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Brain network hypersensitivity 
underlies pain crises in sickle cell 
disease
Pangyu Joo 1, Minkyung Kim 1, Brianna Kish 2, Vidhya Vijayakrishnan Nair 2, Yunjie Tong 2, 
Ziyue Liu 3,4, Andrew R. W. O’Brien 5, Steven E. Harte 6, Richard E. Harris 6,7, UnCheol Lee 1* & 
Ying Wang 5,8*

Sickle cell disease (SCD) is a genetic disorder causing painful and unpredictable Vaso-occlusive crises 
(VOCs) through blood vessel blockages. In this study, we propose explosive synchronization (ES) as a 
novel approach to comprehend the hypersensitivity and occurrence of VOCs in the SCD brain network. 
We hypothesized that the accumulated disruptions in the brain network induced by SCD might 
lead to strengthened ES and hypersensitivity. We explored ES’s relationship with patient reported 
outcome measures (PROMs) as well as VOCs by analyzing EEG data from 25 SCD patients and 18 
matched controls. SCD patients exhibited lower alpha frequency than controls. SCD patients showed 
correlation between frequency disassortativity (FDA), an ES condition, and three important PROMs. 
Furthermore, stronger FDA was observed in SCD patients with a higher frequency of VOCs and EEG 
recording near VOC. We also conducted computational modeling on SCD brain network to study FDA’s 
role in network sensitivity. Our model demonstrated that a stronger FDA could be linked to increased 
sensitivity and frequency of VOCs. This study establishes connections between SCD pain and the 
universal network mechanism, ES, offering a strong theoretical foundation. This understanding will 
aid predicting VOCs and refining pain management for SCD patients.

Sickle cell disease (SCD) is a common inherited blood disorder affecting 1 in 500 Black Americans. Pain in SCD 
is a lifelong major complication starting from infancy, and can be acute, chronic, or a mixture of both. Vaso-
occlusive crises (VOCs) associated with SCD are extremely painful episodes that are recurrent, unpredictable, 
and frequently require hospitalization and opioids for pain control. Individuals with SCD that require high doses 
of opioids for VOCs have an increased risk of overdose and death, development of opioid-induced hyperalgesia, 
and lowered quality of life (QoL)1. The frequency of VOCs varies widely across SCD individuals with a recent 
systematic review reporting a range of 0–18 per  year2. Recent studies suggest that the occurrence of VOCs is 
associated with abnormal vasoconstriction patterns resulting from dysfunction of the autonomic nervous system, 
endothelial dysfunction, and/or psychological  stress3–5. Central nervous system (CNS) factors may also con-
tribute to VOCs. For example, we showed that brain connectivity between the Default Mode Network (DMN) 
and structures of the Salience network were altered in SCD patients that had more  VOCs6. Interestingly, this 
pattern of connectivity was consistent with that observed in fibromyalgia, a chronic widespread pain disorder 
accompanied by fatigue, sleep disturbance, and sensory  hypersensitivity7,8.

Explosive synchronization (ES) is a universal physical phenomenon wherein a small perturbation to a network 
can result in an abrupt state transition. The typical properties of an ES network include its high sensitivity to 
external stimuli and abrupt state transition at a tipping  point9,10. Recent studies have suggested a link between 
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ES in brain networks and chronic pain. We recently demonstrated that patients with fibromyalgia exhibit char-
acteristics of ES on electroencephalography (EEG) that are associated with increased pain  intensity10, and that 
modulation of brain networks can transform a sensitive network into an insensitive one, or one not prone to  ES11. 
These modeling investigations provided valuable insights into the network-level mechanisms of fibromyalgia 
and provide a rationale for studying ES mechanisms in other pain populations such as SCD.

In this study, we sought to extend our exploration of ES mechanisms into SCD. We hypothesized that changes 
in the brain network connectivity as observed in patients with SCD can potentially disrupt the hub structure, 
leading to ES and hypersensitivity. To test the hypothesis, we performed EEG on SCD patients and matched 
healthy controls. Furthermore, we examined differences in ES strength in SCD patients at various times before 
and after VOC events. Additionally, we developed a computational model to examine the relationship between 
ES and the occurrence of VOCs in the SCD brain.

Methods
Study design and participants
Thirty-two patients with SCD (16 male and 16 female) aged 14–73 years, and 18 pain-free ethnicity-, age- and 
gender-matched healthy controls (HCs) without SCD, were enrolled. All participants were Black or African 
American. Detailed inclusion and exclusion criteria can be found in Supplementary Table S1. In brief, the main 
inclusion criteria for SCD participants included: (1) experiencing chronic pain greater than or equal to 3/10 on 
most days for the past 6 months or at least one VOC in the past 12 months, (2) no recent history of initiating 
or adjusting the dose of stimulant medications in the past one month, and (3) willingness to maintain current 
SCD and pain treatments, and not to introduce any treatment for pain for the duration of study participation.

Each participant underwent an EEG recording following the administration of patient reported outcome 
measures (PROMs) and routine laboratory tests for complete blood cell count, reticulocytes, and hemoglobin 
electrophoresis. We were unable to collect quality EEG data from some SCD patients with thick curly hair that 
interfered with cap placement or those experiencing a pain flare on the day of recording, leading to increased 
noise during EEG measurements. EEG signal noise was primarily addressed during preprocessing; however, 
some recordings (n = 7) with severe noise could not be corrected and were excluded from analysis. Therefore, 
the final analysis sample was 25 (see Supplementary Fig. S1). The study was approved by the Institutional Review 
Board at Indiana University and conformed to the relevant ethical guidelines and regulations for human subjects’ 
research. All adult patients and parents/guardians of pediatric patients provided written informed consent before 
participating in the study.

Concurrent EEG with pressure pain stimulator
EEG was performed in a quiet room using multi-channel BrainAmp MR (Brain Products GmBH, Gilching, 
Germany) and a noninvasive cutaneous electrode cap with conductive gel. After donning the cap, the participants 
were instructed to remain as still as possible for the entire procedure, to stay awake while their eyes were closed. 
Recordings were done with eyes closed during a state of rest or during concurrent pressure pain stimulation 
(individually calibrated to evoke moderate pain defined as a pain rating of ~ 40/100, i.e., Pain 40) that was elicited 
by a computerized pressure cuff (Hokanson, Bellevue, WA, USA) attached to the left gastrocnemius muscle. This 
method has been used previously to elicit evoked pressure pain in fibromyalgia  patients12. First a resting state 
EEG was collected while participants rested with their eyes closed for 5 min. EEG was then recorded for 5-min 
during tonic pressure pain with eyes closed. Following the pressure pain protocol, resting state EEG recording 
was repeated for 5-min with eyes closed. Our previous EEG  study10 successfully demonstrated a significant cor-
relation between ES strength and pain intensity in fibromyalgia patients using 5-min EEG data (300 s). Based 
on this prior success with similar analysis methods, we believed that 240-s EEG data may also be sufficient to 
investigate the relationship between ES strength and pain scores in SCD patients.

Patient reported outcome measures (PROMs)
Pain (pain intensity and interference) and physical function were assessed before EEG recordings with the Brief 
Pain Inventory (BPI)13 and PROMIS-2914. The Fibromyalgia Survey Questionnaire (FSQ), which consists of the 
Widespread Pain Index and the Symptom Severity  scale15,16, was utilized as a surrogate measure of nociplas-
tic pain. Anxiety and depression were evaluated using Hospital Anxiety and Depression Scale (HADS)13. The 
number of patient-reported VOCs in the preceding 12 months was documented, a method which is commonly 
used in pain research for  SCD6,17. Pain-related QoL was evaluated using the Pediatric Quality of Life Inventory 
(PedsQL)18.

EEG analysis
EEG preprocessing
In this study, we analyzed a 31 channel EEG (FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, 
Fz, Cz, Pz, Oz, FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6, TP9, TP10 and POz), excluding an ECG channel 
(Fig. 1A). The raw EEG data were preprocessed using MATLAB and the EEGLAB  toolbox19. First, a 0.5–59 Hz 
bandpass filter was applied to remove frequency bands with high levels of noise. Next, a visual inspection of 
the waveform and spectrogram of EEG was performed to remove channels with obvious noise and to segment 
the data into 240-s intervals. To minimize errors in spherical spline interpolation, data with more than 20% of 
channels removed were excluded in this study. Also, EEG data with a duration of less than 240 s was excluded 
from the analysis. With these criteria, data from 7 individuals were excluded out of the 32 SCD participants, 
leaving 25 participants’ data for analysis. Among the HC group, no data was excluded with these criteria, leaving 
18 participants’ data for analysis. Next, Independent components with a significantly high probability (> 95%) 
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being non-EEG were removed using runica in EEGLAB and  IClabel20. The removed channels were recovered 
using spherical spline interpolation and finally the EEG was average referenced. In this study, we focused on 
analyzing alpha rhythms, which display distinct oscillatory patterns around 10 Hz and are known to be highly 
relevant to cognitive phenomena, including  pain21–24. To achieve this, we utilized a band-pass filter and specifi-
cally analyzed the alpha band containing 7–13 Hz EEG signals.

Weighted phase lag index (wPLI)
Weighted phase lag index (wPLI) is used to assess functional connectivity from the phase difference between 
two-time series and is particularly robust to volume conditions commonly observed in  EEG25. The wPLI between 
the ith and jth channels is defined by the following equation.

wPLIij =
|�sin�ϕij�|
�|sin�ϕij|�

=
|�|sin�ϕij|sign(sin�ϕij)�|

�|sin�ϕij|�
,

Where �ϕij represents phase difference between ith and jth channel band EEG. In this study, we utilized 240 s 
of alpha-band EEG (7–13 Hz) to evaluate individual patients’ wPLI. We segmented the 240-s long EEG into 8 
windows of 30 s. Then, we calculated the wPLI for each window and averaged the 8 wPLI values (240/30 = 8) 
to represent a patient’s wPLI. The window size was determined to optimize differentiation between the HC and 
SCD groups (Supplementary Fig. S2).

Frequency disassortativity (FDA)
Frequency disassortativity (FDA) is one of the network conditions that can induce ES at a critical point. FDA 
refers to the tendency where high-frequency nodes are connected to low-frequency nodes, or vice versa, within 
a  network26,27. FDA suppresses network synchronization, which competes with the opposite force to promote 

50 100 150 200

FP1
FP2
F3
F4
C3
C4
P3
P4
O1
O2
F7
F8
T7
T8
P7
P8
FZ
Cz
PZ
Oz

FC1
FC2
CP1
CP2
FC5
FC6
CP5
CP6
TP9

TP10
POz

0

0.2

0.4

0.6

0.8

1

G
lo

ba
l s

yn
ch

ro
ni

za
tio

n Non-ES
ES

0 0.1 0.2 0.3 0.4
Coupling strength

0

1

PC
F

9 9.5 10 10.5 11
Node frequency

9.7

9.8

9.9

10

10.1

10.2

10.3

N
ea

rb
y 

fre
qu

en
cy

Non-ES
ES

6 8 10 12 14
Frequency (Hz)

0

1

2

3

4

Sp
ec

tra
l p

ow
er

 (μ
V2 /H

z)
10 20 30

5
10
15
20
25
30 0

0.2

0.4

0.6

w
PL

I

31 Channel EEG α-band
Frequency & wPLI

ES condition
(Frequency Disassortativity)A B

C
D

Step1 (baseline) Step2 Step3

Random Perturbations 
on Coupling Strength

Global Pulsatile
Perturbation

1 2 3 4 5
Steps

FD
A

0
Time from stimulation onset (ms)

0.5

1

1.5

2

2.5

r(t
)

95% percentile

Baseline(10sec) Respond
100 400

Stimulation

Channel #

C
ha

nn
el

 #

to whole 

network

Figure 1.  Schematic diagram of the study. (A) Schematic for the EEG analysis in this study. wPLI matrix and 
median frequency of alpha band were calculated from 31 channel EEG. FDA, one of the ES conditions, was 
obtained from wPLI network and median alpha frequency. (B) An example of synchronization characteristics 
of ES and non-ES network. The coupling strength at which the PCF reaches its maximum value was defined as 
critical point (green and red arrows). (C) An anatomical brain network and Stuart-Landau model were used to 
investigate the sensitivity and frequency of state transition of the brain network. Global Pulsatile perturbation is 
given for 100ms and the respond from the perturbation is measured from the subsequent 300ms. (D) Random 
perturbation on coupling strength is given to simulate number of state transitions under noisy environment. The 
difference in node colors in the brain network indicates the difference in node degrees.
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synchronization at a critical point. If a network is at a critical point where the two competing forces are in bal-
ance (e.g., between healthy and pain states in the brain), the network is highly sensitive and exhibits abrupt state 
transition even with a small stimulus. Therefore, a network with a larger FDA makes the network more sensitive 
to external stimuli.

Defining a representative frequency for each EEG channel is necessary for the calculation of FDA. The most 
apparent method is to use the peak frequency, the frequency of the maximal power, in the alpha band (7–13 Hz). 
However, the peak frequency faces a limitation in cases where a clear peak is absent in alpha power spectrum, and 
particularly when estimating FDA, a feature of the entire network. Therefore, we used the median frequency of 
the alpha band to define the representative frequency of an EEG channel, and it enabled us to define representa-
tive frequencies for all the EEG channels. The 240-s EEG was segmented into eight 30-s windows, and in each 
window, the spectral power was computed using Welch’s method (2-s window and 1-s overlapping). The median 
alpha frequency is defined as the 50% percentile of cumulative spectral power within the alpha band (7–13 Hz).

Furthermore, we constructed wPLI network in each 30-s window, which is required to determine the con-
nections among EEG channels. The top 30% of the wPLI connections for all the pairs of EEG channels were 
deemed as significant functional connections. Then, the Spearman correlation coefficient ( ρf  ) was calculated 
between the median alpha frequencies of the 31 EEG channels and the averaged median alpha frequencies of 
the neighboring EEG channels that are functionally connected to the 31 EEG channels. The negative Spearman 
correlation coefficient ρf  indicates frequency disassortativity.

Computational modeling of SCD brain network
Stuart–Landau based brain model
We performed a computational model of the SCD brain in order to simulate altered ES function and test for 
sensitivity of network mechanisms. Stuart–Landau model is a mathematical model that describes the dynamics 
of coupled oscillator systems and their synchronization. The Stuart-Landau oscillator is extensively utilized for 
simulating the oscillatory dynamics between neural masses in the brain and for simulating brain signals from 
many different  modalities11,28,29. In this study, we aim to investigate the sensitivity changes in the brain and the 
occurrence of crises using the Stuart–Landau model.

The coupled Stuart–Landau model is defined by the following equations.

where ri(t) and θi(t) are the amplitude and phase of ith oscillator, respectively.
�i is a parameter that determines the size of the limit cycle of the oscillator, and it was set to 1. ωi determines 

the natural frequency of an ith oscillator and was normally distributed with 10 Hz mean and 0.4 Hz standard 
deviation to simulate alpha waves in the brain. Aij represents the anatomical connectivity derived from diffusion 
tensor imaging (DTI), which has been parcellated into 82  nodes30. Aij was binarized, limiting its values to either 
0 or 1. The time delay τij = Dij/υ represents the delay between region i and j, where Dij denotes the distance 
between ith and jth brain regions. Here, υ is set to 7 ms, representing the average speed of axons across brain 
 regions31. S represents the coupling strength between oscillators and S varied from 0 to 1.

To simulate the SCD brain activities in wakefulness, we assumed that the brain network resides near a critical 
state. A critical state is a balanced state between order and disorder, originally introduced in thermodynamics, 
but it has been widely studied in biological systems as an optimal state for information processing, especially 
highly informative, integrative, and flexible brain states of a conscious  state32–35. To identify a critical point, we 
used the pair correlation function (PCF), which measures the variance of point-wise global phase synchroniza-
tion (i.e., instantaneous order parameters)36. Since PCF is maximal at a critical  point36, we identified the maximal 
PCF as the critical point in this model study. When a network is closer to ES, the network undergoes a steeper 
transition near a critical point (Fig. 1B) and exhibits a high sensitivity to external perturbations. By varying the 
coupling strength S in increments of 0.005, we searched the maximal PCF and fixed S of the maximal PCF as the 
critical point of the brain network. Twenty iterations were conducted for each frequency distribution, changing 
the initial phase ( r ) and amplitude ( θ ), and the outcomes were tested statistically.

Modulation of model FDA
To create a brain network with a specific level of FDA, measured by the Spearman correlation (ρf ) between 
individual node frequencies, W=[ω1 , ω2, . . . ,ω82 ], and their neighboring nodes’ average frequencies, nW=[nω1 , 
nω2, . . . , nω82 ], we developed a new FDA algorithm. The neighboring nodes of the 82 nodes are determined by 
the anatomically informed brain network structure. The goal of this FDA algorithm is to configure the spatial 
arrangement of frequencies and make the brain network have a desired Spearman correlation between W and 
nW . The algorithm can be outlined as follows: (1) first assign frequencies randomly to each of the 82 nodes in 
the brain network, (2) calculate the Spearman correlation (ρf ) between F and NF. If the ρf  is below the target 
ρf  , (3) randomly choose a node (i) from the 82 nodes, and determine the rank of its frequency ωi within W 
(e.g., 3rd largest), (4) replace the frequency ωi of that node (i) with the frequency ωj of the node (j) whose nωj is 
the same rank in nW (the 3rd largest). (5) Go back to step 2 and repeat the process until the ρf  between W and 
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{
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nW  reaches the desired ρf  value. This usually takes about 200 iterations. The final brain network will exhibit 
the specific FDA level that was desired. Notably, previous algorithms altered model network structure to get a 
target FDA  level27,37; however, in our model study, since the anatomical brain network structure was fixed, only 
by swapping the frequencies, we achieve the desired FDA level.

Sensitivity test
We conducted simulations for each frequency distribution with different FDA by placing the system at the criti-
cal state and applying pulsatile stimulation. By measuring the response to the pulsatile perturbation, we could 
simulate how the brain network sensitively responds to the external perturbations such as sensory input signals. 
To measure the sensitivity of the model brain network system, global pulsatile perturbations were applied, and the 
corresponding responses were measured (Fig. 1C)38. The pulsatile perturbation u(t) was added to the amplitude 
equation, as shown in the following equation.

An iteration lasted 25 s to exclude transient effects (10 s) and get a sufficient time for baseline estimate (10 
s) with about 100 alpha wave cycles. The pulsatile perturbation was given at 20 s and lasted 100 ms to include a 
complete cycle of alpha oscillation. The amplitude of the pulsatile perturbation was 50 to give a perturbation that 
results in a measurable response without saturating the system. The simulations were done on 100 different initial 
frequency configurations and 20 iterations with different initial phases and amplitude. A perturbation response 
time series of ith node PRi(t) can be generated by applying a significance threshold of the 95th percentile to the 
amplitudes observed in the 10 s preceding the onset of stimulation. The values of PRi(t) are set to 1 for amplitudes 
exceeding the threshold and 0 otherwise. In other words, if the amplitude after stimulation exceeds the 95th 
percentile of the baseline, we consider it as a responded activity to the stimulus. Responsivity and complexity 
are defined as 〈PRi(t)〉 and Lempel–Ziv  complexity39 of PRi(t) respectively. Responsivity measures the amount of 
the significant responses, and complexity measures how complex the patterns of the responses are. Responsivity 
and complexity are calculated using 300 ms of PRi(t) from the moment the pulsatile stimulation ends. The large 
responsivity and complexity after the stimulation means large sensitivity.

Simulation on the frequency of close crisis state
We performed modeling on the occurrence frequency of model VOCs to investigate the relationship between the 
ES strength and the frequency of VOC occurrence (Fig. 1D). Each simulation step lasted for 20 s, with normally 
distributed random constant perturbations ( σ=5% of coupling strength at a critical point) given to the network 
coupling strength S in each period. That is, S in the Stuart-Landau equation is replaced by S × [1+ N

(

0, 0.052
)

] . 
The FDA of each step was calculated using the median frequency of the last 10 s interval and DTI based anatomi-
cal network. This is referred to as the "signal FDA amplitude". Based on the results of EEG and VOC occurrence 
analysis, a state with signal FDA amplitude greater than 0.2 was defined as a “close crisis” state. We then counted 
the occurrences of the close crisis state among 100 steps. We conducted simulations of 20 brain networks with 
different initial frequency configurations in this scheme.

Statistical analyses
Statistical analysis was performed using either SPSS 29.0.1 or MATLAB. Demographic data were displayed as 
median and interquartile range. Two-sample t-tests were conducted on EEG characteristics between participants 
with SCD and matched healthy controls. Correlation analyses between frequency disassortativity and each of 
the PROMs were performed including age, sex and use of hydroxyurea as control covariables. Linear regression 
was constructed including frequency disassortativity as a dependent variable, “close to or distant from VOCs,” 
and age, sex and use of hydroxyurea as predictors. P-values less than 0.05 were considered significant. The study 
is appropriately powered at greater than 0.84 with the current sample size of n = 25.

Results
Patient demographics
Thirty-two participants with SCD with eighteen age-, gender- and ethnicity-matched HCs underwent EEG 
recording following screening visit and enrolled on the study. PROMs were collected followed by EEG recordings 
within 1 week. Assessment of recording quality further excluded recordings from 7 participants (Supplementary 
Fig. S1). Study criteria for SCD was listed in Supplementary Table S1. Demographic information was displayed 
in Table 1. Participants with SCD and HCs did not differ in age, gender, height, and weight. Participants with 
SCD showed significantly higher levels of WBC, RBC, Hgb, Hct (%), Reticulocytes (%) and Hemoglobin A (%). 
Three participants were on chronic transfusion. Fifteen participants were receiving hydroxyurea. In line with the 
literature, participants with SCD showed elevated pain, pain interference, depression and physical dysfunction 
as compared to HCs (Table 1).
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SCD participants have lower median alpha frequencies in the resting state with eyes-closed
We first analyzed EEG data collected from 25 individuals with SCD and 18 HCs during an eyes-closed resting 
period. The average spectral power between the two groups showed that the alpha peak in SCD is shifted towards 
lower values (Fig. 2A). The shift in median alpha frequency occurred across the entire brain, and it was not local-
ized to any specific regions. The SCD group exhibited a significantly lower (p <  10–5) frequency of alpha waves 
(9.01 ± 0.09 Hz, Fig. 2B) compared to the control group (9.83 ± 0.13 Hz, Fig. 2B).

We calculated wPLI degree as the sum of weights attributed to the node, and there were no significant differ-
ences in the node-wise degree and mean degree of wPLI (Fig. 2C,D). However, in the pairwise wPLI, 3 pairs were 
significantly stronger, and 18 pairs were significantly weaker in SCD compared to HCs (Fig. 2C). To investigate 
if there is a difference in FDA between the two groups, we calculated the Spearman correlation ρf  , and there 
were no significant differences between the SCD and control groups (Fig. 2E). Also, we could observe similar 
results under pain stimulation. The median alpha frequency significantly differed between HC and SCD groups 
(p <  10–4) and SCD showed significantly lower wPLI for 14 pairs (Supplementary Fig. S3).

PROMs of SCD patients are associated with FDA during evoked pressure pain stimulation
The correlation between PROMs and FDA was examined for both resting and during cuff pain, using a partial 
correlation model that adjusted for age and sex. Partial correlations were made between frequency disassortativity 
and each PROMs: pain, depression, physical function, and pain-related quality of life. No significant correlations 
were found during resting state (all p > 0.05). In contrast significant correlations were observed during evoked cuff 
pain, where we found that ρf  displayed a significant negative Spearman correlation with: BPI Pain Interference 
score ( ρ = − 0.442, p = 0.039), PROMIS29 Physical Function ( ρ = − 0.664, p = 0.001), and HADS Depression ( ρ 
= − 0.493, p = 0.020) in the SCD group (Table 2). The negative correlation between PROMs and ρf  suggests that 
patients with greater pain, depression and poor physical function displayed greater ES features (Stronger FDA).

FDA during cuff pain is related to the occurrence of VOCs
We investigated the relationship between ES strength and VOCs by correlating the strength of FDA during cuff 
pain with the temporal proximity of VOCs. We classified the data into two groups based on time difference 
between the occurrence of crises and the EEG recording. If one or more crises occurred within 30 days before 
or after the EEG measurement date, that participant was assigned to the "close crisis" group, and if not, they 
were assigned to the "distant from crisis" group. We found that a statistically significant Spearman correlation 
coefficient between ρf  and number of VOCs in the previous 12 months ( ρ = − 0.5945; p = 0.0014). Patients with a 
higher frequency of VOCs in the previous 12 months displayed stronger FDA (Fig. 3A). Importantly, the timing 

Table 1.  Demographics.

Subject characteristics SCD (n = 25) Healthy (n = 18) P-value

Age (years), median (range) 37.00 (27.00–45.00) 38.00 (25.75–57.00) 0.4562

Female, n (%) 15 (60.00) 8 (44.44) 0.3246

Height (cm), median (range) 170.1 (164.4–176.5) 172.6 (167.1–180.8) 0.3883

Weight (kg), median (range) 72.40 (59.60–88.40) 78.30 (67.83–87.55) 0.2730

SCD type diagnosis

 SS/SC/SB0/SB + (n/n/n/n) 12/8/4/1 –

 Hematological indexes

 WBC (k/cumm), mean ± SD 9.23 ± 3.12 5.12 ± 1.55  < 0.0001****

 RBC (million/cumm), mean ± SD 3.13 ± 0.78 4.67 ± 0.61  < 0.0001****

 Hgb (GM/dL), mean ± SD 9.96 ± 1.94 13.44 ± 1.54  < 0.0001****

 Hct (%), mean ± SD 28.88 ± 5.63 40.02 ± 4.30  < 0.0001****

 Reticulocyte count (%), mean ± SD 5.76 ± 3.67 1.17 ± 0.43  < 0.0001****

 Hemoglobin A %, mean ± SD 24.07 ± 13.02 94.79 ± 9.68  < 0.0001****

 Hemoglobin S %, mean ± SD 64.71 ± 18.05 –

 Hemoglobin F %, mean ± SD 9.46 ± 7.89 –

Disease-modifying therapy

 Chronic transfusion, n (%) 3 (12.00) –

 Hydroxyurea, n (%) 15 (60.00) –

Patient-reported outcome measures

 BPI Pain Severity 3.854 ± 2.00 0.097 ± 0.4125  < 0.0001****

 BPI Pain Interference 3.85 ± 2.12 –

 FPS Widespread Pain Index 5.28 ± 3.02 0.78 ± 1.59  < 0.0001****

 HADS Depression Score 4.76 ± 3.09 1.94 ± 2.01  < 0.0021**

 PROMIS-29 Physical Function 8.40 ± 3.82 4.50 ± 1.89  < 0.0001****

 PedsQL Total Score 54.36 ± 11.61 –
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Figure 2.  EEG characteristics in eye closed resting state. (A) EEG spectral power and topographic plots 
showing median alpha (7–13 Hz) frequency. (B) Topographic plot displaying wPLI degree and the significant 
difference of wPLI between HC and SCD. wPLI degree is calculated as the sum of weights attributed to the node. 
There was no significant difference in wPLI degree. Significantly stronger or weaker pairwise wPLI in SCD was 
indicated by red and blue lines, respectively. (C) Comparison of average median alpha frequencies between the 
HC and SCD groups. SCD group showed significantly lower median alpha frequency (p <  10–5). (D) Mean values 
of node-wise wPLI degree was not significantly different. (E) FDA was not significantly different. ρf  is Spearman 
correlation between median alpha frequencies and the average median alpha frequency of the connected nodes 
in the binarized wPLI network. The boxplots include horizontal lines indicating the 100%, 75%, 50%, 25%, and 
0% percentiles. The statistics were derived from a two-sample t-test.

Table 2.  Correlation between frequency disassortativity and patient reported clinical outcomes. Partial 
correlation model was constructed for frequency disassortativity and each of the patient-reported outcomes 
in pain, depression, physical function, and pain-related quality of life, with including age, sex and the use of 
hydroxyurea as covariables.

Patient reported outcomes Spearman correlation (p-value)

BPI pain interference score − 0.442 (0.039)*

BPI pain severity score − 0.293 (0.186)

FPS widespread pain index − 0.312 (0.157)

HADS depression score − 0.493 (0.020)*

PROMIS-29 physical function score − 0.664 (0.001)***

PedsQL total score 0.394 (0.069)
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of VOC occurrence relative to EEG recordings was also significantly associated to the ES strength. The group of 
SCD patients that were in the "close crisis" group showed significantly stronger FDA compared to the "distant 
from crisis" group (Fig. 3B, Table 3). This implies that the closer the VOC occurrence is to the EEG recording, 
the stronger FDA.

Stronger ES strength leads to a more sensitive brain network and increased frequency of pain-
ful crises
To investigate the relationship between FDA and network sensitivity, we performed computational modeling 
on brain network dynamics. Using the DTI-based anatomical brain network consisting of Stuart-Landau oscil-
lators, the responsivity and complexity under pulsatile stimulation were analyzed while varying FDA. Stronger 
model FDA was associated with higher responsivity and complexity of the model brain network after external 
perturbation (Fig. 4A,B), indicating that the model brain network exhibited increased sensitivity as it approached 
the strong ES.

To examine the relationship between the occurrence of VOCs and FDA, we simulated how brain networks 
with weak and strong ES strengths fluctuate in response to random perturbations on network coupling strength. 
Each model network received different perturbations at each 20-s step, and we observed changes in FDA ampli-
tude over time (Fig. 4C). We observed that the frequencies of model “close crisis” states were higher when the 
initial FDA before perturbation was stronger (Fig. 4D), indicating that stronger FDA in the model was associated 
with a higher frequency of VOC occurrence.

Discussion
Overview of results
We analyzed EEG data from individuals with SCD with chronic pain and pain-free age- and gender-matched HCs 
at rest and during evoked experimental pressure pain. As seen in other chronic pain  cohorts21,40,41, the SCD group 
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Figure 3.  FDA predicts the occurrence of VOC. The relation between FDA calculated from EEG under 
stimulation and the occurrence of VOCs was analyzed. (A) The correlation between FDA and the number 
of VOCs in the previous 12 months was examined. A significant correlation was found between the number 
of VOCs and ρf  . The red line indicates a linear regression. (B) The "close crisis" group showed significantly 
stronger FDA (p = 0.04) compared to the "distant from crisis" group. The boxplots include horizontal lines 
indicating the 100%, 75%, 50%, 25%, and 0% percentiles.

Table 3.  FDA predicts the occurrence of VOC. Linear regression was constructed for frequency 
disassortativity with the time point that is relative to the occurrence of crisis (“close to or distant from VOC”), 
age, sex and the use of hydroxyurea as predictors.

Dependent variable Predictor Standard b S.E. unstandardized P value R square full model

ρf

Close to OR distant from VOC − 0.412 − 0.099 0.04 0.243

Age − 0.121 − 0.001 0.106

Sex − 0.114 − 0.027 0.195

Hydroxyurea − 0.218 − 0.052 0.213
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exhibited a lower frequency of alpha waves compared to controls. No significant differences were found in the 
node-wise wPLI degree, but the pairwise wPLI exhibited lower values mainly in SCD. There were no significant 
differences in FDA between the groups during eyes-closed resting. However, during evoked pressure pain, the 
FDA of alpha waves in SCD was correlated with levels of pain interference, physical function, and depression. 
Patients with higher VOC frequency in the past 12 months also presented with stronger FDA, and closer occur-
rence of crises resulted in stronger frequency disassortativity in the SCD brain network.

We also sought to model the SCD brain network to examine FDA and its relationship to network instability. 
Computational modeling suggested that stronger FDA in our model was associated with higher responsivity and 
complexity, which indicated the increased sensitivity to the strong ES strength. We also investigated the occur-
rence frequency of VOCs by generating random fluctuations to the brain network. Interestingly, stronger initial 
FDA in the brain network led to higher VOC occurrence in our model, suggesting that the stronger frequency 
disassortativity may be associated with increased VOC occurrence in individuals with SCD.

Alpha EEG network and chronic pain in SCD
In this study, we focused on the alpha EEG band (7–13 Hz) for two key reasons. First, previous research in 
fibromyalgia, another chronic pain condition, demonstrated a significant correlation between the ES strength 
of the alpha EEG network and the pain  scores10. We assumed that alpha waves might play a similar role in the 
SCD brain. Second, the typical large alpha power spectrum makes it easier to detect and define a representative 
frequency for each EEG channel, which is necessary for calculating frequency disassortativity. Recent studies 
have consistently reported on the relationship between pain intensity and alpha waves, primarily their power 
and  frequency21,42,43. Theoretically, the alpha waves are thought to filter out irrelevant sensory inputs, enhance 
attentional focus, and enable efficient top-down control and the transfer of relevant  information44,45. They may 
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Figure 4.  FDA explains sensitivity and frequency of “close crisis” states in the brain network model. A 
simulation was conducted to test the sensitivity of the model brain network. Global pulsatile stimulation was 
applied to the model brain network, and responsivity and complexity were measured from the perturbation 
response time series PRi(t) . Another simulation was performed to investigate how random fluctuations in the 
coupling strength of the brain network can induce transitions to states of strong FDA. (A) The responsivity 
of the brain network to global pulsatile stimulation increases as FDA strengthened. (B) The Lempel–Ziv 
complexity of response time series after global pulsatile stimulation increases as FDA strengthened. (C) An 
example of stepwise simulation. Random perturbations are added to the coupling strength in the brain network 
for each step. (D) A higher initial FDA results in a more frequent incidence of model "close crisis" states. The 
Error bar represents the standard error of the mean.
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also contribute to the coordination and synchronization of neural activities across different brain regions, facili-
tating effective information transfer and cognitive  processing46. However, the mechanistic link of alpha waves to 
chronic pain is still elusive. Our EEG study suggests that the specific network configuration of globally interact-
ing alpha waves, which is measured by frequency disassorativity, may create a heightened sensitivity to stimuli 
in the SCD brain. Furthermore, the mechanism of network sensitivity, ES, offers a mechanistic explanation for 
why SCD patients exhibit heightened pain responses compared to healthy individuals.

The mechanisms of VOC and chronic pain in SCD at a brain network level
The criticality hypothesis suggests that the brain in a conscious resting state resides near a critical state, which 
is a balanced state between order and disorder or between integration and  segregation32,35. This means that the 
brain in a resting state is neither ordered (integrated) nor chaotic (segregated); therefore, it may be able to process 
information efficiently and  effectively34,47,48. In thermodynamic systems, there are two types of phase transitions at 
critical points: the first-order phase transition (ES in a network) and the second-order phase transition (non-ES in 
a network). ES networks are characterized by higher sensitivity to stimuli and abrupt state transitions compared 
to lower sensitivity and gradual state transitions in non-ES  networks49. In patients with SCD, we found that the 
degree of ES strength is positively correlated with self-reported pain measures and other related symptoms. We 
also found that as patients approach the onset of VOCs the degree of ES strength is also increased. Finally with 
computational modeling we demonstrated that the increased ES strength observed in SCD patients may enhance 
brain sensitivity as well as the frequency of crisis occurrence.

The accumulated effects of SCD within intervals between VOC occurrences may impact specific neural 
circuits and/or local brain regions altering the global brain network. Previous fMRI studies of SCD have con-
sistently reported altered connectivity in the DMN, a primary hub structure in the global brain  network9,13,23. 
Because the brain hub structure is a highly connected and centralized collection of  nodes22,40, we postulate that 
they are vulnerable to network attacks of accumulating neurobiological factors which may be operative in the 
SCD brain. Thus, an SCD patient in-between VOCs may accumulate neurobiological factors that promote ES 
properties mainly in hub structures (e.g., DMN), progressively developing an ES strength until the next VOC.

One possible explanation for the presence of strong ES in SCD patients could be due to weakened brain 
network efficiency. In line with our observation in this study, it is known that SCD patients display reduced 
efficiency and in their brain  networks50, which can lead to suppressed global synchronization and the potential 
emergence of strong ES within the  network49. That is, weakened efficiency in brain connectivity may paradoxi-
cally contribute to the development of a hypersensitive network and excessive pain in SCD. In this study, we 
observed that the ES strength close in time to VOCs was stronger compared to a distant one. This may also sug-
gest that as SCD patients approach VOC, the ES characteristics of their brain network become stronger. Also, our 
model demonstrates that strengthened frequency disassortativity enhances the sensitivity of the brain network, 
resulting in greater fluctuations in response to external perturbations. Consequently, this heightened sensitivity 
and increased fluctuations may raise the probability of encountering hazardous states like VOCs. Therefore, the 
larger variance in FDA within the SCD group and the frequent occurrence of crises among SCD patients can be 
attributed to the presence of a brain network that exhibits strong ES. The findings in this study provide support 
for our hypothesis that the increasing strength of ES in the SCD brain network is associated with the enlarging 
pain intensity observed during VOC progression (Fig. 5).

We found significant relationships only during the stimulation period, which could be attributed to variations 
in criticality. We assumed that the brain network in a conscious state resides at a critical point. However, recent 
empirical evidence suggests that the brain in a conscious resting state may not always stay at the exact critical 
point. Instead, it slightly deviates towards the sub-critical state (i.e., chaotic and segregated state)51. This prevents 
the brain from a sudden transition to a highly synchronized state (e.g., a seizure) by stochastic internal/external 
noises. Brain imaging studies have demonstrated that pain stimulation makes functional connectivity within parts 
of the brain stronger and  integrative52,53, and generally, increasing functional connectivity in a network can play 
a role in pushing a system in a sub-critical state (a segregated state) back closer to its critical point. Therefore, 
the pain stimulation may push the SCD brains closer to their critical points, making the difference between ES 
and non-ES more pronounced when they are near their critical points.

Explosive synchronization (ES) may be a novel marker of VOC onset and modulation
Over the last decade, many network configurations that can induce ES have been discovered, including: (1) posi-
tive correlation between node degrees and node frequencies, (2) negative frequency assortativity (a tendency 
of high-frequency nodes to be linked with low-frequency nodes), (3) large frequency difference, (4) random 
connectivity, and (5) negative feedback process among  nodes49,54,55. Our findings indicate the potential of FDA 
as a predictor for VOCs in SCD. FDA was first shown to have a correlation with pain in  fibromyalgia10. Here, we 
observe positive correlations between the strength of ES and symptoms of pain and depression in SCD patients, 
while no significant correlations were found for other ES conditions. The consistency of FDA across diverse pain 
conditions, including fibromyalgia and SCD, implies its potential as a predictive measure for pain, irrespective 
of underlying mechanisms of pain. This may allow the finding of better ES conditions that can reflect the pain 
scores and predict the upcoming pain crisis. This needs further study to develop the network principle-based 
prediction system of pain crises.

ES can provide a theoretical framework for the treatment of SCD pain through network 
modulation
Discovering correlations between ES strength in the SCD brain, pain intensity, and frequency of VOCs could 
help us develop a novel treatment method to reduce pain intensity and frequency of pain crises. In a recent 
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computational model, we showed that increasing connectivity in hub regions (e.g., insula, isthmus cingulate 
cortex, and precuneus) in an ES brain network can convert it into a non-ES brain  network11, which significantly 
reduces the brain’s sensitivity to external stimuli. Our next step is to apply a stimulation method (e.g., acupunc-
ture or transcranial direct current stimulation) that is known to alter brain  connectivity56,57 to our modeling 
approach. Based on the computational study and our empirical findings in SCD, we could develop a novel 
theoretical basis for systematically predicting and modulating pain intensity as well as the frequency of VOCs 
by converting the type of phase transition in individual SCD patients’ brains.

Limitations
Our study offers valuable insights into brain network mechanisms of VOCs in SCD; however, it also has certain 
limitations. In analytic and modeling studies, frequency disassortativity in a network is defined by the initial 
arrangement of frequencies (called natural frequencies) to the nodes. However, we cannot directly measure 
natural frequencies in brain regions using EEG data. Furthermore, we determined the median frequency from 
the band EEG, ignoring the spectral distribution. This simplification in sensor signals may not accurately reflect 
the real-brain network dynamics in source signals. Simultaneous recordings of fMRI and EEG may enable us 
to estimate the strength of ES more precisely. Finally, the amount of data recorded near the onset of VOCs was 
also largely restricted by the number of VOCs naturally occurring that were adjacent to the recording time. Due 
to this limitation of not knowing precisely when a VOC is going to occur prospectively, there is a significant 
challenge in using EEG to study or clinically manage VOCs.

Conclusion
The present study establishes a significant link between pain in SCD and a universal network mechanism, ES. It 
offers a robust theoretical foundation for comprehending pain in SCD through the brain network mechanism. 
This enhanced understanding will facilitate future investigations on predicting pain crises and refining pain 
management strategies for SCD patients.

Data availability
The data that support the findings of this study are available on request from the corresponding author upon 
reasonable request. The data are not publicly available due to privacy or ethical considerations.
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