I(ρi̺i)

(̟d)
log

I(ρi̺i)

(̟d)
= log(̟d)−

1

(̟d)

m∑

i=1

�iI(ρi̺i) log I(ρi̺i)

Table 7.  The numerical representation of ReZG2(BeN4) and ReZG3(BeN4).

[m, n] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9] [10, 10]

ReZG2(BeN4) 5.23 35.69 91.86 173.74 281.34 414.66 573.68 758.43 968.88 1205.05

ReZG3(BeN4) 96 1128 3248 6456 10752 16136 22608 30168 38816 48552

Figure 5.  The numerical and graphical representation of ReZG2(BeN4) and ReZG3(BeN4).
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• The structural diversity of molecular compounds can be quantitatively evaluated using entropy measures 
that are derived from topological indices. Greater structural diversity may be indicated by higher entropy 
values, which would add to a more varied chemical space.

• Entropy measurements are correlated with a number of molecular properties, both chemical and physical. 
Properties like solubility, boiling points, and reaction rates can be predicted by using topological indices in 
entropy calculations.

• Entropy makes it possible to compare various molecular sets or chemical databases according to the structural 
diversity of each set. Entropy values can be used by researchers to rank or screen compounds for additional 
testing.

• Randic entropy
  For α = 1

  For α = −1

  For α = 1
2

  For α = 1
2

ENTR1(BeN4) = log(R1)−
1

(R1)

6∑

i=1

�(ρ × ̺) log2 (ρ × ̺)

= log(84mn− 24m− 52n+ 14)−
(2) log(2)2

84mn− 24m− 52n+ 14
−

(2) log(3)3

84mn− 24m− 52n+ 14

−
(2n− 2) log(4)4

84mn− 24m− 52n+ 14
−

(4m+ 4n− 6) log(6)6

84mn− 24m− 52n+ 14
−

(4mn− 3n) log(9)9

84mn− 24m− 52n+ 14

−
(4mn− 4m− 4n+ 4) log(12)12

84mn− 24m− 52n+ 14

ENTR−1(BeN4) = log(R−1)−
1

(R−1)

6∑

i=1

�
1

(ρ × ̺)
log2

1

(ρ × ̺)

= log(0.7778mn+ 0.3333m+ 0.3889n+ 0.5)−
(2) log( 12 )

1
2

0.7778mn+ 0.3333m+ 0.3889n+ 0.5

−
(2) log( 13 )

1
3

0.7778mn+ 0.3333m+ 0.3889n+ 0.5
−

(2n− 2) log( 14 )
1
4

0.7778mn+ 0.3333m+ 0.3889n+ 0.5

−
(4m+ 4n− 6) log( 16 )

1
6

0.7778mn+ 0.3333m+ 0.3889n+ 0.5
−

(4mn− 3n) log( 19 )
1
9

0.7778mn+ 0.3333m+ 0.3889n+ 0.5

−
(4mn− 4m− 4n+ 4) log( 1

12 )
1
12

0.7778mn+ 0.3333m+ 0.3889n+ 0.5

ENTR 1
2
(BeN4) = log(R 1

2
)−

1

(R 1
2
)

6∑

i=1

�
√
(ρ × ̺) log2

√
(ρ × ̺)

= log(25.8564mn− 4.0584m− 12.0584n+ 1.4519)−
(2) log(

√
2)

√
2

25.8564mn− 4.0584m− 12.0584n+ 1.4519

−
(2) log(

√
3)

√
3

25.8564mn− 4.0584m− 12.0584n+ 1.4519
−

(2n− 2) log(
√
4)

√
4

25.8564mn− 4.0584m− 12.0584n+ 1.4519

−
(4m+ 4n− 6) log(

√
6)

√
6

25.8564mn− 4.0584m− 12.0584n+ 1.4519
−

(4mn− 3n) log(
√
9)

√
9

25.8564mn− 4.0584m− 12.0584n+ 1.4519

−
(4mn− 4m− 4n+ 4) log(

√
12)

√
12

25.8564mn− 4.0584m− 12.0584n+ 1.4519
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  The numerical and graphical representation of ENTR1(BeN4) , ENTR−1(BeN4) , ENTR 1
2
(BeN4) and ENTR− 1

2
(BeN4) 

is shown in Table 8 and Fig. 6, respectively.
• Atom bond connectivity entropy

ENTR− 1
2
(BeN4) = log(R− 1

2
)−

1

(R− 1
2
)

6∑

i=1

�
1

√
(ρ × ̺)

log2
1

√
(ρ × ̺)

= log(2.4880mn+ 0.4783m+ 0.1449n+ 0.2741)−
(2) log( 1√

2
)

1√
2

2.4880mn+ 0.4783m+ 0.1449n+ 0.2741

−
(2) log( 1√

3
)

1√
3

2.4880mn+ 0.4783m+ 0.1449n+ 0.2741
−

(2n− 2) log( 1√
4
)

1√
4

2.4880mn+ 0.4783m+ 0.1449n+ 0.2741

−
(4m+ 4n− 6) log( 1√

6
)

1√
6

2.4880mn+ 0.4783m+ 0.1449n+ 0.2741
−

(4mn− 3n) log( 1√
9
)

1√
9

2.4880mn+ 0.4783m+ 0.1449n+ 0.2741

−
(4mn− 4m− 4n+ 4) log( 1√

12
)

1√
12

2.4880mn+ 0.4783m+ 0.1449n+ 0.2741

Table 8.  The numerical representation of ENTR1(BeN4) , ENTR−1(BeN4) , ENTR 1
2
(BeN4) and ENTR− 1

2
(BeN4).

[m, n] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9] [10, 10]

ENTR1(BeN4) 1.688 3.2406 4.1241 4.7356 5.2034 5.5824 5.9008 6.1755 6.4169 6.6324

ENTR1(BeN4) 1.7045 3.1804 4.0644 4.6847 5.1603 5.5453 5.8685 6.1469 6.3913 6.6092
ENTR 1

2
(BeN4) 1.7653 3.3056 4.17045 4.7723 5.2343 5.6093 5.925 6.1976 6.4374 6.6516

ENTR− 1
2
(BeN4) 1.7676 3.2975 4.1628 4.766 5.229 5.6048 5.9211 6.1942 6.4344 6.6488

Figure 6.  The graphical representation of ENTR1(BeN4) , ENTR−1(BeN4) , ENTR 1
2
(BeN4) and ENTR− 1

2
(BeN4).
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• Geometric arithmetic entropy

  
• First zagreb entropy

  
• Second zagreb entropy

  
  The numerical and graphical representation of ENTABC(BeN4) , ENTGA(BeN4) , ENTM1(BeN4) and ENTM2(BeN4) 

is shown in Table 9 and Fig. 7, respectively.
• Harmonic zagreb entropy

ENTABC(BeN4) = log(ABC)−
1

(ABC)

6∑

i=1

�

√
ρ + ̺ − 2

ρ × ̺
log2

√
ρ + ̺ − 2

ρ × ̺

ENTABC = log(5.2486mn+ 0.2464m− 1.0060n− 0.0276)−
(2) log(

√
1
2 )

√
1
2

5.2486mn+ 0.2464m− 1.0060n− 0.0276

−
(2) log(

√
2
3 )

√
2
3

5.2486mn+ 0.2464m− 1.0060n− 0.0276
−

(2n− 2) log(
√

2
4 )

√
2
4

5.2486mn+ 0.2464m− 1.0060n− 0.0276

−
(4m+ 4n− 6) log(

√
3
6 )

√
3
6

5.2486mn+ 0.2464m− 1.0060n− 0.0276
−

(4mn− 3n) log(
√

4
9 )

√
4
9

5.2486mn+ 0.2464m− 1.0060n− 0.0276

−
(4mn− 4m− 4n+ 4) log(

√
5
12 )

√
5
12

5.2486mn+ 0.2464m− 1.0060n− 0.0276

ENTGA(BeN4) = log(GA)−
1

(GA)

6∑

i=1

�
2
√
ρ × ̺

ρ + ̺
log2

2
√
ρ × ̺

ρ + ̺

= log(7.9589mn− 0.0793m− 2.0397n− 0.3021)−
(2) log( 2

√
2

3 )
2
√
2

3

7.9589mn− 0.0793m− 2.0397n− 0.3021

−
(2) log( 2

√
3

4 )
2
√
3

4

7.9589mn− 0.0793m− 2.0397n− 0.3021
−

(2n− 2) log( 2
√
4

4 )
2
√
4

4

7.9589mn− 0.0793m− 2.0397n− 0.3021

−
(4m+ 4n− 6) log( 2

√
6

5 )
2
√
6

5

7.9589mn− 0.0793m− 2.0397n− 0.3021
−

(4mn− 3n) log( 2
√
9

6 )
2
√
9

6

7.9589mn− 0.0793m− 2.0397n− 0.3021

−
(4mn− 4m− 4n+ 4) log( 2

√
12
7 )

2
√
12
7

7.9589mn− 0.0793m− 2.0397n− 0.3021

ENTM1(BeN4) = log(M1)−
1

(M1)

6∑

i=1

�(ρ + ̺) log2 (ρ + ̺)

= log(52mn− 8m− 24n+ 4)−
(2) log(3)3

52mn− 8m− 24n+ 4
−

(2) log(4)4

52mn− 8m− 24n+ 4

−
(2n− 2) log(4)4

52mn− 8m− 24n+ 4
−

(4m+ 4n− 6) log(5)5

52mn− 8m− 24n+ 4
−

(4mn− 3n) log(6)6

52mn− 8m− 24n+ 4

−
(4mn− 4m− 4n+ 4) log(7)7

52mn− 8m− 24n+ 4

ENTM2(BeN4) = log(M2)−
1

(M2)

6∑

i=1

�(ρ × ̺) log2 (ρ × ̺)

= log(84mn− 24m− 52n+ 14)−
(2) log(2)2

84mn− 24m− 52n+ 14
−

(2) log(3)3

84mn− 24m− 52n+ 14

−
(2n− 2) log(4)4

84mn− 24m− 52n+ 14
−

(4m+ 4n− 6) log(6)6

84mn− 24m− 52n+ 14
−

(4mn− 3n) log(9)9

84mn− 24m− 52n+ 14

−
(4mn− 4m− 4n+ 4) log(12)12

84mn− 24m− 52n+ 14
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• Forgotton entropy

  
• Augmented zagreb entropy

ENTHM(BeN4) = log(HM)−
1

(HM)

6∑

i=1

�(ρ + ̺)2 log2 (ρ + ̺)2

= log(340mn− 96m− 208n+ 64)−
(2) log(9)9

340mn− 96m− 208n+ 64
−

(2) log(16)16

340mn− 96m− 208n+ 64

−
(2n− 2) log(16)16

340mn− 96m− 208n+ 64
−

(4m+ 4n− 6) log(25)25

340mn− 96m− 208n+ 64
−

(4mn− 3n) log(36)36

340mn− 96m− 208n+ 64

−
(4mn− 4m− 4n+ 4) log(49)49

340mn− 96m− 208n+ 64

ENTF(BeN4) = log(F)−
1

(F)

6∑

i=1

�(ρ2 + ̺2) log2 (ρ
2 + ̺2)

= log(172mn− 48m− 104n+ 36)−
(2) log(4)4

172mn− 48m− 104n+ 36
−

(2) log(10)10

172mn− 48m− 104n+ 36

−
(2n− 2) log(8)8

172mn− 48m− 104n+ 36
−

(4m+ 4n− 6) log(13)13

172mn− 48m− 104n+ 36
−

(4mn− 3n) log(18)18

172mn− 48m− 104n+ 36

−
(4mn− 4m− 4n+ 4) log(25)25

172mn− 48m− 104n+ 36

Table 9.  The numerical representation of ENTABC(BeN4) , ENTGA(BeN4) , ENTM1(BeN4) and ENTM2(BeN4).

[m, n] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9] [10, 10]

ENTABC(BeN4) 1.7893 3.3304 4.1884 4.7865 5.2462 5.6196 5.9342 6.206 6.4451 6.6588

ENTGA(BeN4) 1.7838 3.3287 4.1875 4.7859 5.2458 5.6194 5.934 6.2058 6.445 6.65873

ENTM1(BeN4) 1.7707 3.3098 4.1724 4.7734 5.235 5.6098 5.9253 6.1978 6.4376 6.6516

ENTM2(BeN4) 1.688 3.2406 4.1241 4.7356 5.2034 5.5824 5.9008 6.1755 6.4169 6.6324

Figure 7.  The graphical representation of ENTABC(BeN4) , ENTGA(BeN4) , ENTM1(BeN4) and ENTM2(BeN4).
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• First redefined zagreb entropy

  
  The numerical and graphical representation of ENTHM(BeN4) , ENTF(BeN4) , ENTAZI(BeN4) and ENTReZG1(BeN4) 

is shown in Table 10 and Fig. 8, respectively.
• Second redefined zagreb entropy

  
• Third redefined zagreb entropy

ENTAZI(BeN4) = log(AZI)−
1

(AZI)

6∑

i=1

�

(
ρ × ̺

ρ + ̺ − 2

)3

log2

(
ρ × ̺

ρ + ̺ − 2

)3

= log(100.8585mn− 23.2960m− 52.8585n+ 14.0460)

−
(2) log(( 21 )

3)(
2
1 )

3

100.8585mn− 23.2960m− 52.8585n+ 14.0460

−
(2) log(( 32 )

3)(
3
2 )

3

100.8585mn− 23.2960m− 52.8585n+ 14.0460

−
(2n− 2) log(( 42 )

3)(
4
2 )

3

100.8585mn− 23.2960m− 52.8585n+ 14.0460

−
(4m+ 4n− 6) log(( 63 )

3)(
6
3 )

3

100.8585mn− 23.2960m− 52.8585n+ 14.0460

−
(4mn− 3n) log(( 94 )

3)(
9
4 )

3

100.8585mn− 23.2960m− 52.8585n+ 14.0460

−
(4mn− 4m− 4n+ 4) log(( 125 )

3)(
12
5 )3

100.8585mn− 23.2960m− 52.8585n+ 14.0460

ENTReZG1(BeN4) = log(ReZG1)−
1

(ReZG1)

6∑

i=1

�

(
ρ + ̺

ρ × ̺

)

log2

(
ρ + ̺

ρ × ̺

)

ReZG1 = log(5mn+m+ 0.3333n+ 1)−
(2) log( 32 )

3
2

5mn+m+ 0.3333n+ 1

−
(2) log( 43 )

4
3

5mn+m+ 0.3333n+ 1

−
(2n− 2) log( 44 )

4
4

5mn+m+ 0.3333n+ 1
−

(4m+ 4n− 6) log( 56 )
5
6

5mn+m+ 0.3333n+ 1

−
(4mn− 3n) log( 69 )

6
9

5mn+m+ 0.3333n+ 1
−

(4mn− 4m− 4n+ 4) log( 7
12 )

7
12

5mn+m+ 0.3333n+ 1

ENTReZG2(BeN4) = log(ReZG2)−
1

(ReZG2)

6∑

i=1

�

(
ρ × ̺

ρ + ̺

)

log2

(
ρ × ̺

ρ + ̺

)

= log(12.8571mn− 2.0571m− 6.0571n+ 0.4905)−
(2) log( 23 )

2
3

12.8571mn− 2.0571m− 6.0571n+ 0.4905

−
(2) log( 34 )

3
4

12.8571mn− 2.0571m− 6.0571n+ 0.4905
−

(2n− 2) log( 44 )
4
4

12.8571mn− 2.0571m− 6.0571n+ 0.4905

−
(4m+ 4n− 6) log( 65 )

6
5

12.8571mn− 2.0571m− 6.0571n+ 0.4905
−

(4mn− 3n) log( 96 )
9
6

12.8571mn− 2.0571m− 6.0571n+ 0.4905

−
(4mn− 4m− 4n+ 4) log( 127 )

12
7

12.8571mn− 2.0571m− 6.0571n+ 0.4905

Table 10.  The numerical representation of ENTHM(BeN4) , ENTF(BeN4) , ENTAZI(BeN4) and ENTReZG1(BeN4).

[m, n] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9] [10, 10]

ENTHM(BeN4) 1.713 3.2527 4.1295 4.7385 5.2051 5.5833 5.9013 6.17566 6.4168 6.6321

ENTF(BeN4) 1.7247 3.2617 4.1336 4.7406 5.2062 5.5838 5.9014 6.1755 6.4165 6.6316

ENTAZI(BeN4) 1.728 3.2874 4.1566 4.761 5.2246 5.6008 5.9174 6.1906 6.431 6.6455

ENTReZG1(BeN4) 1.7633 3.2889 4.1574 4.7623 5.2265 5.6029 5.9197 6.193 6.4335 6.6481
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  The numerical and graphical representation of ENTReZG2(BeN4) , and ENTReZG3(BeN4) is shown in Table 11 

and Fig. 9, respectively.

ENTReZG3(BeN4) = log(ReZG3)−
1

(ReZG3)

6∑

i=1

�((ρ × ̺)(ρ + ̺)) log2 ((ρ × ̺)(ρ + ̺))

= log(544mn− 208m− 392n+ 152)−
(2) log(6)6

544mn− 208m− 392n+ 152
−

(2) log(12)12

544mn− 208m− 392n+ 152

−
(2n− 2) log(16)16

544mn− 208m− 392n+ 152
−

(4m+ 4n− 6) log(30)30

544mn− 208m− 392n+ 152
−

(4mn− 3n) log(54)54

544mn− 208m− 392n+ 152

−
(4mn− 4m− 4n+ 4) log(84)84

544mn− 208m− 392n+ 152

Figure 8.  The numerical graphical representation of ENTHM(BeN4) , ENTF(BeN4) , ENTAZI(BeN4) and 
ENTReZG1(BeN4).

Table 11.  The numerical representation of ENTReZG2(BeN4) , and ENTReZG3(BeN4).

[m, n] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9] [10, 10]

ENTReZG1(BeN4) 1.7571 3.3009 4.1681 4.7709 5.2334 5.6087 5.9246 6.1973 6.4373 6.6515

ENTReZG1(BeN4) 1.5934 3.1255 4.0156 4.6311 5.1015 5.4822 5.8019 6.0775 6.3198 6.5358

Figure 9.  The graphical representation of ENTReZG2(BeN4) , and ENTReZG3(BeN4).
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Logarithmic regression model and its analysis
A dependent variable and one or more independent variables are modeled, and the connection between them is 
examined using the statistical approach known as regression  analysis39. It is frequently used to comprehend the 
effects of independent factors on the dependent variable and create forecasts or estimates in various domains, 
including economics, finance, social sciences, and  engineering40. Regression analysis’ fundamental premise is 
to identify the line or curve that best captures the connection between the variables. The variable you seek to 
predict or explain is the dependent variable, called the response variable. The variables expected to impact the 
dependent variable are referred to as independent variables, often known as predictor variables or explanatory 
 variables41. We used the SPSS software for these analysis (https:// www. ibm. com/ produ cts/ spss- stati stics). Regres-
sion analysis may have many different forms, but the most popular one is basic linear regression, which only 
requires one independent variable. The relationship between the variables is considered linear in basic linear 
 regression42. The line’s equation is displayed as:

where, Y is the dependent variable, β0 is the Y-intercept, βi is the Coefficients of independent variable for i = 1...z , 
X is the Independent variable and, ε is the Error.

To minimize the sum of squared differences between the observed values of Y and the anticipated values 
from the model, regression analysis aims to estimate the values of β0 and β1 . The least squares method is com-
monly used for this estimating process. Regression analysis also offers several statistical measures to evaluate 
the model’s quality, such as the coefficient of determination (R2) , which shows the percentage of the dependent 
variable’s variance that can be accounted for by the independent variables. Regression analysis is a potent tool 
for figuring out how variables relate to one another, formulating predictions, and investigating cause-and-effect 
relationships. It is widely used in many disciplines for data analysis, decision-making, and  research43.

A statistical method for modeling the relationship between a dependent variable and one or more independ-
ent variables where a logarithmic scale may better represent the relationship is known as logarithmic regression 
analysis, logarithmic transformation, or log-linear  regression44.

where, Y is the dependent variable, β0 is the Y-intercept, βi is the Coefficients of independent variable for 
i = 1 . . . z , X is the Independent variable, log() is the log function, and ε is the Error.

The logarithmic transformation enables the modeling of relationships in which the independent variables’ 
effects on the dependent variable are multiplicative rather than additive. It is frequently employed when the 
relationship between the variables is curvilinear, with declining returns or increasing rates of  change45. Loga-
rithmic regression can be applied to data analysis in various domains, including economics, finance, biology, and 
environmental  sciences46. It enables researchers to record and evaluate non-linear correlations between variables, 
as well as make predictions or draw insights using the logarithmic scale.

Discussion on computed results
Using the SPSS software, basically two regression models (logarithmic and power) are applied to examine the 
relationship between TI and graph entropy. It is noticed that the curve of logarithmic model is more closer then 
the power model because curve of logarithmic model touches almost each point of the observed data set, so we 
conclude that logarithmic model is more significant then the power, that is why logarithmic regression is applied 
to check the relationship between graph topological indices and entropy. The basic purpose of applying regres-
sion is to check the best predictor, the variable having good relation are the best predictor. In this case variables 
are curvilinear, so the best model to show their relationship is logarithmic regression.. As curve of logarithmic 
model passes through exactly each point of GA(BeN4) , so we may say that the relationship between GA(BeN4) 
and its corresponding entropy ENTGA(G) is much more better than the other TI . Here we use different symbols 
for indices and entropy in the Figures that are R1 = R1(BeN4) , RN1 = R−1(BeN4) , R12 = R1

2
(BeN4) , 

RN12 = R− 1
2
(BeN4) ,  ABC = ABC(BeN4) ,  GA = GA(BeN4) ,  M1 = M1(BeN4) ,  M2 = M2(BeN4) , 

HM = HM(BeN4) , F = F(BeN4) , REZ1 = ReZG1(BeN4) , REZ2 = ReZG2(BeN4) and, REZ3 = ReZG3(BeN4) . 
S i m i l a r l y ,  ENTR1 = ENTR1(BeN4)  ,  ENTRN1 = ENTR−1(BeN4)  ,  ENTR12 = ENTR 1

2
(BeN4)  , 

ENTRN12 = ENTR− 1
2
(BeN4) , ENTABC = ENTABC(BeN4) , ENTGA = ENTGA(BeN4) , ENTM1 = ENTM1(BeN4) , 

ENTM2 = ENTM2(BeN4) ,  ENTHM = ENTHM(BeN4) ,  ENTF = ENTF(BeN4) ,  ENTREZ1 = ENTReZG1(BeN4) , 
ENTREZ2 = ENTReZG2(BeN4) and, ENTREZ3 = ENTReZG3(BeN4).

It can be seen that GA(BeN4) and ENTGA(BeN4) has best relationship having R = 1 , R2 = 1 , SE = 0.011 and 
F = 186557 : 243 . A model with maximum value of R, R2 and F, while minimum SE is best model. So we may 
conclude that GA(BeN4) is the best predictor of complexity of BeO4.

The statistical values for each model are depicted in Tables 12, 13, 14, 15, 16, 17, 18, and 19 while the graphical 
depiction in the Figs. 10, 11, 12, 13, 14, 15, and 16.

Conclusion
This study delved into the intricate realm of Beryllonitrene’s molecular structure through the lens of graph theory 
and mathematical modeling. The computation and analysis of topological indices and graph entropy have illumi-
nated crucial insights into the compound’s unique structural and energetic attributes. By employing logarithmic 

Y = β0 + β1X1 + β2X2 + β3X3 + · · · + βzXz + ε

Y = β0 + β1logX1 + β2logX2 + β3logX3 + · · · + βz logXz + ε

https://www.ibm.com/products/spss-statistics
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regression models, we established meaningful correlations between these indices, entropy, and other molecular 
characteristics, offering a comprehensive perspective on Beryllonitrene’s complex properties.

The findings underscore the significance of computational methodologies in deciphering the properties of 
novel materials, such as Beryllonitrene, which holds promise for diverse applications. The successful application 
of logarithmic regression models showcases their utility in capturing nuanced relationships within complex sys-
tems. Furthermore, the insights gained from this study provide a valuable foundation for potential applications of 
Beryllonitrene in various scientific and technological domains.As we move forward, this research sets the stage 

Table 12.  The statistical values for logarithmic model.

Logarithmic Model R R2 SE F Significance

ENTR1 (BeN4) = 0.86 ln[R1(BeN4)] − 1.158 0.998 0.995 0.114 1689.506 0.000

ENTR−1 (BeN4) = 1.28 ln[R−1(BeN4)] + 1.032 0.997 0.995 0.118 1560.834 0.000

Table 13.  The statistical values for logarithmic model.

Logarithmic Model R R2 SE F Significance

ENTR 1
2

(BeN4) = 0.918 ln[R 1
2
(BeN4)] − 0.554 0.999 0.999 0.061 5839.737 0.000

ENTR− 1
2
(BeN4) = 1.117 ln[R− 1

2
(BeN4)] + 0.519 0.999 0.999 0.063 5453.919 0.000

Table 14.  The statistical values for logarithmic model.

Logarithmic model R R2 SE F Significance

ENTABC(BeN4) = 1.022 ln[ABC(BeN4)] + 0.284 1 1 0.013 123210.473 0.000

ENTGA(BeN4) = 0.989 ln[GA(BeN4)] + 0.072 1 1 0.011 186557.243 0.000

Table 15.  The statistical values for logarithmic model.

Logarithmic model R R2 SE F Significance

ENTM1(BeN4) = 0.926 ln[M1(BeN4)] − 1.259 1 0.999 0.051 8238.997 0.000

ENTM2(BeN4) = 0.86 ln[M2(BeN4)] − 1.158 0.998 0.995 0.114 1689.506 0.000

Table 16.  The statistical values for logarithmic model.

Logarithmic Model R R2 SE F Significance

ENTHM(BeN4) = 0.871 ln[HM(BeN4)] − 2.461 0.998 0.996 0.099 2217.52 0.000

ENTF(BeN4) = 0.882 ln[F(BeN4)] − 1.965 0.999 0.997 0.084 3052.608 0.000

Table 17.  The statistical values for logarithmic model.

Logarithmic Model R R2 SE F Significance

ENTAZI(BeN4) = 0.905 ln[AZI(BeN4)] − 1.692 0.999 0.998 0.065 5229.637 0.000

ENTReZG1(BeN4) = 1.134 ln[ReZG1(BeN4)] − 0.362 0.999 0.998 0.074 3923.561 0.000

Table 18.  The statistical values for logarithmic model.

Logarithmic Model R R2 SE F Significance

ENTReZG2(BeN4) = 0.91 ln[ReZG2(BeN4)] + 0.133 0.999 0.998 0.07 4474.447 0.000

ENTReZG3(BeN4) = 0.812 ln[ReZG3(BeN4)] − 2.367 0.995 0.991 0.159 872.398 0.000
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Table 19.  The Goodness values for logarithmic model.

Entropy β1 β0 R R2 SE F Significance

ENTR1(BeN4) 0.86 −1.158 0.998 0.995 0.114 1689.506 0.000

ENTR−1(BeN4) 1.28 1.032 0.997 0.995 0.118 1560.834 0.000

ENTR 1
2
(BeN4) 0.918 −0.554 0.999 0.999 0.061 5839.737 0.000

ENTR− 1
2
(BeN4) 1.117 0.519 0.999 0.999 0.063 5453.919 0.000

ENTABC(BeN4) 1.022 0.284 1 1 0.013 123210.473 0.000

ENTGA(BeN4) 0.989 0.072 1 1 0.011 186557.243 0.000

ENTM1(BeN4) 0.926 −1.259 1 0.999 0.051 8238.997 0.000

ENTM2(BeN4) 0.86 −1.158 0.998 0.995 0.114 1689.506 0.000

ENTHM(BeN4) 0.871 −2.461 0.998 0.996 0.099 2217.52 0.000

ENTF(BeN4) 0.882 −1.965 0.999 0.997 0.084 3052.608 0.000

ENTAZI(BeN4) 0.905 −1.692 0.999 0.998 0.065 5229.637 0.000

ENTReZG1(BeN4) 1.134 −0.362 0.999 0.998 0.074 3923.561 0.000

ENTReZG2(BeN4) 0.91 0.133 0.999 0.998 0.07 4474.447 0.000

ENTReZG3(BeN4) 0.812 −2.367 0.995 0.991 0.159 872.398 0.000

Figure 10.  Logarithmic model between (a) R1(G) and ENTR1(G) , (b) R−1(G) and ENTR−1(G).

Figure 11.  Logarithmic model between (a) R1
2
(G) and ENTR 1

2

(G) , (b) R− 1
2
(G) and ENTR− 1

2

(G).
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Figure 12.  Logarithmic model between (a) ABC(G) and ENTABC(G) , (b) GA(G) and ENTGA(G).

Figure 13.  Logarithmic model between (a) M1(G) and ENTM1(G) , (b) M2(G) and ENTM2(G).

Figure 14.  Logarithmic model between (a) HM(G) and ENTHM(G) , (b) F(G) and ENTF(G).
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for further investigations into the molecular properties of Beryllonitrene and similar compounds. Additionally, 
the methodologies employed here could be extended to the analysis of other novel materials, contributing to 
the advancement of materials science and fostering innovation across disciplines. Ultimately, the integration of 
computational techniques and mathematical models in this study serves as a testament to their pivotal role in 
unraveling the mysteries of emerging materials and compounds.

The degree-based topological indices TI are determined, as well as the entropy of graph based on these TI to 
the complexity of BeN4 . It is noticed that by increasing the number of unit cell of BeN4 the value of TI and its 
corresponding entropy is also increasing which shows that as number of unit cell increases complexity of the 
BeN4 also increases. Using the SPSS software, logarithmic and power regression is applied to examine the rela-
tionship between TI and graph entropy. It is noticed that the line of logarithmic model is more closer then the 
power model because curve of logarithmic model touches almost each point of the observed data set so we 
conclude that logarithmic model is more significant then the power. As curve of logarithmic model passes 
through exactly each point of GA(BeN4) , so we may say that the relationship between GA(BeN4) and its corre-
sponding entropy ENTGA(G) is much more better than the other TI e.g ( R1(BeN4) , R−1(BeN4) , R1

2
(BeN4 , 

R− 1
2
(BeN4) , ABC(BeN4) , AZI(BeN4) , M1(BeN4) , M2(BeN4) , HM(BeN4) , F(BeN4) , ReZG1(BeN4) , ReZG2(BeN4) , 

and ReZG3(BeN4) ) because it has highest value of R = 1 , R2 = 1 and F = 186557 : 243 , while the vale of 
SE = 0.011 is minimum as compared to the other TI . So we may conclude that GA(BeN4) is best predictor of 
complexity BeN4 of among all these indices.

Figure 15.  Logarithmic model between (a) AZI(G) and ENTAZI(G) , (b) ReZG1(G) and ENTReZG1
(G).

Figure 16.  Logarithmic model between (a) ReZG2(G) and ENTReZG2
(G) , (b) ReZG3(G) and ENTReZG3

(G).
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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