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An efficient and accurate 
multi‑level cascaded recurrent 
network for stereo matching
Ziyu Zhong , Xiuze Yang , Xiubian Pan , Wei Guan , Ke Liang *, Jing Li , Xiaolan Liao  & 
Shuo Wang 

With the advent of Transformer-based convolutional neural networks, stereo matching algorithms 
have achieved state-of-the-art accuracy in disparity estimation. Nevertheless, this method requires 
much model inference time, which is the main reason limiting its application in many vision tasks 
and robots. Facing the trade-off problem between accuracy and efficiency, this paper proposes an 
efficient and accurate multi-level cascaded recurrent network, LMCR-Stereo. To recover the detailed 
information of stereo images more accurately, we first design a multi-level network to update the 
difference values in a coarse-to-fine recurrent iterative manner. Then, we propose a new pair of slow-
fast multi-stage superposition inference structures to accommodate the differences between different 
scene data. Besides, to ensure better disparity estimation accuracy with faster model inference 
speed, we introduce a pair of adaptive and lightweight group correlation layers to reduce the impact 
of erroneous rectification and significantly improve model inference speed. The experimental results 
show that the proposed approach achieves a competitive disparity estimation accuracy with a faster 
model inference speed than the current state-of-the-art methods. Notably, the model inference speed 
of the proposed approach is improved by 46.0% and 50.4% in the SceneFlow test set and Middlebury 
benchmark, respectively.
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Estimating depth from rectified stereo image pairs is a key technology for many fields, such as robot navigation, 
autonomous driving, augmented reality, and 3D reconstruction1–3. The key to depth estimation is stereo matching, 
i.e. first calculating the disparity between the pixels of a pair of rectified stereo images and then finding the depth 
of that pixel by triangulation4–6.

Traditional stereo matching is concerned with designing better matching costs and corresponding efficient 
inference algorithms, mainly divided into global stereo matching methods7,8 and local stereo matching methods2,9. 
In general, the global approach8 has a higher accuracy of disparity estimation than the local approach9–11, but it 
comes with higher computational complexity. Hirschmuller proposed a Semi-Global Matching (SGM) method 
over mutual information12, reducing computational complexity and maintaining higher accuracy simultaneously. 
However, in complex scenes with areas such as texture-free regions, thin structures, and repetitive features, 
traditional stereo matching approaches have much lower accuracy than learning-based methods1,13. Recently, 
learning-based stereo matching methods have made breakthroughs in terms of disparity estimation accuracy14–17, 
and the Transformer-based cascaded recurrent network has taken the disparity estimation accuracy to a new 
height16. However, with the high computational cost, it is difficult to utilize in practice. This method still faces 
enormous challenges in practical scenarios requiring high accuracy and efficiency, such as robot navigation and 
autonomous driving.

In the process of performing model inference, achieving high accuracy disparity estimation of stereo image 
pairs is extremely difficult: (1) The captured stereo image pairs are difficult to ideally rectify18 because the camera 
module will have problems with focal length and distortion parameters and inconsistencies on the left and right 
cameras, which will inevitably result in erroneous calibration. (2) Accurate recovery of texture-less regions, thin 
structures, and repetitive features is a highly complex problem1, especially for high-resolution stereo image pairs, 
where erroneous features around image details and detail degradation due to up-sampling and down-sampling 
further increase the difficulty of disparity estimation16,19. Additionally, achieving faster model inference while 
ensuring better disparity accuracy is more challenging. Existing methods6,16,20 add relevant model components to 
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achieve high accuracy, which dramatically increases the complexity and computation of the network and makes 
it harder to achieve faster model inference.

Based on the above problems, we propose LMCR-Stereo, namely a Lightweight-based multi-level Cascaded 
Recurrent (LMCR) Stereo matching network, which includes efficient modeling and multi-level network 
refinement design to solve the problem of fast and accurate balance of stereo matching. The overall design is based 
on CREStereo16. To better recover the detailed features of complex images, we design a multi-level network with 
hierarchical recurrent refinement and cascaded refinement in a coarse-to-fine manner and then continuously 
update the disparity estimation by recurrent refinement. Meanwhile, to make the training process of the model 
achieve convergence quicker and have a higher inference speed, the disparity values are first initialized, followed 
by extracting a three-layer feature pyramid with image resolutions of 1/32, 1/16, and 1/8. Finally, two strategies, 
the adaptive group correlation layer and lightweight group correlation layer, are used to update the disparity 
estimation at different resolutions. Besides, we design a pair of Slow-Fast multi-layer cascaded stacked inference 
structures for disparity prediction with the most suitable model input size and corresponding inference strategies 
to make our method have better generalization ability and faster model inference speed.

The summary of our main contributions is as follows: (1) Designed an efficient and accurate multi-level 
cascaded recurrent network applied to stereo matching. (2) Introduced a pair of efficient group correlation 
layer modules to speed up the model prediction time significantly. (3) Proposed a slow-fast multi-level cascaded 
recurrent stacked inference structure to make the model generalize better. (4) Compared with the original 
CREStereo16 method, our method improves the accuracy and speed of the SceneFlow dataset by 19.6% and 46.0%, 
respectively. It improves the model inference speed by 50.4% on the Middlebury benchmark test.

Results
There are some metrics for model evaluation. The same metrics may have different names in different datasets, 
and we use the same name for all throughout this paper. Bad pixel percentage (Bad) represents the percentage 
of pixels with disparity error larger than a certain threshold. There are multiple thresholds for this metric. For 
example, Bad 1.0 considers all pixels with errors greater than 1 pixel, and Bad 2.0 considers errors greater than 2 
pixels, etc. In the Middlebury benchmark, Bad 2.0 is the default metric being used for overall ranking. Average 
absolute error in pixels (AvgErr) calculates the average disparity error for all bad pixels. Root-mean-square 
disparity error in pixels (RMS) measures the square root of the average of the squared disparity errors. Error 
quantile in pixels shows the distribution of disparity errors and different error quantiles include A50, A90, A95, 
and A99. The A99 quantile represents the value below which 99 percent of the disparity errors fall. Middlebury 
provides the total runtime (Time) for each method, and also the Time per Megapixel (Time/MP) and Time per 
Gradient Descent Iteration (Time/GD). Time represents the total time required by the algorithm to process the 
entire image, which provides an overview of the algorithm’s efficiency. Time/MP helps to analyze the algorithm’s 
efficiency in a size-independent manner. Time/GD indicates the efficiency of the optimization process, which 
is significant to the iterative refinement scenarios. In this paper, we focus on Time and Time/GD. In SceneFlow 
dataset, number of parameters (M) is given to show the model complexity, capacity to learn, and potential 
computational requirements.

Middlebury benchmark
So far, the model inference time of LMCR-Stereo is reduced by 50.4% compared to the CREStereo16 approach. As 
shown in Fig. 1, we evaluate existing advanced stereo matching algorithms and proposed LMCR-Stereo method, 

Figure 1.   The scatter plot (a) comparing average end-point error vs. total inference time, and (b) Bad 2.0 vs 
total inference time on Middlebury benchmark. The figure shows that our proposed approach achieves a better 
balance between accuracy and speed.
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including AvgErr versus model inference time, and Bad 2.0 versus model inference time. Our proposed method 
achieved a better balance between model prediction speed and disparity estimation accuracy.

We pre-increased 23 pairs of images from the Middlebury 2014 dataset (including 13 additional pairs of 
ground truth images) to the same number as the simple CREStereo training set using a data enhancement 
method. Our network was then trained using both the augmented dataset and the simple CREStereo training 
set. We use the pre-trained model for 300,000 training iterations, predict the test set and the training set using a 
multiple of 64 with full-resolution image resizing, and evaluate the training set and the test set using resized full-
resolution images. The training set is estimated using a two-stage slow version of the inference structure, and the 
test set uses a two-stage fast version. We submit the predictions of our trained model to the online leaderboard. 
Compared with more than 120 other methods, we achieve state-of-the-art performance in most metrics in the 
training set. In the test set, although our proposed method does not surpass the prediction accuracy of the 
current state-of-the-art methods, the Time/GD metric is improved by 58.2% compared to the performance of 
CREStereo, which dramatically improves the speed of model prediction and ranks high in almost all metrics. 
The quantitative comparison results are shown in Tables 1 and 2. Figure 2 compares our proposed method in 
the training set with other methods. Our approach is more accurate in the contour detail part of the training set 
images and the overall disparity prediction.

SceneFlow dataset
Using SceneFlow, a large synthetic dataset, we train the LMCR-Stereo network with both “finalpass” and 
“cleanpass” versions and test the disparity estimation effect after training with “finalpass”, which contains 
35,454× 2 training image pairs and 4,370 test image pairs. We set [ n1 , n2 , n3 , n4 ] to Type 6 for the training process 
with 300,000 iterations and use the trained model as a pre-trained model. We use a model input size of 768×1024 
and single-stage inference to predict the test set disparity values and set n3 to 2. For a fair comparison, we also 
trained CREStereo16 using the same environment. As shown in Table 3, our proposed approach achieves disparity 
estimation accuracy beyond that of CREStereo16, which improves by 13.3% and 19.6% at AvgErr and Bad 1.0 
metrics, respectively. In addition, the model inference speed increases by 46.0%. As shown in Fig. 3, our proposed 
method achieves good prediction results on contour edges, fine features, and higher overall accuracy estimates.

Table 1.   Quantitative results on Middlebury benchmark.

Method Bad 0.5 Bad 1.0 Bad 2.0 Bad 4.0 AvgErr RMS A99 Time Time/GD

LMCR-Stereo (Ours) 36.4 13.20 6.27 3.72 1.66 8.98 31.3 1.76 0.93

CREStereo16 28.0 8.25 3.71 2.04 1.15 7.70 22.9 3.55 2.22

IGEV-Stereo21 32.4 9.41 4.83 3.33 2.89 12.80 43.0 3.23 1.64

UCFNet_RVC22 51.8 25.70 10.70 6.13 3.74 16.50 88.6 1.08 2.20

RDNet23 53.6 26.50 11.30 5.77 3.42 15.70 82.2 0.55 1.37

MSTR24 48.5 21.60 8.72 3.99 2.19 13.80 45.7 0.76 1.52

UPFNet25 52.5 25.70 10.30 4.58 1.90 10.20 32.4 1.04 2.09

RAFT-Stereo20 27.7 9.37 4.74 2.75 1.27 8.41 21.7 11.60 5.76

LEAStereo26 48.2 20.80 7.15 2.75 1.43 8.11 20.2 2.90 7.27

AdaStereo27 65.5 29.50 13.70 6.35 2.22 10.20 40.6 0.60 0.38

Table 2.   Quantitative results on Middlebury training set.

Method Bad 0.5 Bad 1.0 Bad 2.0 Bad 4.0 AvgErr RMS A99 Time Time/GD

LMCR-Stereo (Ours) 25.1 8.05 3.12 1.50 0.64 3.14 7.49 1.66 1.18

CREStereo16 26.2 8.73 4.01 2.04 0.94 5.21 17.10 3.66 2.98

IGEV-Stereo21 20.3 6.85 3.61 2.37 1.44 5.24 14.10 3.06 2.11

UCFNet_RVC22 43.9 17.90 8.31 4.56 2.22 8.31 33.60 1.01 2.75

RDNet23 43.6 17.90 6.87 3.00 1.60 6.18 20.40 0.55 1.80

MSTR24 32.6 11.80 4.43 1.90 1.37 9.91 25.70 0.75 1.97

UPFNet25 40.1 15.50 5.64 2.10 1.05 5.39 13.20 1.00 2.74

RAFT-Stereo20 28.6 10.60 5.25 2.89 1.04 5.25 19.10 11.00 7.37

LEAStereo26 44.6 18.40 6.94 2.62 1.09 4.99 13.30 2.90 9.48

AdaStereo27 58.4 31.30 14.30 5.82 1.92 7.66 31.70 0.60 0.49
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Discussion
This paper proposes a fast and accurate multi-level cascaded recurrent stereo matching network. The unique 
multi-level recurrent cascaded iterative architecture obtains more accurate disparity prediction values by 
exploiting the interaction of high and low-resolution features with the same number of parameters. In addition, 
based on the idea of efficiency, we propose a pair of group correlation layers, which can significantly reduce the 
computation of the model. We also design a slow-fast multi-level cascaded stacked inference structure, which can 
select the most suitable inference structure according to the different scenario data. Under the same experimental 
conditions, the disparity estimation accuracy and model inference speed are improved by 19.6% and 46.0%, 
respectively, in the SceneFlow test set. Although the accuracy on the Middlebury benchmark still needs to be 
improved, the model inference speed is enhanced by 50.4%. However, our model inference still struggles to 
reach real-time inference on high-resolution stereo image pairs, and our method may have an over-fitting issue 
in Middlebury training set, which requires adjustment on training parameters. In addition, our method was 
trained via a cloud computing service provider, and the service provider may not have given us full computer 
resources, which may have resulted in errors in operating speed. For future works, we will aim to pursue more 
efficient and accurate stereo matching networks in the future.

Related works
In learning-based stereo matching tasks, achieving better accuracy and faster speed usually involves two 
implications: (1) How to design a more accurate stereo matching network to obtain a more precise disparity 
estimation. (2) How to design an efficient model component and a fast inference structure so that the model 
can perform disparity estimation faster. Designing high-precision network models16,20 and efficient model 
components20,28,29 are the exploratory directions for many current models.

Figure 2.   Comparison of results from different methods on Middlebury training set. From top to bottom: left 
images of stereo pair, results of RAFT-Stereo, results of CREStereo, and results of our method. In the results of 
each method, the number in the upper left corner of the picture represents the Bad 2.0 metric. The red box in 
the left figure is the same area as the box in the results.

Table 3.   Quantitative results on SceneFlow test set.

Method AvgErr Bad 1.0 Bad 3.0 Bad 5.0 Parameters (M) Time (s)

LMCR-Stereo (Ous) 0.867 8.15 3.71 2.58 6.69 0.450

CREStereo16 0.999 10.14 4.36 3.00 5.43 0.833
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Since the first introduction of convolutional neural networks (CNNs) to stereo matching tasks by Žbontar 
and LeCun30, researchers have been dedicated to exploring network models with higher disparity estimation 
accuracy. Inspired by traditional methods, many researchers6,19,31–33 have used 3D convolutional network 
architectures for end-to-end stereo matching, such as PSMNet6, GANet19 and ACFNet31, have achieved state-
of-the-art performance. Based on GCNet32, Chang et al. proposed a stacked hourglass module and a pyramidal 
feature extraction network6. This network improves the disparity estimation accuracy of the model. Where 
GCNet constructed a four-dimensional cost volume using height × width× (max disparity + 1)× featuresize . 
Based on PSMNet6, GANet19 used a two-layer guided aggregation layer to aggregate cost volumes, GwcNet33 
built cost volumes by group correlation, and improved 3D stacked hourglass networks, both of which achieved 
better disparity prediction results. Although disparity estimation is highly accurate, this type of network usually 
requires a large amount of computation, especially in high-resolution stereo matching.

Compared with 3D convolution, 2D convolution has the advantages of faster inference and fewer parameters, 
which is more prevalent among researchers15,16,20,34,35. Mayer et al. proposed DispNet, with an encoding-decoding 
structure of the neural network15. The encoder uses a Siamese network that extracts a single feature and uses 
the left and right image features to calculate the correlation amount. Pang et al. designed a two-stage cascaded 
CNN structure with multi-scale residual learning based on DispNet34. Based on the optical flow network RAFT35, 
Lahav et al. proposed a rectification network RAFT-Stereo with multi-level Gate Recurrent Units (GRU)20, and 
Li et al. presented a three-layer cascaded recurrent network CREStereo with adaptive correlation16. In particular, 
CREStereo has been the first to introduce Transformer into the stereo matching task and attained state-of-
the-art disparity estimation accuracy on the Middlebury18 and ETH3D36 datasets. CREStereo only considers 
the predicted disparity update impact of low-resolution on high-resolution features, however, the predicted 
disparity update impact of high-resolution on low-resolution features is ignored. Therefore, we design a multi-
level network that considers the interaction between high and low-resolution features and adopts different 
group correlation layer strategies to update the disparity prediction values of different resolutions. The network 
can maintain a better accuracy of the disparity estimation while dramatically reducing the amount of model 
computation.

Besides the efficient model component of using 2D convolution instead of 3D convolution, many efficient 
model components20,28,29,33,37,38 have been proposed by various networks. A two-stage refinement network29 for 
stereo was first proposed by Liang et al.. Abhishek et al. designed Bi3D28, a depth estimation framework with a 
series of binary classifications, which could detect objects closer to a given distance within a few milliseconds. 
Yang et al. employed a hierarchical network from coarse to fine for efficient model inference37, but the disparity 
prediction accuracy was worse. Vladimir et al. presented HITNet38, a neural network structure for real-time 

Figure 3.   Comparison of results from different methods on SceneFlow test set. From top to bottom: left images 
of stereo pair, ground truth disparity maps, results of CREStereo, and results of ours. In the results of each 
method, the number in the upper left corner of the picture represents the Bad 1.0 metric.
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stereo matching. Multi-resolution fast initialization steps are used for this network. It allows multi-layer feature 
information to be propagated at different levels but requires different model architectures to train on other data. 
Guo et al. used the group correlation layer instead of the full correlation layer33, which can drastically decrease the 
model computational effort. Lahav et al. proposed a slow-fast GRU that used fast GRU for real-time inference20, 
but fast GRU and slow GRU needed to be trained at least twice.

In this paper, we introduce a pair of efficient model components with group correlation to significantly reduce 
the computational effort of the model. We also design a pair of stacked inference structures with slow-fast, which 
can be trained only once for both versions of slow-fast disparity prediction.

Methods
The overall network framework will be first introduced in this section Next, we present two key modules affecting 
the LMCR network: a pair of feature extractors and group correlation layers. Then, two more critical parts of 
the network are detailed: the LMCR network and the inference structure of the slow-fast stacked multi-level 
cascade. Followed by the loss function.

Network architecture
The key to the LMCR-Stereo network framework is the LMCR network, as shown in Fig. 4. Moreover, two key 
modules that affect the prediction accuracy and speed of the LMCR network model include the feature extractors 
and the group correlation layers. Given a pair of calibrated stereo images ( IL , IR ), we first generate a three-layer 
feature pyramid network that is used to compute the group correlation of this network at different scales. The 
feature pyramid of IL also supplies contextual data for the recurrent update modules and offsets. Then, after 
outputting features at a higher feature pyramid resolution, the added positional encoding and self-attention 
provide global contextual data for the subsequent adaptive group correlation layer (AGCL). In addition, features 
and predictions are refined during the recurrent refinement phase using the multi-level cascaded update module 
(MCUM). The disparity predictions from the previous stage are down-sampled, with disparity initialization, and 
are used as the input values for the next recurrent step. For each iteration of MCUM, a pair of group correlation 
layers is used to calculate its correlation. Finally, we propose a dual version of slow-fast stacked multi-level 
cascaded architecture in the inference stage, which can better utilize multi-level contextual information and 
adapt to different dataset differences.

Feature extractors
The feature extraction network we used is similar to the RAFT-stereo20, which includes the feature encoder and 
the context encoder. The network comprises a series of down-sampling layers and residual blocks for generating 
a 256-channel feature map, which resolution is 1/8 of the input image. It then receives feature maps with image 
resolutions of 1/16 and 1/32 by average pooling. The feature encoder structures the feature maps associated with 
the left and right images using instance normalization39 and the same weight.

The context encoder has the same framework as the feature encoder. Different from the instance normalization 
used by CREStereo16, which uses batch normalization40 to replace the instance normalization and is only applied 
to the left image. Contextual features for initializing the hidden states of the AGCL and the lightweight group 
correlation layer (LGCL) are used and injected into the GRU​35 in each iteration of the AGCL and the LGCL.

Group correlation layers
To reduce the matching ambiguity because of imperfect rectification, CREStereo16 adopted an AGCL. AGCL 
requires great amounts of computation, however, increases the inference time dramatically. We need to improve 
the AGCL with a lightweight component. To speed up inference while ensuring accuracy as much as possible, 

Figure 4.   Overview of the network architecture. The network can be divided into LMCR, feature extractors, 
and group correlation layers.
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we use a pair of group correlation layers, including the AGCL and the LGCL, as shown in Fig. 5. Two group 
correlation layer strategies are used for the iterative update of the model, i.e. LGCL in the two-layer feature maps 
with lower feature pyramid resolution and AGCL in feature maps with higher feature pyramid resolution. In the 
ablation experiment, we will discuss the performance of different combinations.

Local features attention
After the output of the higher-resolution feature map of the feature pyramid, the positional encoding is added 
and injected into an attention module41 for aggregating global contextual information into a single feature map 
or cross-feature map. This local feature attention is mainly used in the AGCL module and higher-resolution 
feature maps. Attention mechanisms have also been the subject of many recent studies42, and a number of these 
are also applicable to new approaches to image processing. The use of more advanced mechanisms may indeed 
enhance the computational speed of the present algorithm, but this study focuses on multi-layer networks, so 
we retain the original attention mechanism algorithm.

2D‑1D alternate local search
In traditional stereo matching tasks, the search direction between two calibrated images lies only on the epipolar 
line. To handle the case of non-ideal rectification, Li et al. proposed a 2D-1D Alternate Local Search strategy16. 
This method can save memory consumption and model computation significantly. In this paper, this strategy is 
applied to the LGCL module to enhance the inference speed of the model.

Lightweight group correlation layer
As shown in Fig. 5, we propose an LGCL module to speed up the inference of the model. This module removes 
the highly computational cross-attention and the corresponding offset component from AGCL and replaces ALC 
with a lightweight 2D-1D strategy. This strategy adopted by the improved module can significantly reduce the 
computational effort of this component.

Lightweight‑based multi‑level cascaded recurrent network
It is more robust for matching regions with textureless or repeated textures by using low-resolution and high-level 
feature maps. That is the reason for having wide receptive fields and enough semantic information. However, 
fine structure details may be lost. To improve this situation, although the CREStereo network proposed by Li 
et al. can achieve good disparity estimation16, the model takes a long time to infer the predicted disparity. For 
this reason, we offer an LMCR network to update the disparity for each iteration.

Disparity initialization
By default, the disparity field of the image in 1/32 resolution is initialized to 0 everywhere. After experiments, 
we found that specific initialization of the initial disparity value leads to faster and better prediction of the best 
disparity. When performing disparity prediction, we define the initial disparity as:

The predicted disparity fpred as:

where P denotes the predicted disparity in the middle of the model, P0 denotes the initial disparity, fpred denotes 
the predicted disparity, and w denotes the width of the current feature pyramid.

(1)P0 =







1 2 · · · w
.
.
.
.
.
.

. . .
.
.
.

2 2 · · · w







(2)fpred = P − P0

Figure 5.   The proposed framework of group correlation layers. Left: AGCL, where ALC represents the adaptive 
local correlation; Right: LGCL.
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Multi‑level cascaded update module
In the CREStereo16 network, the Recurrent Update Module (RUM) is constructed based on GRU and AGCL. 
This module calculates the correlation of each feature map separately in different cascades, using f0 as the initial 
input in each cascade and refining the differences of several iterations independently.

Based on the lightweight design, we constructed the MCUM module. Figure 6 shows the module’s structure. It 
includes a RUM module, two Lightweight Recurrent Update Modules (LRUM), the n th iteration input value In−1 , 
and the left and right feature map input values Li and Ri . Where the RUM uses the same structure as CREStereo16, 
the LRUM is a replacement of the AGCL in the RUM with the LGCL. Li and Ri are 1/32 and 1/16 of the original 
resolution in the left and right feature map input values. We adopt the LRUM to refine the difference values after 
iterations and update the corresponding disparity values. RUM is used to refine the differences after iterations 
in the feature map where the original image resolution is 1/8.

Iterative refinement strategies
We design three iterative refinement strategies in the model, namely hierarchical recurrent refinement, cascaded 
refinement, and recurrent refinement. The hierarchical recurrent refinement strategy includes three feature 
pyramids at 1/32, 1/16, and 1/8 of the model input resolution, with independent n1 , n2 , and n3 iterations of 
refinement differences. For cascaded refinement strategy, except for the first cascade where the initialized 
disparity is equal to P0 , the other levels up-sample the predicted disparity value of the previous level plus the 
initialized disparity P0 of that level as the initialized disparity value for that level of cascaded refinement. The 
recurrent refinement strategy means that except for the first cycle when the disparity value is initialized to P0 , 
the n th cycle is to down-sample the disparity value dn−1 output from the previous cycle plus P0 as the initialized 
disparity value, for a total n4 iterations to refine the disparity difference. Noteworthy, the process of one recurrent 
refinement must go through three hierarchical recurrent refinements and two cascade refinements. In this 
method, despite using different levels of hierarchical recurrent refinement, cascaded refinement, and other 
numbers of recurrent refinements, all parameters of the same part of the RUM and the LRUM share the same 
weights. After each recurrent refinement, an 8-fold convex up-sampling35 is performed, resulting in a disparity 
prediction at the input image resolution.

Slow‑fast stacked multi‑level cascades for inference
As mentioned in previous sections, we employ a three-level feature pyramid for hierarchical recurrent refinement, 
cascaded refinement, and recurrent refinement. Using the high-resolution image as input, however, expands the 
receptive domain for extracting features and correlation calculations with the increase of the down-sampling 
factor. It may degrade the fine object features with the large displacement of that image simultaneously. We design 
a stacked multi-level cascaded inference structure to solve this problem. We down-sample the stereo image pairs 
in advance to construct a three-layer pyramid, which is then fed to the feature extractor at the same resolution 
used for training. Figure 7b and c show the stacked multi-level cascaded structure graph, and Fig. 7b does not 
show the hierarchical recurrent refinement and skip connections at the same stage for the sake of brevity. The 
inference structure offers two routes with different inference multiples of 2 or 4. The stacked multi-level cascaded 
structure shares the same weights in all phases during inference and training, so no fine-tuning is required.

In addition, this network employs the LGCL on the lower-resolution two-layer feature map to update the 
iterative disparity values. The disparity estimation accuracy of the AGCL in this network is better than that of the 
LGCL. When the input model size is larger than the original image size, the LGCL corrupts the accuracy of the 
final disparity prediction. For that, we also propose a Fast version of the stacked multi-level cascade structure, 
which constitutes a slow-fast dual version of the multi-level cascade stacked inference structure, as shown in 
Fig. 7a and b. For the Fast version, except for the initial time when the whole multi-level cascaded structure is 
used (as in Fig. 7c), only the higher resolution layer of the feature pyramid is used for disparity prediction. This 
version of the inference structure accelerates the model to predict disparity and reduces the prediction error 
caused by the LGCL at a higher resolution.

Loss function
The excellent performance of CREStereo has demonstrated the superiority of the loss function it uses, and 
we have chosen to retain its methodology. Since this paper focuses on the design of the network, we have not 

Figure 6.   The proposed framework of the MCUM. That consists of a three-level feature pyramid that predicts 
the variance values through hierarchical recurrent refinement and cascaded refinement iterations. The module 
uses two update strategies, the LRUM, and the RUM.
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modified the original loss function significantly. We added averaging to the original loss function to improve 
the stability of the model across batches and datasets, as well as reducing overfitting in small batches of training. 
For each stage s ∈ ( 1

32
, 1
16
, 1
8
) in each cycle, the feature pyramid is adjusted according to the number of cycles 

[n1, n2, n3, n4] in each stage of the output sequence {f s1 , f
s
2 , · · · , f

s
i , · · · , f

s
n} as:

Where s1 denotes the resolution of 1/32 stage, s2 denotes the resolution of 1/16 stage, and s3 denotes the resolution 
of 1/8 stage, j1 = n1 × n4, j2 = (n1 + n2)× n4, j3 = (n1 + n2 + n3)× n4.

The predicted value ds under the input image resolution is obtained by up-sampling the output sequence f . 
The l1 distance between the predicted value ds and the ground truth disparity dgt is supervised using exponential 
weighting, with exponentially increasing weights ( � is set to 0.9). The total loss function is defined as:

Experiments
Datasets
We trained and evaluated our approach on four stereo datasets: Middlebury 201418, ETH3D36, SceneFlow15, and 
CREStereo dataset16.

Middlebury 2014 supplies 33 high-resolution image pairs of static indoor scenes under different lighting 
environments, captured with a large baseline stereo camera with up to 6 million pixels and a maximum disparity 
of more than 600. On this dataset, mainly AvgErr and Bad 2.0 metrics2,36 are used for evaluation.

ETH3D consists of 27 monochrome stereo images that were sampled by a laser scanner and covers both 
outdoor and indoor scenes. This dataset is mainly evaluated with AvgErr and Bad 1.0 metrics.

SceneFlow is a manually synthesized binocular stereo matching dataset using a virtual engine, which consists 
of two versions, “finalpass” and “cleanpass”, each with 35,454 training image pairs and 4,370 test image pairs. 
The stereo image pairs have a dense standard disparity map with a resolution of 540×960. AvgErr and Bad 1.0 
metrics are mainly used for evaluation on this dataset.

CREStereo provides a large synthetic dataset created manually, which has nearly 200,000 stereo image pairs in 
the training set. We randomly selected a total of 35,000 stereo image pairs from the four parts “hole”, “reflective”, 
“shapenet” and “tree” to make a simple CREStereo training set.

Training schedule
Our network is implemented using the Pytorch43 framework and optimized using AdamW44 optimizer. The 
final model is trained on 1 NVIDIA GTX 3090Ti GPU, with a batch size of 4 for a total of 300,000 training 
iterations. The ablation experiments are trained using a batch size of 4, except for the inference structure ablation 
experiments with stacked multi-level cascades, which are trained in 40,000 iterations. We use a single-cycle 
learning rate schedule45 with a maximum learning rate of 2e−4 . The size of all training inputs in the LMCR-
Stereo network is 384×512, and all training samples are augmented with a set of data before training. Specifically, 
asymmetric chromaticity enhancement, including luminance, contrast, and gamma shift, is applied to the left 

(3)f = {f s11 , · · · , f s1j1 | f s2j1+1, · · · , f
s2
j2

| f s3j3 , · · · , f
s3
j3
}

(4)L =
1

n

n
∑

i=1

∑

s γ
n−i�dgt − ds(f

s
i )�1

Figure 7.   Our proposed slow-fast stacked cascaded architecture for inference. (a) A simplified diagram of the 
inference structure of the fast version. (b) A multi-level stacked inference structure of the slow version. (c) The 
recurrent routes between feature pyramids are omitted in (b).
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and right pair of input images. To avoid mismatching caused by unsuitable regions in natural scenes and to 
enhance robustness to rectification errors, random masked rectangular blocks between 50 and 100 pixels are 
used in the height and width directions. Also, random transformations and vertical offsets are applied only for a 
2-pixel range of the right image. Finally, random resizing and cropping operations are performed on the stereo 
image pairs and disparity groups.

Ablation experiments
In this section, we evaluate the LMCR-Stereo network under different settings to demonstrate the effectiveness 
of the settings of each network component. The evaluation resolution is 540×960 for all except for the ablation 
study of the stacked multi-level cascade.

Iteration types
Li et al. have demonstrated that using 2D-1D alternative components is more conducive to achieving good 
accuracy when the RUM is used16. However, the work does not explore what ratio of hierarchical recurrent 
refinement and recurrent refinement iterations is taken to improve disparity prediction results. We use ni (where 
i = [1, 2, 3] ) and n4 to form a 2D-1D alternative search. With the total number of iterations roughly constant, the 
impact of different types of correlations is explored by varying the number of iterations and the correlation ratio 
of ni (where i = [1, 2, 3] ). We adjust the number of iterations of recurrent refinement by increasing the proportion 
of the RUM or the LRUM in the overall number of iterations. As shown in type 1 of Table 4, when 2D or 1D 
search is used for n1 , n2 , and n3 , it corrupts the prediction accuracy of the model. When the alternating 2D-1D 
search is used, increasing the number of iterations n4 of multi-level refinement can predict the disparity values 
in a better way. That is also proved by the results of other predictions in Table 4. In addition, when increasing 
the cycle refinement ratio of AGCL, the final accuracy of the model is lost, and the inference time of the model is 
increased due to reducing the number of recurrent refinements n4 . Based on the consideration of lightweight, we 
adopt the iteration combinations from type 3 to type 6 as shown in Table 4. It increases the proportion of LGCL, 
accelerates the model inference, and achieves a good balance between higher accuracy and faster speed at type 6.

Components in MCUM
As shown in Table 5, we compare the behavior of different AGCL and LGGL with different ratios and locations. 
The AGCL can effectively suppress the error of prediction disparity. When the combination of 1AGCL + 2LGCL 
is used, and the AGCL is at the higher resolution position of the feature pyramid, the model achieves the best 
speed and prediction effect. In addition, we verify that the four-level refinement predicts disparity values more 
accurately than the traditional three-level refinement. In the same experimental setting, compared with the 
prediction effect and inference speed of CREStereo16, the model inference time is reduced by 52%, the inference 
speed is faster, and the prediction effect is better. It demonstrates the effectiveness of our lightweight mode 
mechanism.

Features for refinement
From Table 5, the network without initialization reduces the speed of loss drop during model training and the 
final disparity prediction accuracy. Figure 8 shows the trend without presetting the differential disparity values. 
In addition, we also use instance normalization in the context encoder and set the same parameters at the 
feature encoder and context encoder parameters, which reduces the model’s number of parameters but loses 
some accuracy.

Table 4.   Ablation study for iteration types. The AvgErr and Bad 1.0 metrics are measured on SceneFlow test 
set. Significant values are in bold.

Modle

n1 n2 n3

AvgErr Bad 1.0 Time (s)1D 2D 2D/1D 1D 2D 2D/1D 1D 2D 2D/1D

Type 1

[1,1,1,12] � � �  1.201 13.72 0.558

[1,1,1,12] � � � 1.354 13.72 0.449

[2,2,2,6] � � � 1.269 13.17 0.441

[3,3,3,4] � � � 1.223 13.40 0.475

Type 2
[1,1,2,9] � � � 1.346 13.53 0.552

[3,3,6,3] � � � 1.273 14.44 0.443

Type 3
[2,1,1,9] � � � 1.252 13.34 0.445

[4,2,2,4] � � � 1.231 12.98 0.410

Type 4
[3,2,1,6] � � � 1.266 13.03 0.358

[6,4,2,3] � � � 1.234 13.08 0.370

Type 5 [4,3,2,4] � � � 1.267 13.08 0.397

Type 6 [5,3,1,4] � � � 1.267 13.03 0.333
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Stacked multi‑level cascades
We employ the image pyramids of different levels as input in the inference process and share common model 
training parameters to predict the final disparity value after a multi-stage, multi-level stacked inference structure. 
We compare the performance of stacked multi-layer cascades at different resolutions, as shown on the left of 
Table 6. When only one multi-layer cascade is used, the prediction error decreases sharply with an increasing 
model input size. When using multi-level cascaded inference, low-resolution features do not affect the parallax 
prediction values at high-resolution images. As the input resolution decreases, the accuracy of the predicted 
disparity does not change and only the inference speed changes, where the inference speed of the Four-stage is 
the fastest.

Slow‑fast inference
As shown in Table 6 and Fig. 9, we explore the prediction effects of the Slow-Fast stacked multi-level cascade 
structures when the relative relationship between the model input size and the predicted image size varies. 
Among them, the image prediction accuracy of ArtL in the high-resolution Middlebury dataset is inconsistent. 
Specifically, the slow version of the Two-stage stacked inference structure predicts better disparity accuracy when 
the model input size is smaller than the expected image size, as demonstrated by the result on Piano in Fig. 9. 
However, when the model input size is larger than the predicted image size, the fast version of the Three-stage 
stacked inference structure predicts disparity better and faster. Combined with Table 6, the inference results 
show that the multi-level stacked structure is beneficial in reducing the prediction error in both Middlebury and 
ETH3D datasets, but the best performance is different. Therefore, choosing the appropriate model input size and 
corresponding inference structure helps achieve a balance between accuracy and speed in predicting disparity, 
which demonstrates the effectiveness of our proposed slow-fast inference structure.

Training
We use different datasets and the Middlebury dataset combination for training and compare the loss convergence 
during training. Figure 10a shows CREStereo has better convergence and more accurate disparity prediction 
than Middlebury. Figure 10b highlights the fact that the inference structure of the Two-stage is more accurate 
than the inference structure of the Single-stage in disparity prediction.

Table 5.   Ablation study for the MCUM. The AvgErr, Bad 1.0, and Bad 3.0 metrics are measured on SceneFlow 
test set. Significant values are in bold.

Model AvgErr Bad 1.0 Bad 3.0 Time (s)

CREStereo16, 3 levels 1.434 14.90 6.31 0.695

2 AGCL + 1 LGCL, 3 levels 1.284 15.24 5.72 0.372

2 AGCL + 1 LGCL, 4 levels 1.243 14.08 5.49 0.381

1 AGCL + 2 LGCL, 1/32, 4 levels 1.548 18.59 7.46 0.479

1 AGCL + 2 LGCL, 1/16, 4 levels 1.339 14.33 5.78 0.392

1 AGCL + 2 LGCL, 1/8, 3 levels 1.265 13.94 5.44 0.342

1 AGCL + 2 LGCL, 1/8, 4 levels (Ours) 1.252 12.88 5.25 0.335

No initialization 1.738 26.16 8.53 0.349

Instance normalization 1.334 13.89 5.52 0.433

Figure 8.   The effect of initializing disparity to P0 . (a) Improvement in training loss. (b) Improvement in Bad 1.0 
and Bad 3.0.
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Figure 9.   Ablation study of stacked multi-level cascaded architecture during inference on Piano and ArtL of 
Middlebury Datasets. The image size of ArtL is 1108×1388, and the image size of Piano is 1924×2828. I1 denotes 
the model input size of 1536×2048, and I2 represents the model input size of 768×1024. (a) Comparison of Bad 
2.0 with different inference structures. (b) Comparison of AvgErr with different inference structures.

Table 6.   Ablation study of stacked multi-level cascaded architecture during inference on Middlebury and 
ETH3D training set. Significant values are in bold.

Method

Middlebury ETH3D

Input size AvgErr Bad 2.0 Time (s) Input size AvgErr Bad 1.0 Time (s)

Slow

Single stage 768×1024 2.844 20.50 0.465 384×512 0.228 2.18 0.508

Single stage 1536×2048 1.201 7.69 1.032 768×1024 0.245 1.84 0.449

Two stages 768×1024 2.846 20.52 0.779 384×512 0.229 2.29 0.753

Two stages 1536×2048 1.196 7.61 1.230 768×1024 0.245 1.82 0.791

Three stages 1536×2048 1.196 7.61 1.575 768×1024 0.245 1.82 1.126

Four stages 1536×2048 1.196 7.61 1.163 768×1024 0.245 1.82 0.769

Fast

Two stages 768×1024 3.338 22.17 0.637 384×512 0.274 2.95 0.565

Two stages 1536×2048 1.646 10.41 1.131 768×1024 0.207 1.52 0.634

Three stages 1536×2048 2.048 11.57 1.328 768×1024 0.215 1.62 0.809

Four stages 1536×2048 2.966 15.18 1.079 768×1024 0.236 2.03 0.622

Figure 10.   Training loss and Middlebury validation error of models trained with SceneFlow and CREStereo 
dataset, where C represents CREStereo dataset, SF represents SceneFlow dataset, and Mid represents 
Middlebury dataset. (a) Comparison of training loss with different datasets. (b) Comparison of Bad 2.0 with 
different inference structures.
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Data availability
The data supporting the findings of this study are available within the paper. The associated pre-processed 
raw data is available and can be shared with interested parties upon reasonable request. Please contact the 
corresponding author for more information.

Code availability
Our code is avaliable on https://​github.​com/​brave​ster/​LMCR-​Stereo. Please contact the corresponding author 
for more information.
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