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OPEN A new unit distribution: properties,
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This research commences a unit statistical model named power new power function distribution,
exhibiting a thorough analysis of its complementary properties. We investigate the advantages

of the new model, and some fundamental distributional properties are derived. The study aims to
improve insight and application by presenting quantitative and qualitative perceptions. To estimate
the three unknown parameters of the model, we carefully examine various methods: the maximum
likelihood, least squares, weighted least squares, Anderson-Darling, and Cramér-von Mises. Through a
Monte Carlo simulation experiment, we quantitatively evaluate the effectiveness of these estimation
methods, extending a robust evaluation framework. A unique part of this research lies in developing
anovel regressive analysis based on the proposed distribution. The application of this analysis reveals
new viewpoints and improves the benefit of the model in practical situations. As the emphasis of the
study is primarily on practical applications, the viability of the proposed model is assessed through the
analysis of real datasets sourced from diverse fields.

Keywords Stochastic ordering, Monte Carlo simulation, Quantile regression analysis, Beta regression model,
Educational attainment dataset

Statistical distributions constitute fundamental mathematical elements in data modeling, inference, and esti-
mating processes, as well as in fields such as public health, actuarial science, biomedical studies, demography,
and industrial reliability. Due to the lack of a suitable distribution for the data and the limitations of the existing
distribution theory, researchers frequently selected the most appropriate distribution from the available blocks.
In many studies, the absence of proper statistical distributions forces researchers in various fields to consistently
put effort into developing new distributions to support their judgments. Applied researchers and practitioners
often find modeling complex problems to be a perplexing challenge, especially when dealing with diverse lifetime
datasets prevalent in physical and natural sciences. In their quest for simplicity and efficiency, exhaustive reviews
on this subject can be explored in'2 These references offer comprehensive summaries of statistical distributions
derived through various methodologies.

New statistical models built on attractive distributions have long been a favorite in the statistical literature due
to the complexity and diversity of modern data. The extended distributions suggested by adding extra parameters
provide greater flexibility.

Numerous studies are examined to build probability distributions with substantially more perfect and flexible
properties that can model real-life data sets of diverse kinds. The requirement to create new distributions appears
from hypothetical concerns, actual applications, or both. There has been a pointed extension in generalizing
some well-known distributions and their sensible application to contest more well-known distributions. The
exponential distribution is perfect for exposing the life data, like for many types of industrial items. The major
highlight of the exponential distribution is that it may be used to model the performance of objects with a fixed
failure rate. The primary objective of this paper is to present a new, better model capable of modeling and fitting
distinct forms of data. It also aims to exhibit the dominance of the new model in surpassing every opponent.
It proposes a new model as a strong and novel contestant for modeling real data sets. Once demonstrating a
situation with a known model is difficult, we might use generalization to account for extra data variation. The
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challenges present at this time are progressing significantly along with our world. As of this, we insist on extra
generalizations of probability distributions to capture more complicated data. Also, it might be used to analyze
many real-life data sets and fit them quite well; it can also be used in various problems in applied areas such as
medicine, engineering, and industrial reliability analysis.

Moreover, numerous families of probability distribution have been suggested by a combining technique
tracking the innovative work of Adamidis and Loukas®. Composite types have been headed in the situation of reli-
ability study when the lifespan can be declared as the least or extreme of a system of independent and identically
distributed (i.i.d.) random variables demonstrating system components failure times. The new combination of
distributions can extend well-known classical distributions and provide flexibility in modeling data. Combining
some valid lifetime data with power series (PS) distributions has been proposed by quite a few authors. Some of
them are exponential-PS, Weibull-PS, generalized exponential PS, extended Weibull PS, Burr XII PS, Lindley
PS, generalized inverse Weibull PS, and complementary exponentiated inverted Weibull PS distributions*!.

Also, the power function (PF) distribution is a flexible lifetime distribution that may offer a suitable fit to
some sets of failure data. Some generalized distributions from PF are beta PF'2, Weibull"?, Kumaraswamy PF',
transmuted PF (TPF)', exponentiated Kumaraswamy PF'¢, exponentiated Weibull PF'7 and odd generalized
exponential PF'8. In addition to the above-mentioned distributions some nonlinear predictive network epidemic
models were introduced in the literature'*->*

The primary objective of this article is to introduce an advanced model designed for the modeling and fitting
of data defined on (0,1). We aim to demonstrate the superiority of this new model by surpassing all existing com-
petitors. We advocate for the proposed distribution as a robust and innovative choice for modeling real datasets.
In situations where modeling with a known distribution proves challenging, the utilization of generalization
becomes crucial to accommodate additional variations in the data.

This paper aims to develop a three-parameter alternative to several lifetime distributions, including the
Kumaraswamy?*, unit-Weibull®®, unit-Burr XI?, unit-Muth?’, and new power function®® distributions. In this
context, we propose and develop the statistical properties of the proposed distribution and show that it is a better
model for reliability analysis to the data defined on (0,1).

In this paper, a new extended form of the new power function distribution (NPFD) is proposed using the
power transformation X = T'v is applied to the cumulative distribution function (CDF) of NPFD. The proposed
distribution is called the power new power function distribution (PNPFD). The PNPFD provides increasing,
bathtub, J-shaped, reverse J-shaped, and decreasing shapes. Its density can be left-skewed, unimodal, right-
skewed, concave down, or constant. Furthermore, this paper aims to delve into the main statistical properties
of the PNPFD distribution. The analysis encompasses the shapes of the density function and hazard rate func-
tion, moments, incomplete moments, moment generating function (MGF), order statistics, stochastic ordering,
and parameter estimation through the maximum likelihood method. To underscore the practical utility of the
model, applications to real datasets are provided, demonstrating the distribution’s applicability and usefulness.

An investigation of the relationship between independent one or more variables and the dependent variable
is conducted by a classical regression model. The classical regression models correlate the mean response by
giving specific values of the independents. In cases where the dependent variable contains an outlier, the clas-
sical regression models can be insufficient. The median can handle these scenarios better than the mean since
it is a more robust estimate. For these cases, many quantile regression models were introduced such as the beta
regression model by?, the Kumaraswamy regression model by*’, unit Weibull regression model by?, unit Burr-
XII regression model by*, the unit Burr-Hatke regression model by*!, the unit log-log regression model by*,
etc. This paper also introduces a new quantile regression model as an alternative to current ones based on the
proposed distribution.

In this paper, we propose a new distribution as a novel probability distribution model tailored for data defined
on the interval (0,1), This study makes a significant contribution to the field of statistics by thoroughly examin-
ing its statistical and reliability features. By discussing moments, stochastic ordering, reliability function, hazard
rate function, order statistics, and quantile function, we comprehensively understand the PNPFD’s properties.
Furthermore, we establish a framework for comparing the efficacy of the PNPFD against selected distributions
like the Kumaraswamy and beta distributions. This comparative analysis sets the stage for evaluating the PNPFD’s
performance in various statistical applications. Through rigorous parameter estimation techniques and Monte
Carlo simulations, we demonstrate the precision and reliability of the PNPFD in handling real-world data. Addi-
tionally, introducing a novel regression analysis technique based on the PNPFD expands the scope of statistical
modeling, particularly in scenarios where the dependent variable is proportional. Overall, this study presents
a new distribution model and highlights its potential to enhance statistical analyses across diverse domains.

The rest of the paper is organized as follows: Section 2(Model formulation) introduces the nature of the prob-
ability density function (PDF) and hazard rate function (HRF) of the PNPED. Its associated statistical properties,
such as the moment generating function (mgf), moments, MRL, order statistics, stochastic ordering, and quan-
tile function are investigated in Sect. 3(Statistical properties). The estimation of the parameters is discussed in
Sect. 4(Estimation methods). The significant sample behavior of the PNPFD, with the help of certain simulated
data sets, is detailed in Sect. 5(Numerical simulation). In Sect. 6(Regression analysis), a novel quantile regres-
sion is presented based on PNPFD. In Sect. 7(Real data analysis), real data sets are analyzed using the proposed
distribution. Finally, the study is concluded in 8.

Model formulation
In (2021), Igbal et al.?® derived a new statistical model called new power function distribution (NPFD) with
CDF defined as follows
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1—t\"
G(t)=1—<8t+1), 0<t<l,np>0, — 1< < o0. (1)
its PDF is defined as follows
gty =@+ — )" S+ 17 )

The power transformation X = T7is applied to the CDF (1) to have power new power function distribution
(PNPFD) with CDF defined as follows

1—x%\"
F(x)=1—<m),O<x<1,n,0>0,—1<6<oo. 3)
we have PNPFD PDF defined as follows
o \"
6+ Dnos (55
feo) = e @

(1 —x%)(6x° +1)

Figure 1 shows the graphical representation of the PDF of the PNPFD for different combinations of parameter
values of 8, 77, and o. Figure 1a—d show that they can be unimodal with monotonically increasing and then
decreasing for some parameter combinations. Figure 1b shows a constant trend initially, increasing rapidly
as x increases (J-shaped), and Fig. 1a shows that it can be skewed to the left. Figure 1¢,d show that the PDF of
PNPFD can be symmetric.

Statistical properties

Mixture representation

The expansion of the PDF of the PNPED proves valuable in deriving its properties. To facilitate this, we employ
the following two lemmas:

Lemma 1 Ifis a positive real non-integer and| y |< 1, from Gradshteyn et al.** Equation (1.110) we get binomial
series expansion as;

(1 _y)lfl — Z(_l)z ( 27 l)yi'
i=0

Lemma2 Ifa is a positive real non-integer and| y? |> 1

o~ (a+k—1
(1 +yb)7a — Z ((1 P >y*b(k+u).

k=0
and If a is a positive real non-integer and| y* |< 1
—~(a+k—1
aehye= 3 (TR
k=0

Using Lemmas 1 and 2, the expansion of PDF of the PNPFD can be derived as follows.
CaseI: 0 < 6x° < 1, we have

fx) =6+ 1)ékno Z Z( 1y+k( ) < n ;{r k )xa(j+k+1)71. -

Jj=0 k=0

Case II: x° > 1, we have

f(x) — (8 4 1)87(k+?’]+1)no. Z Z( 1)]+k ( n— 1 ) < n ‘]L’ k )xa'(jfkfﬂ)*l. (6)

j=0 k=0

Reliability characteristics of the PNPFD
The reliability function (rf) of the PNPFD is given by

7

_ .O n
REx) = {u}

(5x° +1)
The HRF of the PNPFD is given by

G+ Dnox®!
M= e + 1 ®
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Figure 1. Plot for PDF of the PNPFD for different parameters values.
Figure 2 gives examples of the shapes of the hazard function of our proposed model for different values of §, ,
and o. Figure 2a,c show that the hazard rate function of PNPFD can be increased. Figure 2b shows that the hazard
rate function can be decreased, and Fig. 2d shows that the hazard rate function of PNPED is bathtub-shaped,
depending on the values of its parameters.
The reverse hazard rate function (rhrf) of the PNPFD is given by
no (8 + 1Dx7 (1 —x7)1!
W) = : )
(8x7 + 1)[(8x% + 1) — (1 — x°)7]
Moments
The r'" moment E(X") of PNPFD is given by
Case: 0 < 6x° <1
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Figure 2. Plot for HRF of the PNPFD for different parameters values.
; —1 +k
8+ Dskno 3%, 2,3‘;0(—1y+k(’7 : ) (’7 . )
r j (10)
E(X") = , .
o(j+k+1)+r
Case II: 6x7 > 1,
(8 4+ 1)§—Uktnth % Z;?io(—l)ﬂ'k < n- 1 ) ( n+ k)
o(j—k—n)+r '
The first four moments of the PNPFD are obtained by substituting r = 1,2, 3,4 in Egs. (10) and (11)
Moment generating function
The MGF of a PNPFD random is given by, Case I: 0 < 6x7 <1
00 Ly gro 2.
8+ 1)6kno X n+k
Mx(t) =Y —u, = 1+ .
x0=2 a(,+k+1)+rz 22 k
r=0 j=0 k=0
CaseII: 6x% > 1
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Incomplete moment
The incomplete r moment is defined by

m,(x) = /x x'f (x)dx.
Jo

For the PNPFD, incomplete " moment is obtained by;
Case: 0 < 8x° < 1

N CE S 6k ne o= — itk N+k\ oGrkti)+r
ST D B (7)) | .
CaseIl: x° > 1
(6 + 1)8*no k( ><n+k) ke
. R e s 1 j+ U(] k 77)+r_
my(x) a(j—k—n)+r]§0k§0( ) P (13)

Mean residual life function
The mean residual life (MRL) function is significant in reliability and survival analysis. It describes how long a
system will operate, beginning at the time x. For PNPFD, the MRL is obtained as,

Rax+t) _ { (8x° + 1)(1 — (x + 1)) }”

*0 = "R GE+07 + (1 — (0)7)

(14)

PDF and CDF of order statistics
The order statistics of a distribution are derived by arranging the sample values in ascending order. The PDF of
the " order statistic is expressed as:

Frin(x) = CranlFE)T 1 — F)]""f (x).

|
where, C;., = "

Using Egs. 63) and (Af) the PDF of the r'/ the order statistic of PNPFD is given as

1— nqr—1
Srin(x) = Cry(8 + Do {1 — ((ng j_ 1) } (1 — xO)nn=ktD=1 (50 4 1y=n(n—k+D-1, (15)

Moreover, the CDF of r the order statistic is given as

Frin(x) = Z Cuml F(O)]™[1 = F(x)]"™™.

m=r

Using Eq. (3) the CDF of the 7/ the order statistic of PNPFD is given as

n n 1—x° nym 1—x° n(n—m)
Frin(0) = Z (m) {1 B <8x" + 1) } [Bx" + 1}

m=r

Stochastic ordering
For a random variable X to be smaller than a random variable Y, certain conditions must be satisfied:

(i) Hazard rate order X <, Y ifhx(x) > hy(x)

(ii) Stochastic order X <y Y if Fx(x) > Fy(x)
(iii) Mean residual life order X <,,,; Y if My (x) < My (x)
(iv) Likelihood ratio order X <;, Y if f}; (i) decreasing in x

Theorem 1 Let random variables X ~ PNPFD(o1,n1,681)andY ~ PNPD(02,1m2,82) and if
o1 <0o2,m < 12,81 <8, wehave X < Ythen X <p, Y, X <ppy Yand X <4 Y

Proof To prove {% decreasing in x we have to show that the derivative of ;X E ; is less than 0.
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_ O m
(61+Dni01x°1 1(311xa)clil)
fx(x) =D @Ex°1 +1)
- O n o
fr®)  Gtmexa! (sixé‘zil )
(1=x72)(82x°2+1)

To prove§ o is less than 0.
(fx(x)) 01— gt m—1 51 m+1 } szgz,l{nz—l 5 nm+1
fy(x) X 1 —xo1 1+ 81x°1 1 — x02 1+ §,x°2
(16)
which is less than 0, when o7 < 03,71 < 12,81 < §,. Hence, we proved Y >, X so we can say that
Y >4, X,Y >,y XandY >y X when Y and X follows the PNPFD. O

Quantile function
By obtaining the CDF (3) of the PNPFD, the quantile function (QF) of the PNPFD is obtained by calculating the
inverse function of the CDF (3) as follows

1-p"r-1

/
_— . 17
8(1—p)1/’7+1) , 0<p<l1 (17)

Qp) = (—

Estimation methods

In this section, many estimators like maximum likelihood, least squares, weighted least squares, Anderson-Dar-
ling, and Cramér-von Mises are examined to estimate the parameters o, and § of PNPFD. Let X;, X5, ..., X,
be a random sample from the PNPFD(o, 1, §) distribution and x1, X2, . . ., X, represents the values of the sample.
Let X(1), X(2)5 - - - » X(n) represent the order statistics for sample X1, X, . . ., X, with realization x(1), X2, . . ., X(n).
The likelihood and log-likelihood functions can be given as

n x:1+6<1;:’8>n
L(E) = (1 + 8)"(no) Hm

i=1

and

£ (E) =nlog (14 6)+nlog(n) + nlog (o) + (o — I)ZIOg(xl

+1 Zlg<l+ 05) Zlog (1—x7) Zlog(l—i—x,‘-’é).

where E = (0,1, 8). The maximum likelihood estimates(MLE) of &, say, E= (3, s, ﬁ) is obtained as follows:

on

= argmax ¢ (E) .
(o,1,8)€(0,00) % (0,00) x (—1,00)

Let us deal with the following five functions to obtain the other estimators:

n 1—x% \" i 2
- (i)
LS(E) = 1— | ——= — . 18
© Z(( <1+x‘(§)5>) ”+1> 1
i=1
n 2 12 l_xg n . 2
WLS(E):ZM 11— O _ ! . (19)
Py im—i+1) 1+xz’i)8 n+1
" 2i—1 1—xg\"
AD(8) =~ n - log{ (1 0
; n 1+xf’i)6
1—x2 . 7
+ log —_ THitD .
{<l+xf’n+i_l)6

2 \"\ 2i-1]"
@ S 1)
1—|—x(1)8 2n

(20)

and

CVM(8) = o+ Z
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The least-square estimates (LSEs), weighted least square estimate (WLSEs), Anderson-Darling estimate (ADEs)
and Cramér-von Mises estimate (CvMEjs) are achieved by minimizing Eqgs. (18)—-(21), respectively.

Numerical simulation

In this section, the bias and mean squared errors (MSEs) of MLEs, LSEs, WLSEs, ADEs, and CvME:s for param-
eters of the PNPFD are obtained via 5000 runs. For generating samples for the PNPFD in the simulation experi-
ment, the quantile function provided in Eq. (17) is used. Furthermore, optimization procedures for obtaining
estimations from the generated samples are performed using the BFGS method in the optim function in R.
Six different scenarios are evaluated for parameter settings. These are E; = (0.5, 1.5, —0.5), 82 = (2, 1.5, —0.5),
83 = (1.5,0.5,2),E4 = (3,1.5,2),85 = (0.5,2.5,—0.7) and E¢ = (2.5,0.7, 1.5). The simulation results are given
in Tables 1 and 2. Tables 1 and 2 show that the bias and MSEs decrease as the sample size increases for all estima-
tors. According to the bias criterion, the best estimator for the parameters of o and 7 is usually ADEs, while the
best estimator for the § parameter is MLEs. When scenarios are analyzed in detail, the following interpretations
can be made for the MSEs criterion:

In scenario &1, the MLEs for o and ADEs for both n and § are the best estimators.

In scenario E;, the LSEs for 0 and CVME:s for both n and § are the best estimators.

In scenarios E3 and E¢, the WLSEs are the best estimators for three parameters.

In scenarios E4 and &5, the MLEs for o and ADEs for both  and § are the best estimators.

It is observed that the decreasing trend in bias and MSEs for all estimators is achieved as expected with the
increase in sample size.

Regression analysis

In this section, a novel regression model is presented and serves as an alternative to the Kumaraswamy and beta
regression models. The quantile function in Eq. (17) is used to obtain this new regression model. Re-parameter-
izing the PDF and CDF of the PNPFD can be achieved by utilizing the quantile function. Let Q(p; o, 1,8) = u

and then
1-(1-p)*/"
log (Ha(l,},)l/ ! (22)

log (1)

is acquired. The CDF and PDF of the re-parametrized distribution are obtained, respectively, by

o* n
F(y,m8,pn) =1~ (H) : (23)

Syo" +1
and
s\
(8 + Dno*y” ! (%)
fndu) = YW (@4)
(1=y7) (87" +1)
where

1-(1p)"”"
. 10g(1+5(1—p)‘/”
of=—— 7
log (1)

where parameters 7 > 0 and § > —1 characterize the PNPFD, while & € (0, 1) denotes the quantile regression
parameter. The value of p is selected from the range (0, 1) and can be either 0.25, 0.5, or 0.75. It is noticed that
the random variable Y is denoted by Y ~ PNPF (n, 8, s p).

Once the QPNPF has been defined, the new regression model using the PDF of the QPNPF in Eq. (24) can
be presented. Let y1,2, . .., yn such that y; is an realization of Y QPNPF (1,8, wi, p) fori = 1,2,...,n where
1,8 and p; are unknown parameters, and the p is known. The proposed quantile regression model is as follows:

g(ui) = xip", (25)

where ﬂ:(ﬂo, Bis. .. ,,Bp) are the unknown regression parameter vector, X; = (l,xil,xiz, . ,x,-p) known ith
vector of the covariates and g is a link function. We use the following logit-link function because the QPNPF is
defined within the interval (0, 1):

Hi .
i) =1 ,i=12,...,n
&) og(l_m>l n (26)

It is achieved by Eq. (26)
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o n 8
n = MLEs | LSEs WLSEs | ADEs CVMEs | MLEs | LSEs WLSEs | ADEs CVMEs | MLEs | LSEs WLSEs | ADEs | CVMEs
50 0.0451 0.2395 0.6963 0.0341 | 0.5279 0.0658 0.5360 0.4422 —0.0200 | 0.2547 0.0269 0.3933 0.4262 0.0361 0.3282
75 0.0262 | 0.1241 | 0.3452 0.0220 | 0.3220 0.0426 | 0.3280 | 0.3386 -0.0216 | 0.1343 0.0166 |0.2094 | 0.2458 0.0218 |0.1829
100 0.0247 | 0.1042 | 0.2099 0.0198 | 0.2410 0.0351 0.2432 | 0.2592 -0.0133 | 0.1137 0.0161 0.1584 | 0.1615 0.0206 | 0.1448
125 0.0200 0.0806 0.1263 0.0121 | 0.1690 0.0241 0.1702 0.2020 -0.0117 | 0.0887 0.0118 0.1138 0.1093 0.0156 0.1090
150 - 0.0148 |0.0587 |0.1109 0.0084 |0.1297 0.0184 |0.1307 |0.1712 —0.0126 | 0.0660 0.0076 | 0.0840 | 0.0930 0.0108 | 0.0808
175 = 0.0102 | 0.0473 | 0.0987 0.0049 | 0.1084 0.0134 | 0.1091 0.1532 —-0.0139 | 0.0539 0.0040 |0.0678 | 0.0858 0.0071 0.0667
200 0.0098 |0.0416 |0.0813 0.0062 | 0.0992 0.0137 |0.0998 |0.1215 —-0.0117 | 0.0480 0.0051 0.0608 | 0.0660 0.0073 | 0.0589
250 0.0069 |0.0315 |0.0612 0.0033 | 0.0739 0.0093 |0.0743 | 0.0982 —-0.0111 |0.0369 0.0033 | 0.0474 |0.0520 0.0047 | 0.0454
500 0.0048 |0.0152 |0.0315 0.0027 | 0.0350 0.0057 |0.0352 |0.0473 —0.0053 |0.0188 0.0031 0.0219 | 0.0261 0.0036 | 0.0215
1000 0.0025 | 0.0089 |0.0141 0.0022 | 0.0206 0.0037 |0.0207 |0.0177 —0.0030 |0.0112 0.0019 |0.0129 |0.0101 0.0023 |0.0132
50 0.1870 0.2419 0.7330 0.1160 | 0.4169 0.2461 0.4293 0.4468 -0.0741 | 0.2492 0.1144 0.4042 0.4418 0.1515 0.3418
75 0.1118 |0.1320 | 0.3505 0.0810 | 0.2960 0.1630 | 0.2964 | 0.3076 -0.0795 | 0.1421 0.0674 |0.2159 |0.2519 0.0935 |0.1924
100 0.0844 | 0.0991 0.1911 0.0612 | 0.2229 0.1221 0.2240 | 0.2392 —-0.0682 | 0.1073 0.0501 0.1496 | 0.1528 0.0690 |0.1389
125 0.0772 | 0.0705 | 0.1486 0.0455 | 0.1643 0.0941 |0.1657 | 0.2206 —0.0503 | 0.0790 0.0403 |0.1027 | 0.1384 0.0573 | 0.0969
150 - 0.0499 |0.0527 |0.1201 0.0244 |0.1321 0.0645 |0.1332 | 0.1785 —0.0594 | 0.0598 0.0226 |0.0812 | 0.1004 0.0355 |0.0783
175 = 0.0485 |0.0512 |0.0919 0.0327 |0.1243 0.0668 |0.1250 | 0.1335 —0.0485 | 0.0573 0.0298 |0.0805 | 0.0695 0.0398 |0.0775
200 0.0412 | 0.0449 |0.0706 0.0221 | 0.0934 0.0519 | 0.0939 |0.1284 —0.0454 | 0.0508 0.0219 | 0.0614 | 0.0634 0.0303 | 0.0592
250 0.0424 0.0386 0.0552 0.0337 | 0.0823 0.0575 0.0827 0.0862 —0.0296 | 0.0439 0.0294 0.0533 0.0427 0.0362 0.0529
500 0.0190 [0.0192 |0.0250 0.0062 | 0.0360 0.0180 |0.0361 |0.0428 —0.0210 |0.0227 0.0095 |0.0245 |0.0207 0.0128 | 0.0248
1000 0.0064 | 0.0081 0.0141 0.0011 |0.0165 0.0070 | 0.0165 |0.0207 —-0.0159 |0.0101 0.0022 |0.0107 |0.0114 0.0037 {0.0110
50 0.1055 1.8044 0.0363 —-0.0089 |1.3712 0.0494 1.3139 0.0536 -0.0786 | 0.9026 0.0374 2.3180 0.0222 0.0554 1.6729
75 0.0725 1.0865 | 0.0207 0.0254 | 1.3170 0.0627 1.2600 | 0.0281 —0.0589 | 0.6471 0.0337 1.3431 0.0120 0.0436 1.1255
100 0.0579 | 0.8065 |0.0150 0.0273 | 1.1212 0.0547 1.0663 | 0.0225 —0.0461 | 0.5064 0.0278 |0.9208 | 0.0099 0.0367 |0.8394
125 0.0474 | 0.5785 |0.0130 0.0284 | 0.9169 0.0505 |0.8859 | 0.0157 —0.0396 | 0.3545 0.0270 | 0.6863 | 0.0077 0.0322 | 0.6171
150 - 0.0349 | 0.4421 0.0114 0.0169 |0.7116 0.0355 |0.6918 |0.0144 —0.0395 | 0.2654 0.0152 | 0.5039 | 0.0076 0.0211 0.4690
175 = 0.0303 | 0.4028 |0.0072 0.0155 | 0.6241 0.0314 |0.6059 | 0.0093 —0.0354 | 0.2454 0.0136 |0.4520 | 0.0037 0.0181 0.4224
200 0.0241 0.3200 | 0.0077 0.0141 | 0.5533 0.0280 | 0.5401 0.0080 —0.0349 | 0.1841 0.0120 |0.3873 | 0.0038 0.0152 | 0.3584
250 0.0220 0.2615 0.0056 0.0154 | 0.4498 0.0264 0.4363 0.0061 —-0.0275 |0.1458 0.0121 0.3016 0.0030 0.0146 0.2846
500 0.0102 |0.1329 |0.0029 0.0040 |0.2026 0.0095 |0.1968 |0.0034 —0.0180 | 0.0642 0.0050 |0.1488 |0.0016 0.0058 | 0.1416
1000 0.0058 | 0.0684 |0.0011 0.0030 |0.1061 0.0058 |0.1033 |0.0010 —0.0104 |0.0248 0.0028 |0.0736 | 0.0005 0.0031 0.0703
50 0.1069 2.0963 1.1415 —0.0335 | 0.8457 0.0670 0.9225 0.4421 -0.1399 | 0.6288 0.1102 4.2269 0.8075 0.1248 2.5628
75 0.0652 1.1705 | 0.5477 —0.0286 | 0.6037 0.0332 | 0.5942 | 0.3635 —0.1039 | 0.4305 0.0631 |2.2702 | 0.4825 0.0828 1.6483
100 0.0513 | 0.7878 |0.2975 0.0025 | 0.7964 0.0468 |0.7672 | 0.2874 —0.0806 | 0.3441 0.0518 1.4137 | 0.2779 0.0692 1.2163
125 0.0317 | 0.5673 |0.2101 0.0015 | 0.8547 0.0381 |0.8509 |0.2617 —-0.0755 | 0.2705 0.0243 |0.9348 | 0.1979 0.0414 |0.8888
150 - 0.0228 | 0.4148 |0.1734 0.0094 | 0.8525 0.0404 |0.8538 | 0.2467 —-0.0672 | 0.2022 0.0169 | 0.6951 0.1696 0.0309 | 0.6811
175 . 0.0296 |0.3774 |0.1329 0.0217 | 0.8379 0.0487 | 0.8441 0.2129 —0.0493 | 0.2001 0.0246 |0.6179 |0.1286 0.0367 |0.6147
200 0.0319 |0.4053 |0.0973 0.0328 | 0.8788 0.0563 |0.8857 | 0.1630 —-0.0418 | 0.2217 0.0331 0.6494 | 0.0848 0.0428 | 0.6458
250 0.0167 0.2664 0.0743 0.0147 | 0.6278 0.0335 0.6319 0.1403 —0.0396 | 0.1693 0.0135 0.4113 0.0679 0.0216 0.4166
500 0.0113 |0.1252 |0.0383 0.0104 |0.3015 0.0198 |0.3038 |0.0678 -0.0179 |0.0932 0.0095 |0.1904 |0.0356 0.0137 | 0.1987
1000 0.0071 0.0703 | 0.0161 0.0061 |0.1547 0.0108 |0.1555 |0.0282 —0.0082 |0.0617 0.0060 |0.0999 |0.0146 0.0082 | 0.1057
50 0.0438 | 0.1415 | 2.5457 0.0421 | 0.4209 0.0766 | 0.4263 | 0.6614 -0.0192 | 0.1827 0.0312 | 0.2932 1.2147 0.0392 | 0.2416
75 0.0261 0.0808 1.5632 0.0261 | 0.2542 0.0482 | 0.2571 0.6227 -0.0188 | 0.1127 0.0176 |0.1585 | 0.8732 0.0230 | 0.1407
100 0.0225 | 0.0605 | 0.9970 0.0245 | 0.1922 0.0408 |0.1935 | 0.5640 —0.0131 | 0.0866 0.0172 | 0.1171 0.6180 0.0214 |0.1072
125 0.0131 0.0414 |0.7249 0.0142 | 0.1369 0.0271 0.1372 | 0.4774 —0.0166 | 0.0631 0.0092 | 0.0840 | 0.4931 0.0129 | 0.0786
150 - 0.0123 0.0383 0.4975 0.0099 | 0.1086 0.0205 0.1085 0.4699 —0.0130 | 0.0580 0.0067 0.0650 0.4011 0.0100 0.0639
175 = 0.0105 |0.0295 |0.4010 0.0108 | 0.0901 0.0198 |0.0898 | 0.4384 —0.0120 | 0.0470 0.0073 | 0.0535 | 0.3502 0.0099 |0.0522
200 0.0102 |0.0253 |0.3340 0.0101 | 0.0774 0.0180 |0.0771 0.3906 —0.0099 | 0.0414 0.0073 | 0.0464 |0.2919 0.0095 | 0.0457
250 0.0087 0.0209 0.2283 0.0085 | 0.0624 0.0147 0.0620 0.3298 —-0.0079 |0.0350 0.0063 0.0371 0.2196 0.0082 0.0372
500 0.0040 |0.0113 |0.0856 0.0030 |0.0298 0.0060 |0.0295 |0.1576 —0.0050 | 0.0200 0.0026 |0.0184 |0.0826 0.0034 |0.0189
1000 0.0021 0.0065 |0.0388 0.0022 | 0.0163 0.0037 | 0.0161 0.0680 —-0.0028 |0.0119 0.0018 |0.0104 |0.0338 0.0023 | 0.0109
Continued
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n ) MLEs | LSEs WLSEs | ADEs CVMEs | MLEs | LSEs WLSEs | ADEs CVMEs | MLEs | LSEs WLSEs | ADEs | CVMEs
50 0.1666 1.3893 0.0775 —0.0327 | 0.8580 0.0539 0.7736 0.1336 —0.1116 | 0.5988 0.0815 1.9418 0.0604 0.1135 1.4668
75 0.1149 | 0.8547 | 0.0422 0.0245 | 0.9326 0.0891 |0.9454 | 0.0673 —0.0852 | 0.4490 0.0651 1.1122 | 0.0272 0.0854 | 0.9698
100 0.0815 |0.6172 | 0.0287 0.0202 | 0.8205 0.0672 | 0.8142 | 0.0436 —0.0752 | 0.3468 0.0390 |0.7763 | 0.0182 0.0562 | 0.7060
125 0.0672 0.4561 0.0230 0.0280 | 0.7156 0.0646 0.7014 0.0331 -0.0611 |0.2719 0.0340 0.5616 0.0147 0.0463 0.5203
150 ~ 0.0535 |0.3617 | 0.0209 0.0213 | 0.5655 0.0518 | 0.5541 0.0270 —-0.0566 | 0.2169 0.0240 | 0.4155 |0.0136 0.0342 | 0.3938
175 = 0.0441 0.3020 | 0.0158 0.0276 | 0.5523 0.0537 | 0.5441 |0.0195 —-0.0523 | 0.1890 0.0252 | 0.3822 | 0.0091 0.0324 | 0.3598
200 0.0406 |0.2518 | 0.0152 0.0280 | 0.4411 0.0511 0.4347 |0.0187 —0.0461 |0.1529 0.0235 | 0.2985 | 0.0098 0.0306 | 0.2869
250 0.0239 | 0.1633 |0.0145 0.0150 | 0.3290 0.0334 |0.3236 |0.0171 —0.0471 |0.0927 0.0111 |0.2079 |0.0103 0.0163 | 0.1993
500 0.0229 |0.1144 |0.0042 0.0149 |0.1782 0.0240 |0.1755 | 0.0066 -0.0171 |0.0769 0.0162 |0.1314 |0.0026 0.0185 |0.1285
1000 0.0102 |0.0625 |0.0011 0.0072 | 0.0941 0.0117 |0.0929 |0.0026 —0.0129 |0.0384 0.0074 | 0.0702 | 0.0005 0.0084 | 0.0694

Table 1. The bias of all estimators for PNPFD.

_exp (x,ﬂT)

T T expxifT) @7)

Parameter estimation for regression parameters

In this section, for the estimate of unknown regression parameters and model parameters, the maxi-
mum likelihood estimation method is introduced. Let Y3, Y, ..., Y, be a random sample of size n from the
QPNPF(n, S, p,i,p) distribution with realizations y1, y2, . . ., ¥n, where the u; is given in (27) fori = 1,2,...,n
Then the log-likelihood function is given by

L(E) =nlog (8 + 1) + nlog (n) + nlog (U*) + (cr* — 1) Zlog (yi)

+nZlog <6 "*—|—1> Zlog(l—y, )—ilog(ﬁy,‘-’*—i-l)
i=1

i=1

(28)

where E = (1,6, B) is the parameter vector. The MLE of the &, say E= (ﬁ, s, Bo> B, - - - ,ﬁp> is achieved by
maximizing the £(8) presented in (28) forn, § and B. As the log-likelihood function in (28) involves a nonlinear
function, and it can be maximized using optim function in R.

Real data analysis
In this section, three real data applications are examined for both the proposed distribution and novel regres-
sion model.

Practical examples for PNPFD
In this subsection, two practical data sets are analyzed to demonstrate the usability of the PNPFD. The Kumar-
aswamy (K)?, unit-Weibull (UW)?, unit-Burr XII (UBXII)?, unit-Muth(UM)?¥, and NPFD models are used to
compare the PNPFD. The PDFs for these models are given, respectively, by

_ 1—yP1 \P3
(Pz + 1)P3P1}’P1 ! (W)

= »P1s 0, —1.
(1 — yP1)(payPt + 1) p1,p3 > 0,p2 >

)
) =pipay? (1 =y pripy > 0.
fow () =pipa(~log (7)) exp (~p1 (~log ()" )y pr.p2 > 0.
)
)

_ —p1—1
:plpzy_l(—logy)‘gz 1(1 + (—logy)P2> b ,p1,p2 > 0.

fwpn(y) =(p1+1)p2 (1= )77 (1 +P1)’)7P271>P1,P2 > 0.

The maximum likelihood methodology is used to estimate the model parameters. The estimated log-likelihood
(¢), Akaike information criterion (AIC), and the Bayesian information criterion (BIC) are used to assess the
goodness-of-fit of the distributions. Furthermore, the Kolmogrov-Smirnov (KS) statistic and p-value of the KS
statistic are calculated.

The first set of data was taken from firm risk management cost-effectiveness, which is available on the web
page of Professor E. Frees (Wisconsin School of Business). The data is defined on (0, 1) and calculated as the
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o n s
n ) MLEs | LSEs WLSEs | ADEs | CVMEs | MLEs | LSEs WLSEs | ADEs | CVMEs | MLEs | LSEs WLSEs | ADEs | CVMEs
50 0.0350 0.9164 7.2298 0.0602 2.4498 0.0657 2.4846 1.9839 0.0329 0.8452 0.0476 2.0076 3.3589 0.0409 1.3310
75 0.0215 0.2975 2.1777 | 0.0405 1.0368 | 0.0430 1.0756 1.3971 0.0211 0.2968 | 0.0295 0.5478 1.4144 | 0.0263 0.4365
100 0.0164 0.1959 0.7474 | 0.0299 0.5978 | 0.0313 0.6044 | 0.9718 0.0159 0.2025 | 0.0214 0.3189 0.7040 | 0.0197 0.2693
125 0.0125 0.1281 0.3391 0.0222 0.3589 0.0230 0.3623 0.6972 0.0122 0.1315 0.0157 0.1899 0.4454 0.0149 0.1761
150 ~ 0.0102 0.0937 0.2158 | 0.0183 0.2545 | 0.0189 0.2568 | 0.5202 0.0101 0.0966 | 0.0128 0.1343 0.2919 | 0.0122 0.1259
175 = 0.0085 0.0754 0.2091 | 0.0155 0.1979 | 0.0159 0.1995 | 0.4544 0.0086 0.0773 | 0.0107 0.1069 0.2698 | 0.0102 0.1008
200 0.0074 0.0648 0.1355 | 0.0140 0.1742 | 0.0143 0.1753 | 0.3353 0.0075 0.0666 | 0.0095 0.0917 0.1792 | 0.0091 0.0860
250 0.0059 0.0486 0.0944 | 0.0112 0.1192 | 0.0113 0.1197 | 0.2463 0.0060 0.0497 | 0.0076 0.0687 0.1319 | 0.0073 0.0650
500 0.0028 0.0203 0.0396 | 0.0055 0.0481 0.0055 0.0482 | 0.0874 0.0028 0.0206 | 0.0035 0.0276 0.0504 | 0.0035 0.0269
1000 0.0014 0.0101 0.0182 | 0.0026 0.0210 | 0.0026 0.0210 | 0.0381 0.0014 0.0103 | 0.0017 0.0128 0.0232 | 0.0017 0.0128
50 0.5847 0.9040 7.9696 0.8821 1.3963 0.9744 1.4396 1.8902 0.5390 0.7442 0.7777 2.1126 3.6996 0.6828 1.4891
75 0.3549 0.3591 2.0405 | 0.6107 0.8756 | 0.6459 0.8566 1.1688 0.3446 0.3430 | 0.4777 0.6628 1.4927 | 0.4310 0.5363
100 0.2503 0.1850 0.8056 | 0.4479 0.5804 | 0.4674 0.5763 | 0.8348 0.2471 0.1856 | 0.3237 0.3103 0.6678 | 0.2972 0.2697
125 0.1971 0.1186 0.3572 | 0.3679 0.3757 | 0.3806 0.3776 | 0.6992 0.1929 0.1225 | 0.2558 0.1887 0.4848 | 0.2392 0.1707
150 ~ 0.1578 0.0933 0.2697 | 0.3016 0.2867 | 0.3093 0.2902 | 0.5161 0.1585 0.0949 | 0.2060 0.1438 0.3037 | 0.1958 0.1335
175 = 0.1407 0.0783 0.1706 | 0.2559 0.2190 | 0.2622 0.2204 | 0.4000 0.1407 0.0801 0.1779 0.1192 0.2208 | 0.1700 0.1120
200 0.1193 0.0621 0.1284 | 0.2236 0.1618 | 0.2282 0.1628 | 0.3286 0.1195 0.0635 | 0.1534 0.0906 0.1660 | 0.1461 0.0838
250 0.0952 0.0480 0.0908 0.1771 0.1162 0.1808 0.1168 0.2212 0.0943 0.0490 0.1198 0.0655 0.1170 0.1161 0.0631
500 0.0449 0.0211 0.0397 | 0.0826 0.0468 | 0.0832 0.0469 | 0.0876 0.0449 0.0214 | 0.0552 0.0277 0.0507 | 0.0544 0.0272
1000 0.0227 0.0103 0.0190 | 0.0410 0.0206 | 0.0412 0.0206 | 0.0378 0.0226 0.0102 | 0.0275 0.0128 0.0235 | 0.0273 0.0127
50 0.2483 45.5009 0.0257 0.2838 17.1766 0.2966 16.6488 0.0453 0.1955 11.9940 0.3091 84.0846 0.0287 0.2641 30.4376
75 0.1552 | 14.8567 0.0132 | 0.2274 | 15.7400 |0.2343 | 15.1950 |0.0219 0.1322 7.8209 | 0.1984 24.5117 0.0150 | 0.1740 | 16.1852
100 0.1078 8.2270 0.0091 |0.1733 13.2728 | 0.1768 12.3468 | 0.0181 0.0944 5.1629 | 0.1316 11.1046 0.0110 |0.1221 9.5963
125 0.0865 5.1812 0.0066 | 0.1467 | 10.0372 | 0.1496 9.7704 | 0.0107 0.0772 3.6535 | 0.1062 7.1363 0.0075 | 0.0992 6.0592
150 ~ 0.0686 3.7119 0.0055 | 0.1160 7.4265 |0.1181 7.3836 | 0.0089 0.0630 2.7863 | 0.0819 4.7428 0.0062 | 0.0780 4.3036
175 = 0.0607 3.1328 0.0043 | 0.1040 5.8880 | 0.1055 5.8467 | 0.0067 0.0555 2.3500 | 0.0740 3.9161 0.0048 | 0.0704 3.5930
200 0.0507 2.3945 0.0039 | 0.0883 4.9424 | 0.0895 4.9565 | 0.0058 0.0472 1.8772 | 0.0621 3.1090 0.0043 | 0.0590 2.8711
250 0.0416 1.8279 0.0030 0.0735 3.5941 0.0743 3.5261 0.0047 0.0380 1.4362 0.0503 2.2270 0.0034 0.0485 2.1167
500 0.0200 0.7731 0.0015 | 0.0345 1.3415 | 0.0346 1.3322 | 0.0022 0.0182 0.6232 | 0.0236 0.9131 0.0016 | 0.0233 0.8944
1000 0.0100 0.3484 0.0007 | 0.0175 0.5927 | 0.0175 0.5907 | 0.0011 0.0087 0.2692 | 0.0119 0.4079 0.0008 | 0.0118 0.4031
50 0.5394 | 65.4958 17.9439 0.4029 8.6076 0.4203 9.3527 1.4958 0.3493 7.1522 0.6975 213.1324 10.9343 0.5604 | 47.7528
75 0.3504 | 26.0344 5.4808 | 0.2994 7.0786 | 0.3060 6.9333 1.0528 0.2428 4.7991 0.4534 90.8851 4.6198 | 0.3907 |26.4526
100 0.2450 | 13.1107 1.6988 | 0.2541 8.8115 |0.2543 8.4505 | 0.8205 0.1760 3.7021 0.3076 30.1183 1.7528 | 0.2804 |17.0723
125 0.1920 7.4530 0.9125 | 0.2449 9.6186 | 0.2460 9.6347 | 0.7812 0.1437 2.7665 | 0.2312 13.0152 0.9789 | 0.2199 | 11.0459
150 ~ 0.1531 5.1571 0.5582 | 0.2293 9.6353 | 0.2313 9.6121 | 0.7657 0.1161 2.1768 | 0.1870 8.2455 0.7533 | 0.1785 7.8311
175 = 0.1354 4.1452 0.2680 | 0.2096 9.2349 | 0.2127 9.2519 | 0.6569 0.1026 1.8315 | 0.1633 6.5212 0.4458 | 0.1576 6.2052
200 0.1229 3.8733 0.1971 | 0.1966 9.2697 | 0.1997 9.3258 | 0.5336 0.0902 1.6708 | 0.1502 6.2014 0.3029 | 0.1457 5.9773
250 0.0910 2.4417 0.1343 0.1509 6.1218 0.1526 6.1317 0.4175 0.0703 1.2567 0.1081 3.4860 0.1867 0.1054 3.4159
500 0.0453 1.0639 0.0539 | 0.0767 2.5467 | 0.0772 2.5623 | 0.1406 0.0352 0.6370 | 0.0539 1.4480 0.0717 | 0.0532 1.4384
1000 0.0222 0.4686 0.0231 0.0375 1.0304 | 0.0376 1.0332 | 0.0560 0.0174 0.3073 | 0.0261 0.6128 0.0306 | 0.0260 0.6120
50 0.0328 0.3729 | 44.9797 | 0.0562 1.4745 | 0.0624 1.4730 | 4.4784 0.0312 0.3848 | 0.0445 0.9783 15.8167 | 0.0390 0.6693
75 0.0212 0.1405 |22.8953 | 0.0379 0.6566 | 0.0406 0.6714 | 4.1388 0.0208 0.1549 | 0.0280 0.3042 9.4171 | 0.0256 0.2472
100 0.0156 0.0930 | 11.3118 | 0.0281 0.3890 | 0.0297 0.3980 | 3.4855 0.0153 0.1017 | 0.0203 0.1814 5.5097 | 0.0189 0.1576
125 0.0118 0.0573 7.2812 | 0.0204 0.2032 | 0.0212 0.2058 | 2.9908 0.0119 0.0625 | 0.0148 0.0997 4.2259 | 0.0140 0.0904
150 ~ 0.0096 0.0459 3.9601 0.0172 0.1614 0.0178 0.1626 2.6388 0.0097 0.0494 0.0121 0.0749 3.0011 0.0117 0.0729
175 = 0.0082 0.0360 2.4554 | 0.0147 0.1099 | 0.0152 0.1107 | 2.4679 0.0083 0.0385 | 0.0105 0.0570 2.2836 | 0.0100 0.0541
200 0.0073 0.0299 1.8674 | 0.0132 0.0884 | 0.0135 0.0890 | 2.0902 0.0073 0.0320 | 0.0093 0.0468 1.7440 | 0.0090 0.0446
250 0.0058 0.0224 0.8423 0.0102 0.0630 0.0104 0.0633 1.6791 0.0058 0.0239 0.0071 0.0336 1.1535 0.0070 0.0324
500 0.0027 0.0095 0.2534 | 0.0050 0.0244 | 0.0050 0.0245 | 0.6705 0.0027 0.0099 | 0.0034 0.0135 0.3736 | 0.0033 0.0134
1000 0.0014 0.0048 0.1122 | 0.0025 0.0110 | 0.0025 0.0110 | 0.2710 0.0014 0.0048 | 0.0017 0.0064 0.1502 | 0.0017 0.0064
Continued
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n E | MLEs |LSEs WLSEs |ADEs | CVMEs | MLEs | LSEs WLSEs | ADEs | CVMEs | MLEs | LSEs WLSEs | ADEs | CVMEs
50 0.5956 26.0656 0.0960 0.6003 9.5584 0.6088 8.7024 0.2159 0.4651 5.8063 0.7404 56.2117 0.1672 0.6500 | 24.2893
75 0.3782 9.3759 0.0391 | 0.4895 8.5199 | 0.5124 8.9862 | 0.0851 0.3155 3.6691 0.4603 15.1351 0.0474 | 0.4219 | 11.1065
100 0.2609 5.3593 0.0261 0.3765 7.2968 | 0.3887 7.3713 | 0.0510 0.2257 2.6007 | 0.3160 8.8636 0.0312 | 0.2952 6.6803
125 0.2127 3.4845 0.0186 0.3321 6.4983 0.3384 6.4116 0.0356 0.1883 2.0202 0.2548 4.8761 0.0219 0.2416 4.2882
150 - 0.1736 2.6106 0.0154 | 0.2708 4.7201 0.2750 4.6522 | 0.0268 0.1566 1.6672 | 0.2010 3.1556 0.0176 | 0.1933 2.9726
175 =e 0.1419 1.9282 0.0124 | 0.2434 4.3364 | 0.2474 4.3146 | 0.0229 0.1301 1.3346 | 0.1724 2.6186 0.0148 | 0.1645 2.4318
200 0.1267 1.5839 0.0106 | 0.2087 3.2011 0.2121 3.1875 | 0.0182 0.1162 1.1055 | 0.1479 1.9559 0.0120 | 0.1430 1.8658
250 0.0963 1.1598 0.0086 | 0.1664 2.4551 0.1682 2.4409 |0.0145 0.0902 0.8845 | 0.1150 1.4725 0.0098 | 0.1109 1.3996
500 0.0481 0.4959 0.0038 | 0.0835 0.9292 | 0.0841 0.9265 | 0.0064 0.0444 0.4085 | 0.0577 0.6031 0.0044 | 0.0568 0.5881
1000 0.0241 0.2409 0.0019 | 0.0415 0.4307 | 0.0417 0.4301 0.0031 0.0220 0.2018 | 0.0283 0.2843 0.0021 0.0282 0.2818

Table 2. The MSEs of all estimators for PNPFD.

total property and casualty premiums and uninsured losses as a percentage of the total assets. The first data is
also reported and analyzed by**. Table 3 reports the first real data set modeling results.

The second data set indicates the recovery rates of viable CD34+ cells in the 239 patients who agreed to
autologous peripheral blood stem cell transplant after myeloablative chemotherapy doses. The CD34+ is also
investigated by?°. Results for the CD34+ are given in Table 4.

When the modeling results for both real data sets are analyzed, Tables 3 and 4 clearly show that PNPED is the
best model among all models based on all criteria and statistics. Figures 3 and 4 present some goodness-of-fit
graphs for real data modeling. In Figures 3 and 4, the fitted PDF, CDE, SE, and P-P plots of the PNPFD based on
the first and second real datasets are illustrated in detail. Considering the fit in Figures 3 and 4, it is observed
that the PNPFD is a suitable choice for modeling these two real datasets.

Practical example for QPNPFD

In this subsection, the new regression model is demonstrated for its usability through a real data application. For
comparison purposes, the Kumaraswamy” and the beta®, log-extended exponential geometric (LEEG)*, and
transmuted unit rayleigh (TUR)® regression models are utilized. The quantile parameter p is set to 0.5 for the
QPNPFD, Kw, and LEEG regression models. The data is taken from™ and can be found at https://stats.oecd.org/
index.aspx?DataSetCode=BLI. Here, the percentage of the educational attainment values of the OECD countries
() is considered as the dependent variable, and the percentage of the voter turnout (x;), homicide rate (x7), and
life satisfaction (x3) as the independent variables. Detailed information about this data and some descriptive
statistics can be viewed from?®. This application aims to reveal the relationship with y and x, x, and x3.

The regression model is presented as

P P2 s ‘ AIC BIC CAIC HQIC KS p-value
PNPFD | 14640 |63.2352 |0.9336 |93.6619 | —181.3238 | —1173.5083 | — 1181.0738 | —178.1607 | 0.0629 | 0.9350
K 0.6648 3.4407 | - 78.6539 —1153.3079 | —1148.0975 | —1153.1841 | —1151.1991 | 0.1535 | 0.0642
Uw 0.0653 | 2.3529 |- 88.1005 | — 11722010 | — 1166.9907 | — 1172.077 | —1170.0923 | 0.0931 | 0.5516
UBXIT | 03482 | 2.8408 |- 465066 | -189.0132 | —183.8029 | —188.8895 | —86.9045 |4.5609 | 0.0000
UM 09390 | 2.8142 |- 89.9609 | — 11759217 | - 11707114 | — 1175.7980 | —173.8130 | 0.1086 | 0.3550
NPFD | 89785 | 1.3829 |- 90.5154 | —1177.0307 | — 1171.8204 | — 1176.9070 | —174.9220 | 0.1029 | 0.4223

Table 3. The goodness of fit results for the first data sets.

” P2 p3 ¢ AIC BIC CAIC HQIC KS p-value
PNPFD | 85683 |2.3550 |1.4693 |194.6930 | — 13833860 | — 13755704 | — 1383.1360 | — 1380.2229 | 0.0404 | 0.8311
K 6.6942 | 24355 |- 190.7640 | —1377.5280 | — 1372.3176 | — 1377.4043 | —1375.4193 | 0.0723 | 0.1646
uw 8.0563 | 1.6182 |- 192.0157 | —1380.0314 | - 1374.8211 | — 1379.9077 | — 1377.9227 | 0.0557 | 0.4487
UBXII 10.0756 | 1.7320 |- 193.5027 —1383.0054 | —1377.7951 | —1382.8817 | — 1380.8967 | 1.9997 | 0.0000
UM 04900 |02478 |- 179.9752 | — 13559504 | — 1350.7401 | — 1355.8267 | — 1353.8417 | 0.0869 | 0.0539
NPFD | -0.9570 |4.2844 |- 139.5322 | —1275.0644 | - 1269.8541 | — 1274.9407 | — 1272.9557 | 0.1891 | 0.0000

Table 4. The goodness of fit results for the second data sets.
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Figure 3. The fitted PDF, CDE, SE and P-P plots for PNPFD of the first data.
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Figure 4. The fitted PDE CDE, SE and P-P plots for PNPFD of the second data.

logit(i;) = Bo + B1xi1 + Poxiz + Paxiz, i = 1,2,...,38.

where j1; represents the median for QPNPFD, Kw, and LEEG models and the mean for Beta regression. Parameter
estimates for regression models, p-values for the significance of model parameters, and log-likelihood results
are presented in Table 5.

From 5, it is striking that the best regression model for OECD data is the PNPFD model. For the PNPFD
model, n, §, and By parameters are statistically insignificant at the level of 5%, and the other parameters i, 8>
and Bs are statistically significant at the level of 5%. The median response is positively affected by parameter s,
whereas the median response is negatively affected by parameters B; and B,. It is determined that an increase
in life satisfaction increases the percentage of educational attainment, while an increase in voter turnout and
homicide rate decreases the percentage of educational attainment.
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PNPFD TUR Beta Kumaraswamy LEEG
Parameters MLE SE p-value | MLE SE p-value | MLE SE p-value | MLE SE p-value | MLE SE p-value
Bo 0.7746 1.2807 | 0.5453 —0.3469 | 1.0407 | 0.7389 0.9615 0.9685 | 0.3208 1.6247 1.1740 | 0.1664 0.3275 1.0754 | 0.7607
B —2.4192 1.0693 | 0.0237 -1.7892 | 0.8534 | 0.0360 -29211 |1.0176 | 0.0041 -4.1197 | 1.3892 | 0.0030 —4.0917 | 1.4520 | 0.0048
B2 —0.0604 | 0.0273 | 0.0269 —-0.0673 |0.0237 | 0.0046 —0.0470 | 0.0178 | 0.0084 —-0.0404 |0.0168 | 0.0159 —0.0477 |0.0145 | 0.0010
B3 0.3814 0.1637 | 0.0198 0.4754 0.1356 0.3794 0.1492 | 0.0110 0.4237 0.2546 | 0.0960 0.6214 0.1745 | < 0.001
n 3.9360 4.5452 | 0.3865 - - - - - - - - - - -
) -0.2720 | 1.3055 | 0.8350 - - - - - - - - - - - -
o - - - -0.4272 0.5474 | 0.4352 11.5900 2.6100 |- 6.2167 1.0787 | - 7.8378 1.7365 | -
n 33.2672 32.9941 30.9024 29.4339 28.6480

Table 5. Parameter estimates of regression models for OECD data with standard error (SE) and log-
likelihoods.

Conclusion

This study aimed to introduce a new superior model capable of modeling and fitting data defined on (0,1). This
paper introduced a new unit model as an alternative to Kumaraswamy and beta distributions. The new model’s
statistical and reliability features were discussed, like moments, stochastic ordering, reliability function, hazard
rate function, order statistics, and quantile function. Furthermore, the PNPFD has flexible shapes for its density
and hazard functions. The probability density function plots reveal that the new distribution is unimodal and
J-shaped, while the hazard rate function exhibits a pattern characterized by decreased, increased, and bathtub-
shaped behavior. The major objectives had been established throughout the study, setting the groundwork for
a comprehensive investigation into the efficacy of the PNPFD compared to existing, well-known distributions.
As we delve into the conclusion, it is noteworthy to emphasize that the research aim has been realized with
resounding success. Its parameters are estimated with precision using various methods. The performance of
these methods is compared with a Monte Carlo simulation. According to the simulation study, it is observed
that the results of the estimators approached each other in a large sample size. Simulation results indicate that,
according to the bias criterion, ADEs are typically identified as the optimal estimator for the parameters of o
and n, while MLEs are considered the most suitable estimator for the § parameter.. A novel regression analysis is
introduced via the proposed distribution. Three real data analyses demonstrate the applicability and reliability
of the new distribution and the new regression model evidenced by low error measures such as SE and p-value.
The results from the modeling with figures also demonstrate that the new distribution fits remarkably well with
the real data. In conclusion, this study not only ensued in meeting its aim but also proved the capability of the
PNPED to contribute substantially to the field of statistics. The flexibility of the proposed regression model
compared to existing regression models indicates that it is an effective model for situations where the depend-
ent variable is proportional. The outcomes portrayed here open paths for future research incorporating novel
heuristics techniques for investigating the disease dynamics and insist on the significance of the PNPFD as a
beneficial tool for researchers in diverse areas, including neuro-computational intelligence, non-linear tumor-
immune delayed model, nonlinear multi-delayed tumor oncolytic virotherapy systems, nonlinear influenza-A
epidemic model, nonlinear multi-delays SVEIR epidemic systems, etc. We hope that this model will be used for
data analysis in many different fields such as economics, engineering, medicine, etc. In addition to the proper-
ties we have discussed, several other methods, such as Bayesian regression and the method of moments, can be
employed to estimate parameters to assess the efficiency of a model. By applying these methods, we can make
future predictions based on the data set, allowing for further analysis and application of the proposed model.

Data availability

All data exists in the paper with its related references.
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