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Fatty liver classification via risk 
controlled neural networks trained 
on grouped ultrasound image data
Tso‑Jung Yen *, Chih‑Ting Yang , Yi‑Ju Lee , Chun‑houh Chen  & Hsin‑Chou Yang 

Ultrasound imaging is a widely used technique for fatty liver diagnosis as it is practically affordable 
and can be quickly deployed by using suitable devices. When it is applied to a patient, multiple 
images of the targeted tissues are produced. We propose a machine learning model for fatty liver 
diagnosis from multiple ultrasound images. The machine learning model extracts features of the 
ultrasound images by using a pre-trained image encoder. It further produces a summary embedding 
on these features by using a graph neural network. The summary embedding is used as input for a 
classifier on fatty liver diagnosis. We train the machine learning model on a ultrasound image dataset 
collected by Taiwan Biobank. We also carry out risk control on the machine learning model using 
conformal prediction. Under the risk control procedure, the classifier can improve the results with high 
probabilistic guarantees.

Fatty liver is a condition in that fat are accumulated excessively in the liver cells. It is a disease that can lead 
to chronic inflammation, irreversible cirrhosis, liver failure and liver cancer. It is commonly-seen in Asia. For 
example, in Taiwan around 11.5% of adult population has fatty liver. A recent study1 pointed out that in Asia 
around 0.53% of fatty liver patients die directly due to the disease every year. Given its popularity and severity, it 
is important to run early diagnosis and intervention on fatty liver disease to prevent its progression and improve 
its prognosis.

Several methods are available for fatty liver diagnosis. These methods include liver biopsy, blood tests, and 
imaging scans such as those using ultrasound or CT technologies. While liver biopsy is considered as the gold 
standard for fatty liver diagnosis, it is an invasive procedure that may cause some risks. To avoid such risks, non-
invasive methods such as ultrasound imaging is a popular choice. It uses a probe to transmit ultrasound pulses to 
the targeted organ. Once the pulses are reflected from the targeted organ, an image of the organ will be created.

It is known that there are accuracy limitations for diagnoses of fatty liver made by human physicians based 
on ultrasound images2–4. An alternative way is to deliver the diagnosis under a computer-aid framework. 
Recently machine learning has become a popular approach to computer-aid diagnosis with ultrasound imaging 
technologies5,6. Several studies have already focused on building machine learning models from ultrasound 
image data to deliver diagnoses of liver-related diseases such as liver cancer7 and fatty liver8–15. Most of the 
studies focused on training models for disease identification based on a single image from the patient. However, 
for organs such as the liver, ultrasound images usually have low resolutions. It is due to the inherent limitations 
of the scanning mechanism. As the liver is deep inside the body, low frequency pulses are required to obtain 
its ultrasound images. In addition, these images may also be obscured by bone, air or gases inside the body. To 
ensure a successful diagnosis on fatty liver, a patient may be required to take several images of the liver. These 
images are usually taken contingently, and different patients may take different numbers of ultrasound images, 
depending on requirements from the physician and the radiologist. Figure 1 shows examples of ultrasound 
images taken from five different patients. Each of them has different number of images. In real-world practice, 
the physician delivers a diagnostic decision to a patient by looking at not only one but also other images taken 
from the patient. The decision is a result based on several images. Some recent studies16–18 have tried to train 
models for disease classification based on grouped images from a single patient. However, models from these 
studies mainly treated grouped images as independent images. They first delivered an independent decision 
to each image, and then applied post-processing mechanisms to obtain a summarized decision from those 
independent decisions. Such a procedure might cause some interpretation issue. Since the grouped images may 
contain images of different organs, if the model’s classification rule only had fatty liver-specific classes, it might 
classify an image of a non-liver organ to a certain fatty liver type. In turn, this single decision might mislead the 
post-processing mechanisms to deliver a biased diagnosis. Moreover, when training these models, all images in 
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the training dataset should be labeled. If the training dataset did not satisfy this condition, it would be difficult 
to train the models.

In this paper we propose a machine learning model that can deliver fatty liver diagnosis to a subject by 
looking at grouped ultrasound images from the subject. Unlike previous studies, our model does not use post-
processing mechanisms to obtain a summarized decision from independent single decisions on each image. 
Instead, our model delivers a diagnostic decision to the patient by summarizing information from the abstract 
representation of each image. Because our model only delivers subject-level diagnosis, our training dataset only 
requires subject-level labeling. It does not require that all images should be labeled.

Methods
In this section we first describe a machine learning model for fatty liver diagnosis based on grouped image data. 
We also describe a statistical method for controlling risk of the machine learning model based on the conformal 
prediction approach. We then describe the experiments we conducted for evaluating the machine learning model.

Since the experiments involved using ultrasound images from human subjects, we sent a proposal on the 
experiments to the Taiwan Biobank and the Institutional Review Board at Academia Sinica for review. Here we 
confirmed that all experiments in this paper have been approved by the Institutional Review Board at Academia 
Sinica with license numbers AS-IRB01-17049 and AS-IRB01-21009, and have been conducted under consent 
from all subjects involved in the experiments via the Institutional Review Board at Academia Sinica with license 
numbers AS-IRB01-17049 and AS-IRB01-21009. The waiver of informed consent is granted by the Institutional 
Review Board at Academia Sinica. All experiments were carried out in accordance with relevant guidelines and 
regulations under the Institutional Review Board at Academia Sinica and the Taiwanese government. All datasets 
used in the experiments are publicly available and can be downloaded via application at the Taiwan Biobank 
website https://​www.​bioba​nk.​org.​tw/​engli​sh.​php.

The machine learning model
Let x = {x1, x2, . . . , xS} denote the group of ultrasound images collected from a subject. The machine learning 
model aims to give a fatty liver diagnosis to the subject by using information from the grouped ultrasound images 
x . The model consists of two parts: an image encoder, which aims to extract features from each image in x ; and 
an aggregate encoder, which aims to yield information for the diagnosis by summarizing the image features. 
Mathematically we can express the model as:

where φ is the image encoder, hs is the feature of image xs , G is a graph constructor, G is a graph in which the 
image features {h1, h2, . . . , hS} are attributes of the nodes, ψ is a graph encoder, θ is an aggregate layer, and z is a 
summary of the features {u1, u2, . . . ,uS} processed by the graph encoder ψ . With z we can build an output layer 
for the diagnostic decision. If there are K types of fatty liver diagnoses, then the output layer can be expressed as

hs =φ(xs) for s = 1, 2, . . . , S,

G =G(h1, h2, . . . , hS),

(u1, u2, . . . ,uS) =ψ(h1, h2, . . . , hS ,G),

z =θ(u1, u2, . . . ,uS),

Figure 1.   Examples of grouped ultrasound images in the TWBABD dataset.

https://www.biobank.org.tw/english.php
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where

Here k̂  is the diagnostic decision, and σk(z) is a score of diagnosis k conditional on summary information z , 
and (δk ,βk) is a parameter vector corresponding to diagnosis k. Figure 2 shows the schematic plot of the model.

Deep neural network architectures
There are several choices for the image encoder φ . In this paper we consider the following deep neural network 
architectures: the Residual Neural Network (ResNet5019), the Densely Connected Convolutional Network 
(DenseNet12120), and Vision Transformer (ViT21), which is based on the Transformer models that are widely 
used in natural language processing22,23.

The aggregate encoder consists of two parts: the graph encoder ψ and the aggregate layer θ . The graph encoder 
ψ should be invariant to permutations of the image features {h1, h2, . . . , hS} . This means the diagnostic decision 
made by the deep neural network should not change if the ultrasound images {x1, x2, . . . , xS} are scanned in 
different orders24,25. In this paper we mainly consider the following graph neural networks for building the 
graph encoder: Graph Attention Network (GAT​26) and Graph Isomorphism Network (GIN27). For the aggregate 
layer θ , we adopt a global pooling layer based on the max function. For more details of the graph encoder ψ 
and the aggregate layer θ , please see Appendix A in Supplemental Materials. In addition, the graph encoder ψ 
needs a graph G for carrying out forward propagation. The graph G has the image features {h1, h2, . . . , hS} as the 
attributes of the nodes. It is constructed by an operator G in which the link between two nodes s and r is defined 
by e(s, r) = 1 if Corr(hs , hr) ≥ 0.995 , and e(s, r) = 0 otherwise, where Corr(hs , hr) is the Pearson correlation 
between image features hs and hr.

Conformal prediction
In practice it is important to take the diagnostic decision under a risk control framework so that the physicians 
can know how much probability the decision might be wrong. The risk control should serve as a precaution 
measure for the physician. With such a precaution measure, the physician can formulate a proper response to 
the wrong decision and therefore reducing the damage caused by the decision.

Below we introduce conformal prediction28,29, an approach to controlling the risk of a machine learning 
model by providing a confidence set for the model’s output. In a classification task, this confidence set is also 
called the prediction set. Under conformal prediction, the prediction set can be constructed via a two-stage 
procedure. At the first stage, we compute a specified statistic for each sample in the calibration dataset. This 
specified statistic is called the conformity score. It measures the minimal size of the prediction set provided by the 
machine learning model to cover the correct label of the sample. With these conformity scores, we can establish 
an empirical distribution. At the second stage, we first set a risk control level and then select a value from the 
empirical distribution according to the risk control level. This value is selected to construct the prediction set so 
that the prediction set has high probability to cover the correct label.

In this paper we mainly consider two conformal prediction methods for controlling the risk of the machine 
learning models. The first method is called the Adaptive Prediction Sets (APS30), and the second method is 
called the Regularized Adaptive Prediction Sets (RAPS31). Both of the methods are designed for dealing with 
classification problems. Although both of the methods apply a randomized mechanism to compute conformity 
scores, RAPS is different from the APS in that RAPS adds a penalty term to the conformity score for punishing 
the model if the model includes too many undesirable labels in the prediction set. For more details, please see 
Appendix B in Supplemental Materials.

k̂ = arg max
k∈{1,2,...,K}

{σ1(z), σ2(z), . . . , σK (z)},

σk(z) =
exp(δk + β⊤

k
z)

∑
K

k′=1 exp(δk′ + β⊤
k′
z)
.

Figure 2.   The deep neural network architecture for fatty liver diagnosis from grouped ultrasound images.
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Experiments
Below we conducted experiments for evaluating our machine learning model. Before presenting the experiment 
results, we describe settings in these experiments. These settings include the dataset, learning tasks, the training 
procedure and evaluation metrics.

TWBABD dataset
The ultrasound image dataset we used to train our machine learning model is provided by Taiwan Biobank 
(TWB). Taiwan Biobank is a large database that consists of nearly 200,000 participants of Taiwanese population. 
It is considered as one of the largest biobanks in Asia. At the early stage it aimed to collect phenotypic and 
genetic data for bio-medical investigation. Since 2020, it has also started to collect medical image data, 
including electrocardiographs, bone mass measurements, and ultrasound images. Currently there are 21,636 
participants who have completed the abdominal ultrasound image scanning. The 21,636 participants are the 
subjects of the dataset in our study. The scanning tasks of the 21,636 subjects were all conducted at the Mackay 
Memorial Hospital Health Examination Center in Taipei. The resulting ultrasound images were stored in the 
Digital Imaging and Communications in Medicine (DICOM) format before being examined and labeled by 
radiographers and physicians. In practice, we pre-processed these ultrasound images to remove the device 
marker and then stored these images in the PNG format for further model training purposes. Figure 3 shows 
the pre-processing procedure.

In our dataset, each subject is labeled as one of the following four disease types: normal status, mild fatty liver, 
moderate fatty liver, and severe fatty liver. For quality control purposes, some subjects are also given “uncertainty” 
labels to indicate whether or not their ultrasound images are difficult to examine. To make our dataset cleaner, we 
further conducted a quality control procedure to exclude subjects with such uncertain labels. The resulting dataset 
contains abdominal ultrasound images corresponding to 16,772 subjects. Among the 16,772 subjects, 12,321 
are in the normal status, 2287 are labeled as mild fatty liver, 1629 are labeled as moderate fatty liver, and 535 
are labeled as severe fatty liver. For more details, please see Table 1 and Appendix C in Supplemental Materials.

Tasks
We aim to train our machine learning model by solving three classification tasks. The first task is a two-class 
classification task, in which the machine learning model is asked to identify whether a subject is normal or is in 
the disease status. The disease status includes all three fatty liver types in the dataset: mild fatty liver, moderate 
fatty liver, and severe fatty liver. The second task is a three-class classification task. In this task, labels of the 
moderate fatty liver and severe fatty liver are combined into one class. The machine learning model is asked 
to identify whether a subject is normal, or has mild fatty liver, or has either moderate or severe fatty liver. The 
third task is a four-class classification task, in which the machine learning model is asked to identify whether 
a subject belongs to one of the following four disease types: normal, mild fatty liver, moderate fatty liver and 
severe fatty liver.

Figure 3.   Ultrasound images from the Taiwan Biobank.

Table 1.   The numbers of subjects of the four disease types in the TWB ultrasound image dataset.

Diagnosis Normal Mild Moderate Severe Total

Number of subjects 12,321 2,287 1,629 535 16,772

Proportion 73.5% 13.6% 9.7% 3.2% 100%
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Model training
To train the machine learning model, our dataset was further divided into training, validation and test sets. The 
proportions of sizes for the training, validation, and test sets were fixed at 81%, 9% and 10%, respectively. In 
addition, a random down-sampling approach was adopted to balance the numbers of subjects in each disease 
type in the training, validation and test sets according to the tasks. Table 2 summarizes the numbers of subjects 
in the training, validation, and test sets for the three machine learning tasks. For example, for the four-class 
classification task there are 216 subjects in the test set, which means there are 216/4 = 54 subjects in each class. 
This number is roughly 10% of the 535 severe fatty liver subjects in our dataset (see Table 1). Similar calculations 
can be done for other tasks.

In practice, the following deep neural network architectures were adopted as the image encoder to build 
our machine learning model: (1) DenseNet12120, (2) ResNet5019, and (3) ViT-16, i.e. Vision Transformer21. In 
addition, the following deep neural network architectures are adopted as the graph encoder in our model: (1) 
the Graph Attention Network (GAT​26) with one layer block, (2) the Graph Attention Network with two layer 
blocks, (3) the Graph Isomorphism Network (GIN27) with one layer block, and (4) the Graph Isomorphism 
Network with two layer blocks. Details of these deep neural network architectures can be found in Appendix A 
in Supplemental Materials.

When training these deep neural network architectures, we first pre-trained the image encoders on 
publicly available datasets. DenseNet121 and ResNet50 were pre-trained on the ImageNet dataset while Vision 
Transformer was pre-trained on ImageNet-21k dataset. We then applied the pre-trained image encoders to 
the training data to obtain the their image features. For DenseNet121, ResNet50, and Vision Transformer, the 
corresponding dimensions of the image features are 1024, 2048, and 1024, respectively. These image features 
were then used to construct the graph for training the graph encoders. We set the inner (hidden) dimensions of 
all graph encoders equal to 512. We used the cross entropy as the loss function. To run the training procedure, 
we set the batch size of the training data equal to 32 and the number of training epochs equal to 100. We run the 
training procedure by using the ADAM algorithm32 with Cosine-Annealing33 for the learning rate adjustment.

Model evaluation
We visually evaluated performance of the machine learning models by drawing the confusion matrix and ROC 
curves for the results. We also evaluated overall performance of the model by using the following metrics. The 
first metric is accuracy, which is defined by

To evaluate class-specific performance, the following metrics were considered: (1) precision, which is defined by

where TP is the number of subjects who are correctly classified to the class, FP is the number of subjects who 
are wrongly classified to the class; (2) recall, which is defined by

where FN is the number of subjects who belong to the class but are wrongly classified to other classes; and (3) 
f1-score, which is defined by

To evaluate conformal prediction, the following two metrics were adopted: the prediction set size and the 
coverage rate, which are defined by

and

accuracy =
# of correctly classified subjects

# of subjects
.

precision =
TP

TP+ FP
,

recall =
TP

TP+ FN
,

f1-score =
TP

TP+ 0.5(FP+ FN)
,

prediction set size = # labels in the prediction set,

coverage rate =
# of subjects who are correctly covered by the prediction set

# of subjects
,

Table 2.   Sizes of training, validation, and test datasets for the three tasks.

Task Training Validation Test

Two-class classification 7210 802 890

Three-class classification 5259 585 648

Four-class classification 1728 196 216
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respectively. Note that in the above formula when all the prediction set sizes are equal to 1, the coverage rate 
becomes the accuracy.

Results
We conducted the experiments by applying the machine learning model to solve the following three tasks: (1) 
two-classification task involving normal and fatty liver cases; (2) three-classification task involving normal, mild 
fatty liver, and moderate+severe fatty liver cases; (3) four-class classification task involving normal, mild fatty 
liver, moderate fatty liver, severe fatty liver cases. Below we present results of the three experiments.

Two‑class classification
This task aims to train a model that can identify whether a subject is in the normal condition or has fatty liver. 
We considered 12 different settings (3 image encoders × 4 graph/aggregate encoders) for the model. We trained 
the model on a training set with 7210 subjects, and then evaluated the model on a test set with 890 subjects. Both 
training and test sets were balanced, i.e. in the training set, each class has 3605 subjects, and in the test dataset, 
each class has 445 subjects. We repeated this training and test procedure 10 times on 10 different training and test 
sets. We evaluated the model by computing the performance measures described in “Model evaluation” section. 
Figure 4 shows accuracy of the model under the 12 different settings. We can see that the highest accuracy is 
provided by the model with DenseNet-121 as the image encoder and Graph Attention Network (GAT) with one 
block as the graph encoder. Figure 5 further shows the confusion matrix and the ROC curves of the results from 
the model with the best setting.

We further performed conformal prediction on the test set using the model with the best setting. We 
considered three conformal prediction methods: Naive Prediction Sets (NPS), Adaptive Prediction Sets (APS30), 
and Regularized Adaptive Prediction Sets (RAPS31). We set the risk level α equal to 0.1. This means that under 
this value a prediction set should cover the ground truth label with at least 90% probability. The threshold q 
was estimated from conformity scores of the validation set with 802 subjects. Table 3 shows the results of the 
conformal prediction. The RAPS procedure has the smallest average prediction set size, meaning that on average 
the RAPS procedure assigned 1.046 disease types to each subject. For those in the unambiguous group, i.e. 
subjects assigned with only one disease type, the coverage rate (i.e. the accuracy) of the RAPS procedure is 98.4%.

We also evaluated performance of the RAPS procedure by comparing its results with the results without 
conformal prediction. Table 4 shows the values of precision, recall and f1-score of each of the two disease types 
for the model with the best setting with conformal prediction (DenseNet-121 × GAT-1 with RAPS) and without 
conformal prediction (DenseNet-121 × GAT-1). Note that the number of subjects in conformal prediction is 
849.4, which is the average size of the unambiguous groups over 10 repeated experiments. This means that there 
are less than 5% ( 890− 849.4 = 40.6 ) of the subjects in the test set belong to the ambiguous group, i.e. the group 

Figure 4.   Accuracy for the two-class classification task by the 12 model settings. Each bar represents an average 
of accuracy over 10 repeated experiments.
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of subjects who are assigned with multiple disease types by the conformal prediction. In summary, the conformal 
prediction improves the performance of the model with the best setting in the two-class classification task.

Three‑class classification
The three-class classification task further considers two sub-types of fatty liver. The two sub-types are mild fatty 
liver and moderate/severe fatty liver. We trained the model with 12 different settings by applying the training and 
test procedure the same as the one in the two-class classification task. Figure 6 shows accuracy of the 12 different 
model settings. We can see that the highest accuracy is provided by the model with DenseNet-121 as the image 
encoder and Graph Attention Network (GAT) with one block as the graph encoder. Figure 7 further shows the 
confusion matrix and the ROC curves of the results from the model with the best setting.

We further performed conformal prediction on the test set with the model with the best setting. The risk level 
α was set to be 0.1, and the threshold q was estimated from conformity scores of 585 subjects in the validation 
set. Table 5 shows the results of the conformal prediction. The Regularized Adaptive Prediction Sets (RAPS) 
procedure has the smallest average prediction set size. On average it assigned 1.293 disease types to each subject. 
For those in the unambiguous group, i.e. subjects assigned with only one disease type, the coverage rate (i.e. the 
accuracy) of the RAPS procedure is 93.1%. For those in the ambiguous group, i.e. subjects assigned with multiple 
disease types, the coverage rate is 98.1%, which means that only less than 2% of the subjects in the ambiguous 
group have been assigned with wrong disease types.

Figure 5.   Results for the two-class classification task by the best model setting in Fig. 4. In the test set, each 
disease type has n = 445 subjects. Left: confusion matrix; Right: ROC curves.

Table 3.   Results of conformal prediction for the two-class classification task by the model with the best setting 
in Fig. 4. The value in the bracket is the corresponding standard error.

Method Prediction set size Coverage rate (unambiguous) Coverage rate (ambiguous) Coverage rate (all)

NPS 1.088 (0.005) 0.993 (0.001) 1.000 (0.000) 0.993 (0.001)

APS 1.962 (0.011) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

RAPS 1.046 (0.003) 0.984 (0.001) 1.000 (0.000) 0.985 (0.000)

Table 4.   Comparisons between the model with the best setting in Fig. 4 with conformal prediction (top; 
n = 849.4 ) and without conformal prediction (bottom; n = 890 ). Each value represents an average over 10 
repeated experiments. The value in the bracket is the corresponding standard error. The bold values refer to the 
better values between two models (Model with RAPS and Model without RAPS).

Model Disease type Precision Recall F1-score

Model with RAPS
Normal 0.988 (0.002) 0.980 (0.002) 0.984 (0.001)

Disease 0.980 (0.002) 0.988 (0.002) 0.984 (0.001)

Model without RAPS
Normal 0.973 (0.003) 0.969 (0.002) 0.971 (0.002)

Disease 0.969 (0.002) 0.973 (0.003) 0.971 (0.002)
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Figure 6.   Accuracy for the three-class classification task by the 12 different model settings. Each bar represents 
an average of accuracy over 10 replicates.

Figure 7.   Results for the three-class classification task by the model with the best setting in Figure 6. Each class 
has n = 216 subjects in the test set. Left: confusion matrix; Right: ROC curves.

Table 5.   Results of conformal prediction for the three-class classification task by the best setting in Fig. 6. The 
value in the bracket is the corresponding standard error.

Method Prediction set size Coverage rate (unambiguous) Coverage rate (ambiguous) Coverage rate (all)

NPS 1.460 (0.010) 0.970 (0.003) 0.988 (0.002) 0.977 (0.002)

APS 2.522 (0.014) 1.000 (0.000) 1.000 (0.0) 1.000 (0.000)

RAPS 1.293 (0.011) 0.931 (0.003) 0.981 (0.004) 0.945 (0.003)



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7345  | https://doi.org/10.1038/s41598-024-57386-3

www.nature.com/scientificreports/

We also evaluated performance of the RAPS procedure by comparing its results with the results without 
conformal prediction. Table 6 shows the values of precision, recall and f1-score of each of the three disease 
types for the best model with conformal prediction (DenseNet-121 × GAT-1 with RAPS) and without conformal 
prediction (DenseNet-121 × GAT-1). Note that the number of subjects in conformal prediction is 465, which is 
the average size of the unambiguous groups over 10 repeated experiments. We can see the conformal prediction 
improves the performance of the best model on all three disease types.

Four‑class classification
This task aims to train the machine learning model that can classify a subject to one of the following four disease 
types: the normal, mild fatty liver, moderate fatty liver, and severe fatty liver. In our training procedure, both 
training and test sets were balanced. The training set contains 1728 subjects, meaning that each class has 432 
subjects. The test set contains 216 subjects, meaning that each class has 54 subjects. Figure 8 shows accuracy of 
the machine learning model with 12 different settings. We can see that the highest accuracy is provided by the 
model with DenseNet-121 as the image encoder and Graph Attention Network (GAT) with one block as the graph 
encoder. Figure 9 further shows the confusion matrix and the ROC curves of the model with the best setting.

We further performed conformal prediction on the test set using the model with the best setting. We set 
the risk level α equal to 0.1, and estimated the threshold q from conformity scores of the 196 subjects in the 
validation set. Table 7 shows the results of the conformal prediction. The RAPS procedure has the smallest 

Table 6.   Comparisons between the model with best setting in Fig. 6 with conformal prediction (top; n = 465 ) 
and without conformal prediction (bottom; n = 648 ). Each value represents an average over 10 replicates. The 
value in the bracket is the corresponding standard error. The bold values refer to the better values between two 
models (Model with RAPS and Model without RAPS).

Model Disease type Precision Recall F1-score

Model with RAPS

Normal 0.989 (0.001) 0.990 (0.002) 0.989 (0.001)

mild 0.872 (0.004) 0.857 (0.015) 0.864 (0.008)

mod+sev 0.904 (0.008) 0.911 (0.006) 0.907 (0.003)

Model without RAPS

Normal 0.962 (0.003) 0.958 (0.003) 0.960 (0.002)

Mild 0.797 (0.006) 0.793 (0.012) 0.794 (0.006)

mod+sev 0.822 (0.009) 0.827 (0.007) 0.824 (0.004)

Figure 8.   Accuracy for the four-class classification task by the 12 different settings. Each bar represents an 
average of accuracy over 10 repeated experiments.
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average prediction set size equal to 1.525, which means that on average the RAPS procedure assigned 1.525 
disease types to each subject. For those in the unambiguous group, i.e. subjects assigned with only one disease 
type, the coverage rate (i.e. the accuracy) of the RAPS procedure is 92.2%. For those in the ambiguous group, i.e. 
subjects assigned with multiple disease types, the coverage rate is 96.0%, meaning that only 4% of the subjects 
in the ambiguous group have been assigned with wrong disease types.

We also evaluated performance of the RAPS procedure by comparing its results with the results without 
conformal prediction. Table 8 shows the values of precision, recall and f1-score of each of the four classes for the 
best model with conformal prediction (DenseNet-121 × GAT-1 with RAPS) and without conformal prediction 
(DenseNet-121 × GAT-1). Note that the number of subjects in conformal prediction is 115, which is the average 
size of the unambiguous groups over 10 repeated experiments. We can see the conformal prediction improves 
the performance of the best model on three of the four disease types.

Figure 9.   Results for the four-class classification task by the model with the best setting in Figure 8. In the test 
set, each disease type has n = 54 subjects. Left: confusion matrix; Right: ROC curves.

Table 7.   Results of conformal prediction for the four-class classification task by the model with the best 
setting in Fig. 8. The value in the bracket is the corresponding standard error.

Method Prediction set size Coverage rate (unambiguous) Coverage rate (ambiguous) Coverage rate (all)

NPS 1.740 (0.018) 0.972 (0.004) 0.974 (0.005) 0.973 (0.003)

APS 3.035 (0.045) 1.0 (0.0) 0.999 (0.001) 0.999 (0.001)

RAPS 1.525 (0.018) 0.922 (0.006) 0.960 (0.006) 0.940 (0.004)

Table 8.   Comparisons between the model with the best setting in Fig. 8 with conformal prediction (top; 
n = 115 ) and without conformal prediction (bottom; n = 216 ). Each value represents an average over 10 
repeated experiments. The value in the bracket is the corresponding standard error. The bold values refer to the 
better values between two models (Model with RAPS and Model without RAPS).

Model Class Precision Recall F1-score

Model with RAPS

Normal 0.994 (0.003) 0.996 (0.003) 0.995 (0.002)

Mild 0.878 (0.013) 0.949 (0.017) 0.911 (0.012)

Moderate 0.589 (0.065) 0.368 (0.052) 0.445 (0.055)

Severe 0.902 (0.013) 0.955 (0.012) 0.927 (0.010)

Model without RAPS

normal 0.956 (0.007) 0.956 (0.010) 0.955 (0.005)

Mild 0.777 (0.015) 0.778 (0.016) 0.776 (0.010)

Moderate 0.652 (0.016) 0.643 (0.020) 0.646 (0.015)

Severe 0.819 (0.011) 0.822 (0.016) 0.820 (0.010)
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Ablation study
We conducted ablation study on the machine learning model by considering three different encoders that do 
not exploit graph structure for feature encoding. The three encoders are based on the following neural network 
architectures: (a) a multilayer perceptron with one layer block (MLP-1), (b) a multiplayer perceprtron with two 
layer blocks (MLP-2), and (c) a global pooling layer based on the max function (MAX), respectively. We evaluated 
performance of the machine learning model with the three different encoders on solving the three classification 
tasks by following experiment settings the same as those used in the previous sections. We compared their 
performances to the performance of the best setting (DenseNet-121×GAT-1) in terms of accuracy and reported 
the results in Table 9. From Table 9 we can see DenseNet-121×GAT-1, the only setting in the table that explores 
graph of image features for forward propagation, has the highest accuracy values in all three classification tasks. 
The results suggest that the graph encoder, i.e. Graph Attention Network (GAT), outperforms other encoders 
that do not account for the graph of image features, highlighting the importance of considering such graph in 
encoding grouped images.

Discussion
As a diagnosis method, ultrasound imaging has several advantages. It has relatively low cost to operate. It is also 
relatively safe as its operation does not involve radiation exposure. Moreover, it is portable and can be operated 
quickly, allowing medical professionals to access real-time images. However, due to the inherent limitations 
of its scanning mechanism, ultrasound imaging also requires multiple shots of the target organs to ensure a 
successful scanning. This procedure yields grouped image data. In this paper we propose a machine learning 
model trained on the grouped image data for fatty liver classification. The machine learning model has a hybrid 
deep neural network architecture consisting of an image encoder for extracting features from grouped images 
and an aggregate encoder for summarizing features of the grouped images according to the graph structure 
behind those image features. The experiment results show that the machine learning model achieves 97.1% 
accuracy (AUC = 0.994 ) in two-class classification task, and further achieves 98.4% accuracy when Regularized 
Adaptive Prediction Sets, a conformal prediction method, is used for controlling the risk of the results (Table 3). 
In addition, it also achieves 86.0% accuracy in three-class classification task, and further achieves 93.1% accuracy 
with the conformal prediction method (Table 5). Moreover, when carrying out four-class classification task, the 
machine learning model achieves 79.2% accuracy and 92.2% accuracy when the conformal prediction method 
is used (Table 7).

We also investigated efficiency of the machine learning model by carrying out ablation study on graph 
encoders. The results show that the machine learning model can achieve best performance in all three 
classification tasks when a graph encoder is used for feature summary. This implies that imposing graph structure 
on the grouped image data can improve the overall performance of the machine learning model.

There are several limitations in our study. Firstly, we did not evaluate the machine learning model on external 
data from other sources. The reason is that currently it is not easy to find publicly available datasets with aims, 
purposes, and data structure similar to the dataset we used for training our model.

Secondly, an issue we did not address in this paper is about the interpretability of the results provided by the 
machine learning model. It is due to the difficulty of generating the saliency map for grouped images at once. Due 
to this difficulty, we are unable to explain our results in a clear and reasonable way. In the future we are planning 
to address this issue via more plausible approaches, by following recently-developed explainable AI methods 
such as those based on Local Interpretable Model-agnostic Explanation34 and Shapley additive explanations35.

Finally, although the machine learning model achieves 79.2% accuracy in the four-class classification task, it 
also has difficulty in classifying subjects who are in the moderate fatty liver condition. This difficulty may be due 

Table 9.   Performance of the machine learning model under different settings for solving the three 
classification tasks. The value is the accuracy calculated over 10 replicates. The value in the bracket is the 
corresponding standard error. MLP-1 refers to a multilayer perceptron with one layer block; MLP-2 refers to 
a multiplayer perceprtron with two layer blocks; and MAX refers to a global pooling layer based on the max 
function. The bold values refer to the better values between two models (Model with RAPS and Model without 
RAPS).

Model Two-class classification Three-class classification Four-class classification

DenseNet-121×GAT-1 0.971 (0.002) 0.860 (0.004) 0.792 (0.011)

DenseNet-121×MLP-2 0.959 (0.002) 0.845 (0.004) 0.778 (0.009)

DenseNet-121×MLP-1 0.963 (0.003) 0.855 (0.004) 0.792 (0.008)

DenseNet-121×MAX 0.897 (0.003) 0.792 (0.006) 0.709 (0.005)

ViT×MLP-2 0.946 (0.003) 0.836 (0.003) 0.764 (0.007)

ViT×MLP-1 0.948 (0.002) 0.844 (0.003) 0.773 (0.008)

ViT×MAX 0.916 (0.003) 0.813 (0.004) 0.738 (0.008)

ResNet-50×MLP-2 0.944 (0.004) 0.832 (0.004) 0.761 (0.008)

ResNet-50×MLP-1 0.945 (0.003) 0.836 (0.003) 0.769 (0.009)

ResNet-50×MAX 0.912 (0.003) 0.802 (0.004) 0.711 (0.007)
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to several reasons. Although the moderate condition has a clear definition in terms of measurable quantities, 
such quantities may be difficult to be detected by only looking at the ultrasound images. In addition, the machine 
learning model sees the four fatty liver conditions as four distinct classes. It does not impose any quantitative 
order among the four fatty liver conditions. Moreover, the data were labeled by humans. As a result of that the 
data were still subject to human errors.

In summary, we have presented a machine learning model for fatty liver classification. To train this model, 
we also have presented a dataset that consists of abdominal ultrasound image collected by Taiwan Biobank, 
one of the largest community-based biobanks in Asian populations. In this dataset each subject has a bundle of 
images sharing the same label at the subject level. It is contrast to previous studies8–18 in which each image in the 
training dataset has its own label. To fully utilizing these intra-individual correlated image data, the machine 
learning model relies on a hybrid neural network architecture, which firstly extracts features from these images 
and then organizes these features together by exploring their graph structure. The experimental results show that 
the machine learning model can achieve high accuracy in various classification tasks. To make the experimental 
results more robust, we also have presented a statistical procedure based on conformal prediction. This procedure 
serves to mitigate the risk of inaccurate results provided by the machine learning model, providing a formal 
statistical statement about the “confidence of the results”, and indicating under what probability the result may 
be incorrect. Under this statistical procedure, the machine learning model can further improve its performances 
in these classification tasks.

Data availability
No datasets were generated or analysed during the current study.
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