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An analysis of case studies 
for advancing photovoltaic power 
forecasting through multi‑scale 
fusion techniques
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Shir Ahmad Dost Mohammadi 10*, Enas Ali 11 & Sherif S. M. Ghoneim 12

Integration renewable energy sources into current power generation systems necessitates accurate 
forecasting to optimize and preserve supply–demand restrictions in the electrical grids. Due to 
the highly random nature of environmental conditions, accurate prediction of PV power has 
limitations, particularly on long and short periods. Thus, this research provides a new hybrid model 
for forecasting short PV power based on the fusing of multi-frequency information of different 
decomposition techniques that will allow a forecaster to provide reliable forecasts. We evaluate and 
provide insights into the performance of five multi-scale decomposition algorithms combined with 
a deep convolution neural network (CNN). Additionally, we compare the suggested combination 
approach’s performance to that of existing forecast models. An exhaustive assessment is carried out 
using three grid-connected PV power plants in Algeria with a total installed capacity of 73.1 MW. 
The developed fusing strategy displayed an outstanding forecasting performance. The comparative 
analysis of the proposed combination method with the stand-alone forecast model and other 
hybridization techniques proves its superiority in terms of forecasting precision, with an RMSE varying 
in the range of [0.454–1.54] for the three studied PV stations.
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ARIMA	� Auto-regressive integrated moving average
ARMAX	� Auto-regressive moving average extrapolation
a-Si	� One amorphous
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BI-LSTM	� Bidirectional long short-term memory
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BPNN	� Back propagation neural network
CEEMD	� Complementary ensemble empirical mode decomposition
CGAN	� Conditional generative adversarial model network
CNN	� Convolutional neural network
DBN	� Deep belief network
DCNN	� Deep convolutional neural network
DL	� Deep learning
EEMD	� Empirical mode decomposition
ELM	� Extreme learning machine
EMD	� Empirical mode decomposition
FCBF	� Fast correlation-based filter
GA	� Genetic algorithm
GANs	� Generative adversarial model networks
GPR	� Gaussian process regression
GRU​	� Gated recurrent unit
HSV	� Hue saturation value
ICEEMDAN	� Improved complete ensemble empirical mode decomposition with adaptive
IEA	� International energy agency
IEMD	� Improved empirical mode decomposition
IF	� Iterative filtering
IGIVA	� Improved grey ideal value approximation
LR	� Linear regression
LS-SVM	� Least squares support vector machines
LSTM	� Long short-term memory
MAE	� Mean absolute error
MAPE	� Mean absolute percentage error
MEMD	� Multivariate empirical mode decomposition
MLP	� Multi-layer perceptron
MOcsa	� Multi-objective chameleon swarm algorithm
MODWT	� Maximum overlap discrete wavelet transform
MPSO	� Modified particle swarm optimization
MRE	� Mean relative error
MRMGR	� Maximize relevancy minimize global redundancy
m-Si	� Eight monocrystalline noise
NWP	� Numerical weather prediction
PR	� Performance ratio
p-Si	� One polycrystalline
PSO	� Particle swarm optimization
PV	� Photovoltaic
RBF	� Radial basis function
RMSE	� Root mean square error
RNN	� Recurrent neural network
RVFL	� Random vector functional link
SARIMA	� Seasonal autoregressive integrated moving average
SCA	� Sine cosine algorithm
SMAPE	� Symmetric mean absolute percentage error
SPVP	� Solar photovoltaic plant
SVM	� Support vector machine
TSF-CGAN	� Time series conditional generative adversarial model network
VAE	� Variational autoencoder
VMD	� Variational mode decomposition
WGANGP	� Wasserstein GAN with gradient penalty
WPD	� Wavelet packet decomposition
WT	� Wavelet transform

Solar photovoltaic (PV) energy has recently emerged as a viable alternative to conventional forms of electrical 
power production, such as fossil fuels1 power production. There has been a significant increase in the amount of 
PV capacity that has been installed throughout the world because solar energy is clean, economical, renewable, 
and beneficial to the environment. Therefore, photovoltaic (PV) systems provide an efficient alternative to sup-
ply distant locations by power, pumping water, and according to grid-connected PV plants, reducing electricity 
expenses.

PV power production is very sensitive to variations in solar irradiation as well as other factors of the local 
environment, in contrast to the traditional sources, where electrical power production can be simply managed. 
As a result, the integration of PV electricity into the electrical grid is a major challenge. Renewable power pro-
ducers, like other energy producers, should respect the expected electrical power for the market session2. Precise 
PV power assessment is vital for (1) integrating PV power into the grid, (2) selling PV power in the electricity 
markets, and (3) planning PV plant maintenance.
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The most current research on PV power forecasting includes a large number of different forecasting 
approaches, the choice of which is dependent on the adopted time horizon of the forecast, the utilized inputs, 
and the forecasting strategy that is chosen. The PV power forecasting techniques may be classified into3: (1) physi-
cal methods, relying on satellite/sky imagery or numerical weather prediction (NWP) that need post-processing 
to transform their output to PV power, and (2) data-driven approaches that relate the output of the PV plant to 
external factors4. In the first category, the modeling process necessitates the collection of a substantial amount of 
data and the execution of several complicated analyses to estimate the parameters of the physical model, which 
restricts its applicability to the real world. On the other hand, data-driven approaches are extensively utilized in 
PV generation forecasts due to the fast growth of data mining, machine learning, and deep learning methods 
in recent years.

In a mathematical sense, the data-driven forecasting category may be classified into three sub-class: linear, 
non-linear, and hybrid models. The linear models are the simplest kind of these classes, and the most well-known 
linear forecasting models include the auto-regression (AR), auto-regressive integrated moving average (ARIMA)5, 
and auto-regressive moving average extrapolation (ARMAX)6. For one-step forecasting tasks, previous research 
has revealed that linear forecasting models may usually provide reliable outcomes. Despite this, it is apparent 
that the PV generation series is not linear. Thus, the majority of academics are concentrating their efforts on the 
creation of non-linear forecasting models such as artificial neural networks (ANN). Artificial Neural Networks 
(ANNs) have been shown in prior studies to be an effective tool for accurate predicting. It has been shown that 
employing ANNs to simulate linear trends may provide mixed results and it is not advised to use ANNs naively 
in any form of data7. Extreme learning machines, fuzzy systems, k-nearest neighbor, support vector machines, 
and their hybridization have dominated current PV forecasting literature. The behavior of a single model does 
not result in a more precise forecast of the amount of power produced by PV in a variety of scenarios. One pos-
sible explanation for this issue is that the stand-alone approach has certain shortcomings. In such situations, the 
ideal solution is a hybrid model, which combines two or more methodologies. These sorts of the model have 
been utilized for numerous forecasting applications to reach improved accuracy. One of the key goals of these 
models is to study the various combinations of different topologies in enhancing prediction accuracy. By using 
the advantages of each topology separately, hybrid models may boost forecasting performance. Solving the PV 
power forecasting issue using hybrid models has shown excellent performance compared with stand-alone 
models. Hybrid methods for time series forecasting have recently developed as a dynamic and active research 
area8 using different techniques such as metaheuristic algorithms9, sparse representation theory10–12 and decom-
position ensemble learning approaches13. A review of various forecasting techniques for solar irradiation and 
PV power is provided in13,14. A trending technique in the field of PV and other short-term forecasting domains 
is the use of deep learning techniques. Deep learning techniques are a complex and advanced type of machine 
learning approach. It can derive deep information from the PV power time series and produce high predictive 
results than other conventional models15.

Lulu Wen et al.16 developed a DL technique for solar power forecasting on an hourly scale. The forecasting 
outcomes prove that the DL model provides high precision than MLP and SVM models. A combined variational 
autoencoder VAE with a deep LSTM model provides low forecasting error (RMSE = 5.471) for short-term fore-
casting of PV power on different PV systems compared with different machine learning techniques17. The LSTM 
neural network model was proposed in18, for daily forecasting PV power. The outcomes of the developed model 
exhibit high forecasting performance compared to MLP, LR, and persistence methods. The proposed model 
present also 42.9% RMSE skill compared to the benchmarking models for 1-year testing data. Narvaez et al.19 
used deep learning techniques for daily and weekly scale forecasting of PV power. The obtained results showed 
that the DL model performed 38% better than the traditional forecasting method. The integration of the CNN 
model with LSTM20 shows excellent forecasting accuracy compared to other methods for the hourly scale of PV 
power forecasting. The developed mechanism has yielded the lowest forecasting error in terms of MAE, MAPE, 
RMSE, 0.0506,13.42, and, and 0.0987, respectively.

Zhen et al. proposed a new combination methodology based on the BI-LSTM model with a genetic algorithm 
(GA) to improve PV power forecasting21. Abdel-Basset et al.22, introduce a new learning model PV-Net for short-
term forecasting of PV power by reconfiguring the gates of the GRU model utilizing convolution layers. The 
achieved results show that the proposed PV-Net can extract hidden features from historical PV data and provide 
high forecasting accuracy. Wang et al.23 propose the use of the new deep learning model generative adversarial 
model networks (GANs) for weather classification employing Wasserstein GAN with gradient penalty and deep 
CNN-model. Research findings demonstrate the proposed WGANGP offers enhanced precision compared to 
reference models. Bendaoud et al.24 developed a conditional generative adversarial model network (CGAN) for 
short-term PV power forecasting using exogenous data. Huang et al.25, proposed a new combined model for 
hourly PV power forecasting. In their work, they developed a new time series conditional generative adversarial 
model TSF-CGAN, the proposed model is built by CNN and the Bi-LSTM model. The proposed combination 
methodology proves its performance against stand-alone models such as SVM, LSTM, RNN, and MLP models. 
Recent research has shown that the decomposition-learning strategy enhances the forecasting performance of 
stand-alone models significantly, and several time–frequency methodologies have been introduced for non-
stationary signals analysis.

Wavelet Transform (WT)26, Empirical Mode Decomposition (EMD)27, Ensemble Empirical Mode Decom-
position (EEMD)28, Multivariate Empirical Mode Decomposition (MEMD)29, Ensemble Empirical Mode 
Decomposition (EEMD)30, a modified variant of the conventional EMD (CEEMDAN)31,32 and Iterative Filtering 
decomposition method (IF)2. In this paper, five different decomposition learning approaches were independently 
investigated before being combined for short-term PV power forecasting, using one dimensional CNN model as 
an essence regressor owing to its capacity to extract more relevant features from the supplied input data.
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The remaining parts of the work are structured as described below. In the second section, a detailed literary 
analysis of the different decomposition ensemble learning algorithms for PV power forecasting is presented. 
"Contributions of the paper" section presents the paper’s contribution. Case studies, data collection, are presented 
in "Material and monitoring" section. The fundamental structure of the proposed model is presented in "Meth-
odology" section. "Performance metrics" and "Results and discussion" sections discuss the model assessment 
and the key findings of this study, respectively.

Literature review
Scientists have conducted various research on sun radiation evaluation so far, with interesting results. In this 
section, hybrid decomposition approaches are classified according to the used decomposition method:

Empirical mode decomposition
Shang and Wei33 proposed a multi-stage PV power forecasting model in four regions in USE. They proposed 
an enhanced version of empirical model decomposition EEMD combined with the SVM regression model for 
15-min and daily solar radiation forecasting. Maximize Relevancy Minimize Global Redundancy MRMGR 
feature selection technique is employed to reduce the huge numbers of decomposed components of endogenous 
and exogenous in different sites (400–600 feature vectors), after selecting the best candidate feature sets the 
improved SVM model is coupled with PSO technique for hyper-parameters tuning. The provided results show 
high forecasting accuracy compared with benchmarking models (MLP, RBF, ANFIS, NNPSO, -MLP, WT-RBF, 
WT-ANFIS, and WT-PSO).

Eseye et al.,34 suggested the use of wavelet transform coupled with POS and SVM models for multi-hour PV 
power forecasting using previous PV power with SCADA records and physical data. Behera et al.35, suggested a 
new hybrid model for short-term PV power forecasting. The developed model consists of three main steps: firstly, 
the historical PV power is split into a multi-frequency band using the EMD algorithm. The decomposed com-
ponent derived from EMD is then fed into the ELM model to generate the specified PV power. The sine cosine 
algorithm (SCA) is utilized for ELM hyperparameter tuning. The proposed EMD-SCA-ELM method is compared 
to its counterparts models, SCA-ELM, EMD-ELM, and stand-alone ELM model. The comparison in term of 
statistical metrics shows that the suggested appraoch provides better performance for multistep forecasting.

Wang et al.36, proposed the use of ICEEMDAN decomposition techniques with a modified version of par-
ticular swarm optimization (MPSO) for hyper-parameter selection of the SVM model. The suggested strategy 
is more suitable for other common approaches for PV power forecasting.

Wang et al.37, proposed the combination of the variable-weight combination model with ensemble empiri-
cal mode decomposition (EEMD) for PV power forecasting. Firstly, EEMD is employed for decomposing PV 
power data into different sets of frequency ranges. The decomposed components are classified into three main 
categories, high-frequency, and intermediate-frequency. These three categories are separately forecasted using a 
parameters-weight integration model and summed to get the actual PV signal. Experimental results show that 
an individual forecast strategy provides better precision than a direct forecasting method.

Zhou et al.38, proposed a new integrated model for PV power forecasting, the developed model was validated 
on three different databases in Safi-Morocco. The combined model consists of using the CEEMDAN algorithm, 
multi-objective chameleon swarm algorithm (MOcsa), and four ML and DL models. The CEEMDAN is utilized 
for PV power decomposition, and the MOcsa strategy is employed for determining the weight coefficient of the 
used subsystems (Enn, LStm, Cnn, and BiLStm). The proposed forecasting strategy is validated on three data 
sets with different panel technology (May 25 to July 15, 2018, 5 min time scale) including one polycrystalline 
(p-Si), one amorphous (a-Si) technique, and eight monocrystalline (m-Si), and proves its prediction performance 
against different deep learning and machine learning technique in terms of mean relative error (MRE), mean 
absolute error (MAE), and Symmetric mean absolute percentage error (SMAPE).

Lin et al.39 developed a new cascade decomposition using EEMD and VMD algorithms, in which EEMD is 
used firstly to decompose the given time series into a set of intrinsic mode functions, then VMD is employed to 
split the first component IMF1 from the EEMD method to obtain more stable components. All the obtained IMFs 
components are then fed into the BILSTM model for PV power forecasting. The developed approach proves its 
performance compared to other forecasting models (EEMD-BILSTM, EEMD-LSTM, ANN, LSTM, VMD-GRU, 
EEMD-ANN, and BILSTM) models.

Niu et al.40, proposed multi-stages for short PV power forecasting. In the first stage, the random forest algo-
rithm RF is used to rank the most important exogenous input and then remove the irrelevant data, then the 
selected factors are moved as weighted values to the improved grey (IGIVA) to select days with identical weather 
patterns. Time series PV power is decomposed using complementary ensemble empirical mode decomposition 
(CEEMD). In the modeling stage, the backpropagation neural network (BPNN) is used to forecast the desired 
output. The proposed RF-CEEMD-DIFPSO-BPNN model shows its forecasting performance and its stability 
under different weather conditions compared to other studied models.

Zhang et al.41, proposed a new integrated model for PV power forecasting which include time series decom-
position using improved empirical mode decomposition (IEMD), feature selection strategy using Maximize 
Relevancy-Minimize Global Redundancy, then PSO–SVM as a forecasting model in which PSO algorithm serves 
for hyper-parameters selection.

Wavelet decomposition
Random Vector Functional Link (RVFL)—Seasonal Autoregressive Integrated Moving Average (SARIMA)—
model combined with Maximum Overlap DWT was proposed in42, for three steps-ahead PV power forecast-
ing in IIT Gandhinagar, India. In their work, the DWT was used to split the PV data into 5 sub-series for each 
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decomposed component both forecasting models were applied, then a convex combination was utilized for the 
final forecast. The combination of these two models with DWT delivers excellent precision compared to the 
single models, and the combination of DWT-REVL, DWT-SARIMA.

De Giorgi et al.43 proposed the use of wavelet transform WT with least square support vector machine LS-
SVM for hourly PV power forecasting 24 h ahead in Italy. In their work, they conducted many experiments and 
observed that the pairing of LS-SVM and ANN with WT delivers high performance, and for long time horizons 
WT-LS-SVM reaches the highest performance.

Wan et al.44 proposed the use of wavelet transform WT coupled with a deep CNN model to build a WT-
DCNN forecasting model for hourly PV power in Belgium. In their work, WT is used to split the PV data into 
a set of different frequency ranges. The framework consists of a 1D-to a-to-2D-Image layer, convolution layer, 
pooling layer, 2D-to a 1D-layer, and finally logistic regression layer for each decomposition. Then a wavelet 
reconstruction phase is employed for the final forecast of the PV power signal. The achieved results show that the 
hybridization strategy performs better than the stand-alone (SVM and MLP) model and the hybrid WT-SVM 
in terms of forecasting criteria for all forecasting horizons in the two studied regions.

Chen et al.45, proposed a new fusing strategy for PV power forecasting using endogenous data on an hourly 
scale. In their work, the DWT algorithm was employed with an adaptive neuro-fuzzy inference system (ANFIS). 
The decomposed PV power signal is fed into the ANFIS model for outputting short-term PV power; different 
functions of wavelet mother were used (Haar, Daubechies, Coiflets, and Symlets). The achieved results demon-
strate that the developed combination delivers high performance. Furthermore, they found that coif2-ANFIS 
and sym4-ANFIS offer low forecasting errors compared to all studied models.

Zhang et al.46 utilized a hybrid deep learning model coupled with WD and Artificial neural networks (ANN) 
to improve solar power plant output forecasts. They used WD as the network’s transfer function and treats the 
model-weight, scaling-factor, and translation-factor as genetic individuals. The network’s parameters are then 
obtained through independent optimization using a genetic algorithm and imported into the network. The 
authors found that the GA-WNN network performance outperforms conventional ANN models.

A hybrid deep LSTM network integrating wavelet packet decomposition (WPD) is proposed by Pengtao 
et al.47. Authors have utilized hybrid deep learning for 1-h-ahead PV power forecasting. The WPD algorithm is 
used to subdivide the initial PV power series. Four LSTM networks model are created for these sub-series. The 
performance of the WPD–LSTM method was demonstrated with a case study using data collected from an actual 
PV system in DKASC, Alice Springs, Australia. compared to individual LSTM, RNN, GRU, and MLP models, 
the WPD–LSTM model performs better in terms of predicting stability and accuracy.

Variational mode decomposition
Zang et al.48, developed a new hybridization method based on variational mode decomposition (VMD) inte-
grated with the DCNN model for PV power forecasting on a daily and hourly scale. Each component of the 
VMD technique, which originated from PV power, is transformed into a 2D image for further training in 
parallel channels of the DCNN model. The proposed forecasting methodology 2D-VMD-DCC proves its abil-
ity in forecasting PV power with high precision compared to SVM, GPR, MLP, VMD-SVM, SMD-GPR, and 
1D-VMD-CNN. Netsanet et al.49 proposed a multi-stage forecasting model for daily PV power forecasting in 
China. The proposed methodology involves five main stages, firstly the time series of PV power is decomposed 
through the VMD algorithm into different components, then mutual information MI is employed to select the 
most pertinent input data. In the forecasting steps, the ANN model is employed with the ant colony optimization 
(ACO) technique for hyper-parameters tuning to output the desired PV power, another ANN model is utilized 
as a cascade forecasting using the previously estimated PV power as input for the final forecast. The forecast-
ing ability of the proposed VMD-ACO-ANN was compared to the single ANN model and the combined ANN 
with the genetic algorithm GA-ANN model. The forecasting performance of the proposed technique in terms 
of statistical metrics outperforms the benchmarking models.

Wu et al.50, proposed a new hybridization methodology for very short-term PV power forecasting in Australia. 
In the first stage, the VMD technique is used to decompose the PV signal into different frequency bands, then 
the fast correlation-based filter (FCBF) algorithm is employed to select relevant input features, then a BILSTM 
model is used as the essence regressor. The proposed VMD-FCBF-BILSTM model proves its forecasting ability 
against conventional models.

A new decomposition-combined model is proposed by Xie et al.51, the proposed combination method is 
based on the use of the VMD algorithm to decompose the PV power data into different frequency components, 
then Deep Belief Network DBN model is used to forecast the high-frequency components and Autoregressive 
model is used to forecast low-frequency components. The achieved results prove that the developed technique 
gives excellent performance compared to the basic models.

Korkmaz et al.52, proposed a new forecasting model SolarNet for short PV power forecasting in Australia Solar 
Centre. The proposed SolarNet is dependent on the use of the VMD decomposition algorithm and CNN model. 
The input data are; solar radiation, active power data, temperature, and humidity. The proposed CNN model 
consists of two structures, max-pooling, and pooling blocks to boost the forecasting effectiveness. The achieved 
results show that the proposed model outperforms other deep learning techniques for 1-h ahead forecasting.

Zhang et al.53 developed an integrated model for PV power assessment through the hybridization of the VMD 
algorithm, CNN, and BiGRU. The VMD algorithm decomposed the PV power series into several sub-modes. 
An input feature matrix is built using the antecedent values and various environmental parameters. The CNN 
technique is then used to model the fundamental input–output relation between the feature matrix and the target 
value. Next, the BiGRU network is used to forecast the next PV power. Combining the forecasting values of the 
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sub-modes yields the exact forecasted PV power result. The results showed that the VMD-CNN-BiGRU model 
outperformed the EEMD-CNN-BiGRU model.

Korkmaz et al.54 proposed the use of SolarNet which is a one-dimension convolutional neural network model 
for short-term PV output power forecasting over various weather conditions. The experiments are carried out as 
a case study utilizing a 23.40 kW PV dataset from the Desert of Australia. The measured meteorological data are 
used as input parameters to the SolarNet model. To create deep input feature maps, the power data is split into 
sub-components using the VMD approach, followed by a data preparation and reconstruction procedure. The 
achieved results show that the VMD-CNN forecasting technique delivers excellent performance.

Contributions of the paper
Based on the analysis of relevant literature, we may infer that decomposition ensemble-learning techniques 
for PV power forecasting provide promising outcomes for further research. Firstly, the majority of developed 
models employ only one decomposition technique as a pre-processing step in the forecasting process of PV 
power. Secondly, instead of utilizing the decomposed PV power time series directly, the use of feature selection 
is a necessary step in improving prediction performance. Decomposition models are a feasible way of enhancing 
forecasting precision, based on the advantages and limits indicated in the current research. This research makes 
use of the concept of hybrid forecasting and introduces a new way of predicting PV power to fill the gap in the 
existing literature on this problem. The proposed hybridization mechanism is based mainly on the following 
combination: ensemble decomposition methods, multi-scale feature fusing, feature selection approach, and 
deep learning model.

The following section outlines the work’s main novelty:

•	 A new fusion strategy IF-VMD-FSRA-CNN for short PV power assessment is optimized to generalize and 
improve predicting efficiency in a variety of meteorological conditions.

•	 The assessment and interpretation of several decomposition methods for short-term PV-plants power fore-
casting.

•	 The fusing of multi-scale features from the employed decomposition techniques for boosting the forecasting 
precision of PV power output.

•	 Using a feature selection technique allows users to choose the most meaningful intrinsic function IMFs from 
various multi-scale methodologies, which improves forecasting ability and minimizes the dimensionality of 
the data.

•	 The deep CNN model is capable of deriving deeper characteristics from the fused multi-scale information 
to provide the appropriate PV output power.

•	 Several tests were conducted, and the findings show that the suggested fusion mechanism produces more 
precise forecast outcomes than its counterparts models.

In comparison to previous research, the suggested forecasting methodology’s efficiency is confirmed and 
validated on three grid-connected PV power systems in Algeria with various climate conditions. The suggested 
solution that utilizes hybrid approaches has yielded the lowest forecasting error.

Material and monitoring
Summary of data
Data from three photovoltaic power installed in three distinct locations covering different climatic conditions 
in Algeria were used in the study. The map in Fig. 1 depicts the geographic coverage of solar PV power plants 
employed in this research. The study area covers the three selected sites. The first PV plant station is Lekhneg, 
in the Laghouat region (33° 43′ 26.74″ N, 2° 48′ 45.27″ E)with a capacity of 60 MWp located in the south of 
Algeria55. The second grid-connected PV power is Oud Nechou in the Ghardaia region56,57, (32° 36′ 1.46″ N, 3° 
42′ 3.42″ E) located also in the south of Algeria with a capacity of 1.1MWp. The third PV power station is Dhaya 
of Sidi Bel-Abbes (34° 41′ 32.23″ N, 0° 36′ 2.89″ O) located in the west of Algeria with a capacity of 12 MWp58.

The photovoltaic solar power plants of Lahgouat, Ghardaa, and Sidi Bel-Abbes were commissioned in (April 
2015/2016), as part of the national renewable energy program, and are one of 21 identical stations installed 
across the country to produce 400 MW. The information regarding the type of photovoltaic modules, the area 
of photovoltaic plants, and the data period of measured PV power in each PV station are given in Table 1. The 
photographs of the studied PV plants can be viewed in Fig. 2.

Methodology
Complete ensemble empirical mode decomposition with adaptive noise (CEEMD)
CEEMDAN is an extension of EMD. Modal aliasing could be further reduced by using adaptive white noise to 
increase decomposition effectiveness. It is possible to utilize CEEMDAN to analyze and handle non-stationary 
signals in time and frequency59. It can generate signal wave patterns of various sizes and create a series of data 
sequences with local features at various periods, where each component is a stationary IMF. Two criteria must 
be satisfied by each IMFs component: (1) the mean value of the envelope formed by its local maximum and 
minimum must be zero at any moment, and (2) the number of extreme points in the entire dataset must be the 
same as zero-crossing points or vary by at most one.

For a time-series sequence (t) , the key steps of CEEMDAN decomposition are as follows:

•	 At time m, we introduce white noise Wm(t) to the original signal Xm(t).
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where M represents the number of realizations.
•	 The first EMF IMF1(t) is calculated by taking the average of the EMD:

	   Then, the residual components are computed as:

•	 The signal r1(t)+ ε1EMD1(W
m(m)) is decomposed in its turn by the EMD algorithm to produce the second 

IMF and the corresponding residual as below:

(1)Xm(t) = X(t)+ ε0W
m(t),m = 1, 2, . . . ,M

(2)IMF1(t) =
1

M

M∑

i=1

IMF1(t)

(3)r1(t) = X(t)− IMF1(t)

Figure 1.   The geographical distribution of the three grid-connected PV-plants [Software-QGIS (A Free and 
Open Source Geographic Information System), Version 3.36.0 RC, Link: https://​qgis.​org/​en/​site/)] [Global Solar 
Atlas (Link: https://​globa​lsola​ratlas.​info/​map)].

Table 1.   Information on the three studied PV plants under consideration.

PV solar fields Data period Area Type of photovoltaic modules installed,

Laghouat I et II 2019–2020 60 Ha Crystalline poly, Type: YL250P-29b

Sidi Bel Abbés 2019–2020 36.6 Ha Crystalline poly, Deux Type: HSL60P6-PB-1-250

Ghardaïa piloté 2016–2017 10 Ha

Thin film (Cd-Te), Type : FIRST SOLAR FS-380

Amorphous silicon (a-Si), Type : SCHOTT ASI 103

Polycrystalline silicon, Type ATERSAA-235P

Monocrystalline silicon, Type AtersaA-250 M

https://qgis.org/en/site/
https://globalsolaratlas.info/map
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•	 Repeat these steps to obtain the k-th residual and k + 1-th IMF component:

where EMDk (■) indicates the k-th IMF mode.
•	 Repeat Eqs. (6) and (7) until the remaining signal is unsuitable for being further decomposed through the 

EMD algorithm and then terminate the algorithm.

Finally, the time series X(t) decomposition result may be written as follows:

Variation mode decomposition (VMD)
The VMD technique is one of the most recent signal processing methods.. The VMD method is a non-recursive 
and adaptive decomposition process proposed for non-stationary signals. The VMD algorithm is similar to 
an adaptive Winer filter bank, which can split a given signal into a set of center frequencies with a restricted 
frequency range different from the EMD algorithm. The essence of the VMD technique is to decompose a 
given input signal into several sub-models that have a restricted bandwidth and a certain level of sparseness in 
bandwidth60.

Constructing and resolving variation issues is the primary focus of this approach. Solving constrained vari-
ation optimization issues is stated as:

(4)IMF2 =
1

M

M∑

i=1

EMD1

(
r1(t)+ ε1EMD1

(
Wi(t)

))

(5)r2(t) = r1(t)− IMF2

(6)rk(t) = rk−1(t)− IMF2(t)

(7)IMFk+1(t) =
1

M

M∑

i=1

EMD1

(
rk(t)+ εkEMDk

(
Wi

))

(8)x(t) =
k∑

i=1

IMFk(t)+ R(t)

(9)
min{uk},{wk}

{∑
k

∥∥∥δt
[(

δ(t)+ j
π t

)
∗ uk(t)

]
e−jwkt

∥∥∥
2

2

}

s.t.
∑
k

uk(t) = f (t)

Figure 2.   (a) Photo of the Laghouat site, (b) Photo of Sidi Bel Abbés site, (c) Photo of Ghardaia site.
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Wher uk(t) represent the model function of the signal,{uk} is the model group { u1 , u2 ,…,u3 },wk is the central 
frequency of the k-th mode of the signal,{uk} indicate the center frequency of these decomposed modes,f(t) and 
δ(t) represent the input signal and unit pulse function respectively.

Utilizing quadratic penalty factor and Lagrangian multiplier Eq. (1) can be developed as:

The changing orientation multiplication technique (ADMM) is employed to solve Eq. (10). The uk can be 
described as:

where n represents the iteration numbers, f̂ (w) , ûn+1
k (w) , ûi(w)  and 

‘

�(w)  indicate the form after f (wt) , un+1
k (t) , 

uk(t) , and �(t)  Fourier transform61.

Wavelet packet decomposition (WPD)
The WPD technique is traditional signal processing, which split a given signal into its adequate and detailed 
elements. Wavelet basis and decomposition levels have a significant impact on the WPD’s performance. There 
are two kinds of WPD: the wavelet transform in its continuous and discrete forms. The following is a description 
of the continuous wavelet transform62:

where f(t) and ψ(t) represent the input signal and the mother wavelet, respectively. The term b indicates the 
translation factor and a represents the scale factor and * denotes the conjugate complex factor. The discrete form 
of a and b in DWT can be summarized as follows:

Iterative filtering decomposition method (IF)
Recently, the iterative filtering technique is proposed to be an alternative to the EMD method and its variants2 for 
signal processing with adaptive filtering to enforce the convergence of IF. The primary variance between the IF 
approach and EMD and its alternative is that the moving average of a specific signal f (x), x ∈ R is accomplished 
by employing the convolution of f (x)  with a specific law pass filter63. Let’s consider a signal (x), x ∈ R and L

(
f
)
 

represent the moving average of the input signal which can be estimated by64:

The term a(t) indicate the double average filter given by:

In IF methodology the operator L
(
f
)
 is obtained by the convolution of the signal f (x) by some specific filter 

W.
Let’s define our operator as: S1,n

(
fn
)
= fn − L1,n

(
fn
)
= fn+1 which shows the alteration part of fn , the first IMF1 

can be obtained by Eq. (17):

Apply the same method to the rest f − IMF1 until it becomes a trend signal, which implies it has just one 
local maximum or minimum. All IMF components are driven by two loops in the proposed IF methodology: 
an inner and an outer loop.

(10)

L({uk}, {wk}, �) = ψ
∑

k

∥∥∥∥∂t
[(

∂t +
j

π t

)
∗ uk(t)

]
e−jwkt

∥∥∥∥
2

2

+ �f (t)−
∑

k

uk(t)�
2

2

+ ��(t), f (t)−
∑

k

uk(t)�

(11)ûn+1
k (w) =

f̂ (w)−
∑k−1

i=1 û
n+1
i (w)−

∑k
i=k+1û

n
i (w)+

‘

�

n

(w)
2

1+ 2ψ
(
w − wn

k

)2

(12)wn+1
k = ψ

∑

k

δt

∥∥∥∥

[(
δ(t)+

j

π t

)
∗ uk(t)

]
e−jwkt

∥∥∥∥
2

2

(13)CWTf (a, b) = �f (t),ψa,b(t)� =
+∞∫

−∞

f (t)ψ∗
(
(t − b)

a

)
/
√
adt

(14)
{

a = 2j

b = k2j

(15)L
(
f
)
(x) =

l∫

−l

f (x + t)a(t)dt

(16)a(t) =
l + 1− |t|
(l + 1)2

, t ∈ [−1, 1]

(17)IMF1 = lim
n→∞

S1,n
(
fn
)
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Time‑varying filter‑based empirical mode decomposition algorithm (TVF‑EMD)
Time-varying filter-based empirical mode decomposition (TVF-EMD) is a newly established variant of the 
classic (EMD) suggested by Li et al.65. By adopting a B-spline approach filter to cope with shifting processes, the 
suggested TVF-EMD demonstrates its efficacy in resolving the shortcomings of the standard EMD algorithm. 
The fundamental concept of the suggested TVF-EMD relies on the fixed cutoff frequency and then follows with 
a time-varying filtering technique. The following are the key phases of the proposed TVF-EMD65,66:

•	 1: Estimate the maximum point and identify it for a given signal x(t) as :
•	 2: Determine all instances of intermittency that meet the following criteria:

max(ϕbis ′(ui :ui+1))−min(ϕbis ′(ui :ui+1))
min(ϕbis ′(ui :ui+1))

> ρ , where the position of ui can be considered as an intermittence 
: ej
(
j = 1, 2, 3, . . .

)
, ej = ui.

•	 3: For each state of ej , there are two alternative positions placed on the falling edge or rising of ϕbis′(t) , if 
ϕbis′(ui+1) > ϕbis′(ui),ϕbis′(ui) can be viewed as a floor. Although, if ϕbis′(ui+1) < ϕbis′(ui) , then ϕbis′(ui) can 
be found on its falling edge.

•	 4: Interpolatebetween the maxima to perform the adaptation of the local cut-off frequency.

where (ϕbis′(t)) specifies the cutoff frequency; a more detailed explanation may be found in65. Furthermore, 
the ending condition mentioned in the sifting step is as follows:

where BLoughlin(t)  represent Loughlin instantaneous bandwidth and ϕavg (t) displays the weighted average of 
the different components’ instantaneous frequencies65,66. Actually, with the stated bandwidth cutoff ε , the term 
"signal local narrow-band" is described as:θ(t) ≤ ε , in which TVF-EMD spliting performance will be adequately 
adjusted.

Convolution neural network (CNN)
Deep learning techniques as a subfield of machine learning (ML) have received considerable attention from the 
scientific community in recent years. The CNN model, which is a significant deep-learning architecture inspired 
by the natural visual system of mammals is developed by LeCun67–69proposed. Deep CNNs can be built using the 
backpropagation technique to perform tasks such as classifying handwritten digits. Deep CNNs have dominated 
various computer vision and image processing applications, and recent applications of CNNs for time series 
prediction have generated highly promising results70,71. Convolution, pooling layer, and fully connected layers 
are the main building blocks that CNN’s use to perform spatial hierarchies of features. The deep CNN model 
is mostly well adopted with time series signals for various regression and classification problems as introduced 
in72. The CNN models perform the optimization performance with less memory consumption, there is already a 
connection between the neurons in the adjacent layer of the fully connected networks. The hyper-parameters of 
Deep CNN model can be reduced efficiently; also, CNN models are able to extract special features with different 
lengths. Figure 5 displays an illustration of a CNN model used for time series forecasting employing univariate 
time-series data as input, we note that CNN’s are more suitable suited for multivariate time series with features 
extracted through convolution and pooling layers.

Forward stepwise regression algorithm (FSRA)
Forward Stepwise Regression Algorithm (FSRA) is a systematic method used in statistical modeling to select the 
most relevant variables for a predictive model. This algorithm falls under the category of stepwise regression, 
which includes both forward selection and backward elimination methods. FSRA specifically uses the forward 
selection approach, where the model building process starts with no variables and then adds them one at a time 
based on specific criteria. The main steps of FSRA are as follow:

1.	 Initialization Begin with a model containing no predictors. This means starting with a simple model that 
only includes the intercept .

2.	 Variable Selection At each step, consider adding each variable that is not already in the model. The choice of 
which variable to add is based on a predetermined criterion, usually the one that results in the most signifi-
cant improvement to the model. Common criteria include the lowest p-value in a t-test for the coefficient, 
the largest increase in R2, or a significant decrease in the Akaike Information Criterion (AIC) or Bayesian 
Information Criterion (BIC).

3.	 Model Evaluation After adding the new variable, evaluate the model to ensure it significantly improves the 
model’s performance. This can involve checking for statistical significance, improvements in goodness-of-fit 
measures, or cross-validation performance.

4.	 Iteration Repeat the variable selection and model evaluation steps, adding one variable at a time, until no 
further significant improvements can be made to the model.

5.	 Final Model The result is a model that includes a subset of the available variables that best explain the vari-
ation in the response variable, based on the criteria used for variable selection.

(18)θ(t) =
BLoughlin(t)

ϕavg (t)
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The hybrid‑forecasting model
The main configuration of the suggested fusion strategy is presented in Fig. 3. Furthermore, the following are the 
major phases involved in the construction of the combined IF-VMD-FSRA-CNN forecasting model:

•	 Step 1 Collect and analyze PV power data to generate training and testing sets. The training sets are utilized 
for model tuning (Hyper-parameter setting), while the testing sets are used for model assessment.

•	 Step 2 Using the decomposition techniques, divide the training and testing sets into a varied number of IMFs 
elements. The nonlinearity and non-stationarity characteristic of the actual data might be efficiently used 
addressed using these decomposition methodologies.

•	 Step 3 Individual use of each decomposition method for PV power forecasting and then fusing them to 
increase the forecasting accuracy.

•	 Step 4 A feature selection technique is used to identify and rank the most important IMFs components for 
PV power forecasting.

•	 Step 5 The identified IMFs sequence is deployed to train the deep CNN forecasting model as input variables.
•	 Step 6 After that, the fully trained CNN model is utilized to evaluate forecasting efficiency on the test dataset.
•	 Step 7 Examine the findings and assess the effectiveness of the three grid-connected under consideration.

It is feasible to demonstrate that the suggested integrated approach is intended to deal with a variety of 
qualities found that occur in the real world. Particularly, decomposition strategies were used to cope with the 
data’s non-stationarity. The noisy and unnecessary IMFs components are then removed using a feature selection 
approach. The non-linear CNN model is then used to model the PV power output.

Performance metrics
Five quality evaluations were chosen to quantify the impact of the suggested forecasting approach8,69,73–75 
expressed in Table 2 as:

Figure 3.   Flowchart of the proposed fusing strategy.
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Results and discussion
Precise short-term assessments of PV power are crucial for ensuring the production and stability of necessary 
power system capacity. This section intends to present the simulation results for the suggested technique using 
multiple techniques. These strategies are further divided into three phases. The primary concept is to create a 
combination of different decomposition strategies with a deep learning approach for PV power forecasting, and 
then apply the suggested strategy to diverse time series forecasting. We start by assessing the potential of extract-
ing multi-frequency features with the suggested decomposition techniques and evaluate each decomposition 
method separately on three grid-connected photovoltaic stations. The suggested combination methodologies 
have been adjusted for a horizon of 15 min, and a half hours ahead of PV power output. The suggested combina-
tion technique is assessed and verified on three separate PV power data sets, with 50% of each analyzed data set 
employed for training and the remainder for assessing forecasting ability. Solar irradiation, temperature, and the 
angle at which PV arrays are installed all influence PV power production. The association between previous PV 
power and future output PV power was the only focus of the present research. The concept of trial and error was 
used to evaluate the effect of different delays and determine the acceptable number of delays.

The PV power and its previously decomposed elements with optimum lag identification are the target outputs 
for training the supervised decomposition-deep learning method in this work. For each analyzed region, data 
pre-processing is the same. To validate the integrated model’s forecasting ability, the hybridization approaches 
were compared to stand-alone models (GPR, LS-SVM, ELM). All models were trained and tested using the 
same methodology. The quantitative findings of the assessment criteria for each decomposition strategy and 

Table 2.   Statistical metrics for forecasting.

Error metric Equation

RMSE RMSE =
√

1
n

∑
n

i=1

(
H −H

)2
(18)

nRMSE RMSE = RMSE∑
n

i=1 H
(19)

MABE MABE = 1
n

∑
n

i=1

∣∣H −H
∣∣ (20)

nMAE NMAE =
∑

n

i=1 |H−H|∑
n

i=1 H
(21)

r r =
∑

n

i=1 (H−mean(H))(H−mean(H))
∑

n

i=1 (H−mean(H))
2
(H−mean(H))2

(22)

Table 3.   Performance of different decomposition techniques for PV power, Laghouat region. Significant 
values are in bold.

Forecasting Horizon Model RMSE(W) nRMSE MABE nMAE r (%)

30-min

Stand-alone models

GPR-model 6533 26.73 3560.4 14.86 0.914

LS-SVM-model 5530 22.63 3175 12.953 0.937

ELM-model 5269 21.56 3035 12.38 0.94

Hybrid-models

WPD-CNN 917.61 3.755 614.65 2.512 0.998

CEEMDAN-CNN-model 1791.7 7.3332 1179.9 4.8132 0.993

IF-CNN-model 268.82 1.1002 172.23 0.7046 0.999

TVF-EMD-CNN-model 685.39 2.80 429.26 1.764 0.999

VMD-CNN-model 151.16 0.6185 112.75 0.4611 0.999

Table 4.   Performance of different decomposition techniques for PV power, Sidi Bel Abbés region. Significant 
values are in bold.

Forecasting Horizon Model RMSE(KW ) nRMSE MABE nMAE r (%)

15-min

Stand-alone models

GPR-model 1372.427 30.774 828.29 17.76 0.885

LS-SVM-model 1343.370 30.122 818.24 17.21 0.894

ELM-model 1176.392 26.378 771.95 16.40 0.923

Hybrid-models

WPD-CNN 178.083 3.993 127.01 2.851 0.998

CEEMDAN-CNN-model 294.281 6.598 213.23 4.786 0.994

IF-CNN-model 39.645 0.889 27.470 0.615 0.999

TVF-EMD-CNN-model 140.883 3.159 106.47 2.397 0.998

VMD-CNN-model 35.984 0.806 27.227 0.610 0.999
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their counterpart models are depicted in Tables 3, 4, and 5 for Laghouat, Sidi Bel Abbés, and Ghardaia stations, 
respectively. Bold numbers reflect the most accurate estimation. during the forecasting process. According to the 
findings reported, in Tables 3, 4, and 5, various observations may be inferred. Starting with the results delivered 
by hybrid approaches, where we can see that these latter significantly exceed the basic models in terms of statisti-
cal metrics75. Moreover, the hybrid approaches generate PV power output with high precision. It observed that 
the nRMSE error generated by all decomposition techniques is less than 10% in all analyzed areas whereas the 
nRMSE of individual models ranged from 22 to 39%. It can be also observed that all decomposition algorithms 
provide different forecasting errors which vary within the range of nRMSE = [0.61–7.44] in all studied stations. 
That is, the proposed combination can generate a 30-min and 15-min ahead PV power output with acceptable 
accuracy better than stand-alone models. The proposed VMD-CNN and IF-CNN models, followed by TVF-
CNN, WPD-CNN, and CEEMDAN-CNN models achieve the best forecasting precision in all studied regions. 
The VMD-CNN and IF-CNN models provide the highest average PV power production, which will be evaluated 
as the best candidate algorithm for multiscale fusing. For a more comprehensive view of the model’s precision, a 
statistical representation is also required in order to have a better comprehension of model precision.

As shown in Fig. 4, the VMD-CNN model ranked as the best forecasting model for Laghouat and Sidi bel 
abbes PV station followed by the IF-CNN model. In the case of Ghardaia PV station, we observe that the IF-CNN 
model provides the best forecasting performance followed by the VMD-CNN model. All hybrid models, which 
have satisfactory convergence, perform better than individual models. On the contrary, the results achieved 
by single models (LS-SVM, GPR, and ELM-model) illustrate that these models are ineffective as compared to 
hybrid models.

Table 5.   Performance of different decomposition techniques for PV power, Ghardaia region. Significant values 
are in bold.

Forecasting horizong Model RMSE(KW ) nRMSE MABE nMAE r (%)

30-min

Stand-alone models

GPR-model 201.738 39.647 124.70 29.891 0.782

LS-SVM-model 122.785 24.131 91.744 20.043 0.924

ELM-model 113.626 22.331 80.818 17.234 0.926

Hybrid-models

WPD-CNN 24.314 4.778 17.388 3.43 0.996

CEEMDAN-CNN-model 37.858 7.440 23.539 4.64 0.990

IF-CNN-model 10.319 2.028 7.441 1.469 0.999

TVF-EMD-CNN-model 20.694 4.067 15.497 3.092 0.998

VMD-CNN-model 11.455 2.251 8.433 1.674 0.999

Figure 4.   Forecasting results overall studied regions in terms of nRMSE.



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6653  | https://doi.org/10.1038/s41598-024-57398-z

www.nature.com/scientificreports/

Figure 5.   Forecasting results of various models Laghouat PV stations.

Figure 6.   Forecasting results of various models Sidi Bel Abbés PV stations.
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Figures 5, 6, and 7 show the actual and estimated PV power output on sunny and cloudy days patterns for 
the three studied regions. One can observe from the comparison of PV power forecasting that the forecasted PV 
power curve of stand-alone models (GPR, ELM, and LS-SVM model) show a remarkable gap between true and 
modeled values of PV power under different weather conditions. In both specific cases (sunny, and cloudy days), 
the results produced using hybrid decomposition ensemble learning techniques outperform those obtained with 
stand-alone models. Another relevant point is that the forecasting trend of the five developed hybrid models is 
identical to the actual data. For the three-studied PV station, the IF-CNN model and VMD-CNN model gener-
ate the closest PV power estimate to the real PV power data. In addition, the sub-figures show that the proposed 
VMD-CNN model and IF-CNN model can accurately match the trend and features of real PV power than the 
benchmarking models. The same figures may be used to infer additional information.

The outcomes are analyzed by considering all information investigated with all forecasting ranges. Because 
of the large number of numerical results in Tables 3, 4 and 5, it is necessary to investigate several elements of the 
forecasting model efficiency. On the resulting nRMSE metric, the Friedman and Nemenyi hypothesis testing76 
was employed. Friedman test is a statistical method used to rank various models in classification or regression 
tasks. This test is particularly useful when these models exhibit inconsistent performance, i.e., their effectiveness 
varies from one dataset to another, making it challenging to determine the best model for a specific application. 
The Friedman-Nemenyi test is an effective statistical approach that aids in the ranking and comparison of the 
models used.

Friedman’s test has been employed to score the proposed models throughout all forecasting horizons and 
analyzed PV plants. If the order difference is statically important, then a Nemenyi hypothesis test is conducted 
by comparing all forecasting models pair-by-pair. The RMSE, as a dependent scale statistic, cannot be used for 
model comparison across several datasets77. The previous study on time series forecasting has reported a similar 
concept, which can arise when alternative error metrics are utilized78. As a result, the test is conducted totally 
with the nRMSE metric, and the results are shown in Fig. 8.

As can be shown, after employing the Friedman-Nemenyi test statistic with 95% certainty, the suggested 
hybridization approach VMD-CNN-model delivers the best overall forecasting performance, outperforming 
hybrid and classic models when all-time series data is used.

The second part of our experiment investigates the fusing of multi-scale features two by two to improve the 
effectiveness of the forecasting performance of PV power output. Tables 7, 8, and 9, show the achieved results of 
the suggested strategy. The forecasting combination’s performance was examined using distinct day types. The 
results of different fusing combinations are shown in Tables 6, 7, and 8, the best outcomes are shown in bold. 
According to the numerical indicators, all proposed combination methods succeed in increasing the forecasting 

Figure 7.   Forecasting results of various models (Ghardaia PV stations).
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Figure 8.   The Friedman-Nemenyi test applied to all datasets and methodologies.

Table 6.   Performance of fusing different decomposition techniques for PV power, Laghouat. Significant values 
are in bold.

Forecasting horizon lg Model RMSE nRMSE MABE nMAE r (%)

30-min

TVF-EMD-WPD-CNN 445.491 1.822 305.80 1.250 0.9996

TVF-EMD-CEEMDAN-CNN 723.993 2.962 522.682 2.145 0.9989

TVF-EMD-IF-CNN 307.289 1.257 209.27 0.856 0.9998

CEEMDAN-WPD-CNN 837.946 3.428 597.398 2.453 0.9986

IF-WPD-CNN 350.879 1.435 233.637 0.955 0.9997

IF-CEEMDAN-CNN 426.60 1.745 302.356 1.233 0.9996

VMD-TVF-EMD-CNN 246.41 1.008 180.958 0.740 0.9998

VMD-CEEMDAN-CNN 200.044 0.818 151.228 0.619 0.9999

VMD-WPD-CNN 192.753 0.788 142.129 0.581 0.9999

VMD-IF-CNN 108.07 0.442 73.717 0.3015 0.9999

Table 7.   Performance of fusing different decomposition techniques, Sidi Bel Abbés. Significant values are in 
bold.

Forecasting horizon sd Model RMSE nRMSE MABE nMAE r (%)

15-min

TVF-EMD-WPD-CNN 113.029 2.534 86.533 1.944 0.999

TVF-EMD-CEEMDAN-CNN 120.668 2.706 94.704 2.119 0.999

TVF-EMD-IF-CNN 75.739 1.698 57.543 1.294 0.999

CEEMDAN-WPD-CNN 160.444 3.597 120.773 2.707 0.998

IF-WPD-CNN 61.605 1.381 44.196 0.991 0.999

IF-CEEMDAN-CNN 72.700 1.630 54.39 1.222 0.9996

VMD-TVF-EMD-CNN 98.461 2.207 72.880 1.638 0.999

VMD-CEEMDAN-CNN 43.647 0.978 33.204 0.745 0.999

VMD-WPD-CNN 38.833 0.870 29.370 0.658 0.999

VMD-IF-CNN 21.288 0.477 16.359 0.366 0.999

Table 8.   Performance of fusing different decomposition techniques, Ghardaia. Significant values are in bold.

Forecasting horizon sd Model RMSE nRMSE MABE nMAE r (%)

30-min

TVF-EMD-WPD-CNN 19.136 3.760 13.619 2.704 0.99

TVF-EMD-CEEMDAN-CNN 17.810 3.500 13.474 2.683 0.9987

TVF-EMD-IF-CNN 11.742 2.307 9.0245 1.785 0.9995

CEEMDAN-WPD-CNN 20.356 4.000 14.225 2.795 0.9974

IF-WPD-CNN 12.252 2.408 8.749 1.729 0.999

IF-CEEMDAN-CNN 11.426 2.245 8.093 1.594 0.999

VMD-TVF-EMD-CNN 13.263 2.606 9.875 1.968 0.9995

VMD-CEEMDAN-CNN 7.939 1.560 6.015 1.187 0.999

VMD-WPD-CNN 10.331 2.030 7.792 1.542 0.999

VMD-IF-CNN 7.8707 1.546 5.734 1.133 0.999
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accuracy compared to the conventional forecasting model and individual decomposition techniques combined 
with the deep-CNN model, resulting in a reduced nRMSE = [0.44%-4] for all studied regions.

Another important remark is that combining decomposition approaches results in a significant improvement 
compared with the case of using each decomposition technique individually. As expected the integration of IF 
and VMD algorithm with deep-CNN-model provides high forecasting precision for all grid-connected PV sta-
tions. These outcomes show clearly that combining multi-scale features is highly beneficial for improving the 
forecasting precision of PV power87,88.

Another important observation is that VMD-CEEMDAN-CNN, VMD-WPD-CNN, and VMD-IF-CNN 
models are ranked as the best forecasting models for PV power output production, with a significant improve-
ment achieved by the VMD-IF-CNN model for all studied PV power stations.

Figures 9, 10 and 11 exhibits the forecasting outcomes of all suggested multi-scale approach combinations in 
terms of the nRMSE indicator. According to the findings shown in Fig. 9, all suggested combinations produce 
strong forecasting results and increase the forecasting precision of individual decomposition approaches; in which 
the nRMSE error of the proposed hybridization technique varies within the range of [0.44–4].

As can be observed, after the employment of the Friedman–Nemenyi statistical test with 95% confidence, 
it was discovered that the suggested VMD-IF-CNN-model combination approach delivers the best forecasting 
performance, and outperforms its counterpart hybrid models for used time series data (See Fig. 12).

Furthermore, an effective PV power-forecasting algorithm should not be time-consuming; however, the sug-
gested forecasting strategy is based on a deep learning technique, which requires time during the training phase. 
This indicates that training the deep CNN model may take a long time if a large number of similar multi-scale 
samples are employed. In this respect, Forward Stepwise Regression Algorithm (FSRA) is utilized for selecting the 
most appropriate IMFs input for PV power forecasting. The primary purpose of identifying the most significant 
IMFs inputs is to eliminate redundant features, which reduces the computation costs and model complexity89. 
The threshold between approved and rejected features was empirically established during the feature selection 
process. The developed models are assessed and trained by sequential feature sets obtained by including the next 
essential IMF elements continuously. The statistical forecasting metrics of the three analyzed PV stations are 
obtained by two scenarios, the suggested IF-VMD-CNN model with all IMFs elements, and the proposed IF-
VMD-FSRA-CNN model combined with a feature selection approach (FSRA), which are illustrated in Table 9 for 
the three grid-connected photovoltaic plants. The benefit of combining our forecasting technique with a feature 
selection approach on forecasting accuracy and information space saving is observed. For all analyzed PV power 
stations, the FSRA algorithm was very useful in minimizing the amount of IMFs inputs necessary for training 
our deep neural network model while maintaining the forecasting quality of PV power output.

The undesired IMF features differ slightly by regional location, and forecasting time step, taking the case 
of the Laghouat PV station 30 min ahead forecasting, the selected IMFs components are 120 IMFs, and the 
unwanted IMFs numbers are 42. For Sidi Bel Abbés station, the FSRA algorithm removes 46 unneeded IMFs 
elements from the entire dataset while maintaining the forecasting effectiveness of the IF-VMD-CNN model. 
The FSRA technique at Ghardaia station removes 84 redundant IMFs elements from the entire dataset while 

Figure 9.   Performance comparison of different decomposition algorithms in terms of nRMSE (Ghardaia).
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retaining the forecasting ability of the proposed IF-VMD-CNN model. The FSRA algorithm was useful in reduc-
ing the amount of IMFs elements for training our model while preserving forecasting effectiveness. This reveals 
the findings that FS techniques can improve the accuracy of PV power forecasting methods. It is concluded 
that using a feature selection technique in training the suggested methodology improves forecasting accuracy 
and computation efficiency. The efficacy of FS methods is highly dependent on the dataset employed since the 
appropriate quantity of input varies from one PV plant to another. In addition, for each forecasting time step in 
each analyzed location, a distinct quantity of IMFs was employed as inputs. The findings clearly show that the 

Figure 10.   Performance comparison of different decomposition algorithms in terms of nRMSE (Laghouat).

Figure 11.   Performance comparison of different decomposition algorithms in terms of nRMSE (Sidi bel abbes).
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proposed technique not only provided a remarkable precision rate but also ensured precise forecasting results 
throughout all periods and regions examined.

An additional evaluation was carried out to compare our proposed model with existing state-of-the-art 
models in PV power forecasting. The complexity of directly comparing our model to those from previous studies 
arises from variations in data duration, input variables, climate conditions, and the fact that most studies focus 
solely on one-step-ahead forecasting at a specific time scale. According to Table 10, our hybridization approach 
achieves superior forecasting performance relative to numerous preceding efforts. The IF-VMD-FSRA-CNN 
method we propose demonstrates enhanced suitability for forecasting PV power output, highlighting its efficacy 
and potential advancements in the field.

Limitations of the study
Our model demonstrates considerable potential in forecasting photovoltaic power yet encounters several chal-
lenges. These challenges encompass reliance on the quality of data, a propensity for overfitting when using small 
datasets, questions about its adaptability to various geographical locations and types of PV systems, and the need 
for significant computational resources due to its complexity.

In this research, our focus was primarily on the three region, constrained by the availability of data. It is 
imperative for future studies to broaden their scope to encompass additional regions characterized by diverse 
weather conditions, especially areas prone to cloudy skies. Examining the efficacy of different PV panel tech-
nologies across these varied climates could shed light on the versatility and effectiveness of forecasting models 
in differing environmental settings.

Moreover, although we employed deep learning techniques such as CNNs, LSTMs, which have shown encour-
aging outcomes, there remains room for exploration of other sophisticated deep learning architectures. Tech-
niques like the Transformer and Informer, known for their prowess in time series forecasting, present promising 
avenues for future work. Investigating these models could uncover new strategies to enhance the accuracy and 
efficiency of PV power forecasting models.

Conclusion
The present study investigates the performance assessment and short-term forecasting of three PV systems of a 
73.1 MW located in Algeria. The proposed forecasting method, VMD-IF-FSRA-CNN is presented to deal with 
dynamic changes in PV power production 15–30 min ahead. It was tested on three grid-connected PV power 
plants, and the results were compared to hybrid and stand-alone models. The findings show that the VMD-
IF-FSRA-CNN model outperforms the state-of-the-art techniques and exhibits high forecasting accuracy for 
short-term prediction of PV power. Therefore, this work concentrates on the issue of forecasting PV power in 
the absence of climatic data, using few historical PV plant data as inputs to the suggested model. to estimate the 
future PV power output. An in-depth examination of several decomposition approaches coupled with a deep 
learning algorithm was carried out to get a better insight into what drives the performance of the PV dataset. This 
study indicates that the proposed combination mechanism is more suitable for multi-site time series forecasting, 
and could be used for other grid-connected PV power plants.

Figure 12.   The Friedman-Nemenyi test is applied to all datasets and methodologies.

Table 9.   Improvement of the developed IF-VMD-CNN-model combined with FSRA technique.

Forecasting horizon Model RMSE nRMSE MABE nMAE r (%)
Number of used IMFs 
components

Laghouat station 30-min
IF-VMD-FSRA-CNN 110.98 0.454 73.592 0.3009 0.999 120

IF-VMD-CNN 108.07 0.442 73.717 0.3015 0.999 162

Sidi Bel Abbés station 15-min
IF-VMD-FSRA-CNN 22.233 0.498 16.693 0.374 0.999 98

IF-VMD-CNN 21.288 0.477 16.359 0.366 0.999 144

Ghardaia station 30-min
IF-VMD-FSRA-CNN 8.114 1.594 6.079 1.202 0.999 77

IF-VMD-CNN 7.870 1.546 5.734 1.133 0.999 161
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For future work, we aim to enhance our forecasting models by exploring more sophisticated deep learning 
methods in conjunction with sky imager data for PV power forecasting. This direction is intended to improve 
the accuracy and adaptability of our forecasting models by incorporating detailed visual observations of the sky. 
Such advancements will not only refine solar irradiance predictions but also broaden the models’ applicability 
across diverse geographical locations and environmental conditions. Our ongoing research efforts will focus on 
developing these integrated models to further optimize the utilization of renewable energy resources, contribut-
ing to significant progress in the field of PV power forecasting.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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