
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:6462 | https://doi.org/10.1038/s41598-024-57236-2

www.nature.com/scientificreports

Neural architecture search
via progressive partial connection
with attention mechanism
Cong Jin 1, Jinjie Huang 1,2* & Yuanjian Chen 1

Differentiable architecture search requires a larger computational consumption during architecture
search, and there exists the depth gap problem under deeper network architecture. In this paper,
we propose an attention-based progressive partially connected neural architecture search method
(PPCAtt-NAS) to address these two issues. First, we introduce a progressive search strategy in the
architecture search phase, build up the sophistication of the architecture gradually and perform
path-level pruning in stages to bridge the depth gap. Second, we adopt a partial search scheme
that performs channel-level partial sampling of the network architecture to further reduce the
computational complexity of the architecture search. In addition, an attention mechanism is devised
to improve the architecture search capability by enhancing the relevance between the feature
channels. Finally, we conduct extensive comparison experiments with state-of-the-art methods on
several public datasets, and our method is able to present higher architecture performance.

Neural Architecture Search (NAS)1–5 is intended to automatically search for the neural network architecture.
It doesn’t require much priori knowledge for designing a good neural network architecture compared to tradi-
tional manually design methods6–8. However, NAS demands relatively much computing time and resources, for
example, the early NAS methods took months to discover a suitable network architecture for a particular task
or dataset9–13 and required hundreds or even thousands of computing devices. This fact makes the traditional
NAS difficult for most scholars to conduct experimental studies.

To tackle these issues, Liu et al.14 proposed a more efficient architecture search approach known as Differ-
entiable Architecture Search (DARTS), which constantly relaxed the discontinuous search space. This allows
the architecture to be optimized by the gradient descent method. However, the huge search space still requires
a large amount of computation during the architecture search phase. DARTS is mainly divided into two phases:
the architecture search phase and the architecture evaluation phase. Due to the limitation of GPU memory size,
DARTS has to start searching in a shallow architecture network at the first phase, and evaluating on the deeper
architecture network at the second phase. This leads to another problem, that is, the depth gap between the
architecture search phase and the architecture evaluation phase. Because the depth gap cannot guarantee the
correlation between the two phases, the performance of the cells for deeper network architecture requirements
is reduced in the architecture evaluation phase, and the extension of the method to other different datasets or
tasks is also limited.

Many different search strategies have also been proposed to overcome problems of the depth gap and the
huge computational complexity of DARTS. Xu et al.15 proposed a partial channel connectivity strategy to per-
form stochastic partial sampling of all intermediate nodes in the cell, further reducing the computational cost.
Ding and Kim et al.16–18 proposed Broad Neural Architecture Search (BNAS) based on the Broad Convolutional
Neural Network (BCNN) to speed up the architecture search process. Chen et al.19 proposed the idea of the
progressive search strategy, which alleviates the adverse effects of the depth gap problem to some extent. Many
different search strategies20–23 have also been proposed to alleviate the adverse effects of the depth gap problem.
In addition, the attention mechanism can help the neural network select useful features and discard the less-
useful ones. Attention mechanism modules have been introduced to enrich the search space24,25 to improve the
architecture search performance. Some other methods have also used different search strategies26–30 to try to
alleviate the above problems.

In this paper, firstly, we propose a new progressive search strategy that gradually increase the width and
depth of the network architecture, to enable the architecture depth in the architecture search phase to gradually

OPEN

1School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080,
China. 2School of Automation, Harbin University of Science and Technology, Harbin 150080, China. *email:
jjhuangps@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-57236-2&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:6462 | https://doi.org/10.1038/s41598-024-57236-2

www.nature.com/scientificreports/

approach the depth required in the architecture evaluation phase. In the early stage of the search phase, we use
a small number of searches to roughly search to the importance of the architecture parameters sorting, and in
the later stage when requiring a more refined sorting, we then increase the number of searches. Secondly, to
reduce the computational burden, we present a progressive partially connected search scheme, which gradually
increases the channel sampling probability, making the distribution of image features in each stage of the search
more rationalized. Thirdly, we introduce an attention mechanism to improve the network architecture search
performance by adding an attention module to the cell, which makes the search process focus more on important
features. Synthesizing the above three aspects, a novel progressive search method for partially connected network
architecture with attention mechanism (PPCAtt-NAS) has been completed.

The main contributions are as follows:

(1)	 We propose a new progressive network architecture search strategy that improves the efficiency of network
architecture search and alleviates the adverse effects of the depth gap problem.

(2)	 We adopt a progressive partial connection search scheme to improve the network architecture search
performance and reduce the calculation in the architecture search stage.

(3)	 We design a new attention module to the cells to achieve a more efficient architecture search process.
(4)	 We perform extensive experiments on several publicly available datasets to verify that the optimal network

architecture gained from our proposed search method exhibits higher architectural performance.

Method
Progressive architecture search strategy
We use DARTS as the baseline architecture, which represents the cell as a directed acyclic graph (DAG) contain-
ing N nodes, each cell containing two input nodes, one output node and N − 3 intermediate nodes, according
to the description in14. Each node in the graph represents the feature inputs for each layer, and each edge E

(

i, j
)

represents a continuous weighting operation o(i,j) for transforming input xi , denoted as

where o(i,j) belongs to the operation space O . The operations in the search space consist of separable and dilated
separable convolutions with convolution kernel sizes 3 and 5, max pooling and average pooling with convolution
kernel size 3, skip connection and none. The overall architecture is shown in Fig. 1. The architecture in DARTS
stacks 8 cells in the architecture search phase, but stacks 20 cells for the evaluation phase. Such a large span cre-
ates a depth gap between the two phases. This leads to the fact that the cell searched in the search phase does not
play the same role expected in the architecture evaluation phase.

(1)fi,j(xi) =
∑

o∈O

exp
(

α
(i,j)
o

)

∑

o′∈O exp
(

α
(i,j)
o′

)o(xi)

Figure 1.   The overall architecture of DARTS.

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:6462 | https://doi.org/10.1038/s41598-024-57236-2

www.nature.com/scientificreports/

To compensate for the depth gap, we adopt a progressive network architecture search strategy, which gradu-
ally increases the sophistication of the architecture by steps, so that the network architecture at the end of the
architecture search phase is closer to that of the architecture evaluation phase. The selection of operations in
the search space during the architecture search phase is mainly based on the ranking of the importance of the
operations, denoted by α . A shallower and narrower network architecture with fewer searches is used to explore
the architecture search space at the beginning of the architecture search thus obtaining a rough ranking of the
α . In the later stages, as the ranking of the α gradually settles down, the operations of similar importance can-
not be further distinguished. We prune the search space O = {o1, o2, . . . , oi , . . . } , gradually discard the useless
operations to reduce the number of operations in the search space. Thus, we can use a deeper and wider network
architecture with more searches in a smaller search space to obtain a more accurate ranking of the α.

Concretely, we divide the architecture search phase into S = {s1, s2, . . . , si , . . . } stages. Each stage si consists of
a stack of li cells (including ui normal cells (N-Cells) and li − ui reduction cells (R-Cells)) with an initial number
of channels ci , and search ti times in a search space with a number of oi operations. The detailed architectural
search flow chart is shown in Fig. 2. We increase the depth of the network architecture by gradually growing li ,
and increase the width of the network architecture by gradually growing ci . At the end of each stage, only top_ki
operations are selected and di operations with lower weights are discarded. For the discarded operations, their
weights are not updated in the next stage. And we gradually increase the number of searches ti in each stage. In
addition, we use dropout in each stage and gradually increase the dropout rate to build a more fairly competing
with other operations in the architecture search space during the architecture search.

Progressive partial connection search strategy
To reduce the cost of calculation, we propose a progressive partial connection search strategy. In the search
space O ( o ∈ O ), taking the edge from xi to xj as an example, channel q of the input xi is partially sampled with
sampling probability p and then the sampled portion is used for operation selection. After the calculation, it is
then connected in series with the remaining unsampled input as the output xj , denoted as

We introduce Ŵi,j to mark whether the channel is sampled or not, if the channel is sampled then Ŵi,j is 1,
otherwise 0. Then the computation between every two nodes can be further expressed as

We incrementally increase the channel sampling probability p in the search phase in stages. In the early stage,
the sampling probability is small, and a coarse operation importance ranking is obtained based on a few image
features with a small number of channels. In the later stages, the sampling probability is gradually increased to

(2)xj =

{

∑

o∈O
exp{αo(

i,j)}
∑

o
′
∈O

exp{α
o
′
(i,j)}

· o(xi)

xi

sampled
unsampled

(3)ρi,j
(

xi;Ŵi,j

)

=
∑

o∈O

exp
{

αo
(i,j)

}

∑

o
′
∈O exp

{

αo′
(i,j)

} · o
(

Ŵi,j ∗ xi
)

+ (1− Ŵi,j) ∗ xi

Figure 2.   Progressive architecture search.

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:6462 | https://doi.org/10.1038/s41598-024-57236-2

www.nature.com/scientificreports/

select the best operation based on more image features with a larger number of channels. The structure diagram
of the progressive partial connection search strategy is shown in Fig. 3.

Attention module in the network architecture
To strengthen the relevance between feature channels within the cell, enable the search process focus more on
the important features, and extract the feature information of interest. We introduce the attention mechanism
in the architecture search phase, add a new attention module in the cell. Specifically, we first convert the input
xi
C×H×W to xi

′C×1×1
 by averaging pooling, where C and H ×W represent the channel count and dimensions

of the input image, respectively. Then the converted image is fed into a multilayer perceptron containing three
hidden layers, and finally multiplied by the input image, expressed as

where δ is the Sigmoid activation function, � is the weight of the MLP, �0 ∈ R(C/r)×C , �1 ∈ R(C/r)×(C/r) ,
�2 ∈ RC×(C/r) , r is the reduction ratio, and yi is the output of the attention module. After adding the above
attention module to each intermediate node of the cell, it strengthens the interrelationship between each channel,
which helps the architecture capture the spatial correlation between features, makes the architecture search pay
more attention to the important operations in the search space, and selects a more suitable network architecture.
It is proved that the attention module can greatly improve the architecture search performance. The structure of
the network architecture basic unit after adding the attention module is shown in Fig. 4.

(4)yi = δ

(

MLP
(

x
′

i

))

· xi = δ(�2(�1(�0(x
′

i)))) · xi

Figure 3.   Progressive partial connection search strategy structure diagram.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:6462 | https://doi.org/10.1038/s41598-024-57236-2

www.nature.com/scientificreports/

Relationship to prior work
Although the P-DARTS19 and GPAS28 methods have similar thoughts of staged progressive search with PPCAtt-
NAS method, PPCAtt-NAS method is more comprehensive. The P-DARTS method only takes into account the
progressive approximation at the level of the number of operations, the number of cell stacks, and the dropout
probability. The GPAS method considers gradual approximation at the level of the number of operations, the
number of initial channels, the number of cell stacks, the number of epochs, and the proportion of the training
set, and adds an artificial early stopping strategy, but we believe that we have to minimize the human interven-
tion to achieve the purpose of automatic search. In contrast to them, this paper considers the whole aspect of
the progressive idea of the number of operations, the number of initial channels, the number of cell stacks, the
number of epochs, and the dropout probability at the same time. In terms of the dataset to guarantee a greater
degree of feature capture, this paper does not use a progressive approach.

This paper further adds the idea of progressive partial channel connection, the sampling proportion of the
channel is also added to the progressive idea, thereby increasing the diversity of feature selection with the depth
of the search process. The PC-DARTS method15, the RS-DARTS method26, and the AutoRSISC method27 also
use the idea of partial channel sampling but do not take into account the progressivity of the sampling. In addi-
tion, the attention module is added in this paper, while none of the above methods consider the importance of
the attention mechanism within the cell.

Experiments
Implementation details
We conduct experiments on three datasets for image classification, namely Fashion-MNIST, CIFAR10, and
CIFAR100. We perform architectural search on the CIFAR10 dataset and then evaluate the architecture on each
of the three datasets. The architecture search space is the same as DARTS. Our experiments were conducted on
an NVIDIA GeForce RTX 2080Ti GPU.

According to the PPCAtt-NAS search strategy, we divide the architecture search phase S into three stages,
where the first stage s1 , consisting of a stack of l1 = 5 cells (which contains u1 = 3 N-Cells) with an initial channel
count of c1 = 8 , searches t1 = 20 times in a search space with an operation count of o1 = 8 , and at the end of the
first stage, selects top_k1 = 5 operations, discards d1 = 3 operations with lower weights, and samples the input
channels with sampling probability p1 = 0.25 . In the second stage s2 , we set l2 = 11 , u2 = 9 , c2 = 16 , t2 = 25 ,
o2 = 5 , top_k2 = 3 , d2 = 2 , and p2 = 0.5 . In the third stage s3 , we set l3 = 17 , u3 = 15 , c3 = 24 , t3 = 30 , o3 = 3 ,
top_k3 = 1 , d3 = 2 , and p3 = 0.75 . The batch size is 128. The dropout probabilities of the three stages are 0, 0.4,
and 0.7, respectively. In each stage, the architectural parameters α are fixed in the first 10 epochs and only the
network parameters ω (such as the weights of the convolution filter) are updated. Then α and ω are updated
simultaneously in the remaining epochs. In the evaluation stage, the initial channel count is 36, the batch size is
128, and the epochs are 600. For other settings, please refer to14 and19.

Architecture search
The best cell comparison of the two methods is shown in Fig. 5. It can be observed in Fig. 5 that the relationship
between intermediate nodes of PPCAtt-NAS is more inclined to progressive relationship rather than juxtaposi-
tion in DARTS, indicating that our proposed search method focuses more on the interrelationship between
intermediate nodes. Thus, the model architecture is deeper and more complex and can obtain better architec-
tural performance. In addition, the R-Cell of PPCAtt-NAS selects many convolutional operations rather than

Figure 4.   Attention network architecture.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:6462 | https://doi.org/10.1038/s41598-024-57236-2

www.nature.com/scientificreports/

non-parametric operations which the DARTS is more inclined to select, thus the sophistication of the network
architecture is increased and the accuracy of the architecture is improved.

It is also noted that too many skip-connects may degrade the performance of the network architecture and
thus cause performance collapse. Our method does not over-select skip-connects in the same or more epochs.
Instead, the number of skip-connects is stabilized within 1 and 2. PPCAtt-NAS gradually selects non-parametric
operations, avoiding the performance collapse that may occur during the search phase of the network archi-
tecture. This performance gain can be attributed to the introduction of the attention mechanism. The attention
module added by PPCAtt-NAS to the network architecture increases the complexity of the network architec-
ture and makes the opportunity of all operations to be selected in the search space more fairly, otherwise, the
architecture search more inclined to select non-parametric operations when the network architecture is deeper.

We compare the experimental parameters of PPCAtt-NAS in the architecture search phase with those of
DARTS and P-DARTS, and the results are shown in Table 1. From Table 1, compared with DARTS, the time
consumed for searching is nearly reduced by a half. Although the total number of parameters increases, the
architecture search performance of the PPCAtt-NAS is still stable after 75 searches in the search phase, whereas
in DARTS, the performance collapse happened after only 50 searches. Compared with P-DARTS, our method
is obviously superior. In addition, we can use a larger batch size to obtain more feature information.

To further validate the effectiveness of the method proposed in this paper, we conduct an ablation study to
experimentally verify the strategies introduced in "Progressive architecture search strategy" to "Attention module
in the network architecture" sections of this paper, respectively, and the results are shown in Table 2. We rerun
the DARTS method that serves as the baseline and add the progressive architecture search strategy, progressive
partial connection search strategy, and attention module proposed in this paper, respectively. Through Table 2
we can see that the three methods proposed in this paper all improve the architectural accuracy of the network
architecture. Adding the attention module slightly increases 0.001 GPU-Days of search time and 0.07 M param-
eters, but improves the architectural accuracy by 0.19%, which is a significantly better improvement in terms of
accuracy. In summary, it is verified that the search strategy proposed in this paper has feasibility.

Figure 5.   Best cells.

Table 1.   Comparison in architecture search stage. FP, SP, TP, TTP, TT, BS, Epoch stand for first stage
parameter number, second stage parameter number, third stage parameter number, total search parameter
number, total search time, batch size number, and epoch number respectively.

Method FP (MB) SP (MB) TP (MB) TTP (MB) TT (hours) BS Epoch

DARTS 1.93 1.93 0.37 64 50

P-DARTS 1.28 1.96 1.61 4.85 0.20 96 75

PPCAtt-NAS 0.09 0.93 3.52 4.54 0.18 128 75

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:6462 | https://doi.org/10.1038/s41598-024-57236-2

www.nature.com/scientificreports/

Diagnostic experiments
In the architecture evaluation phase, we evaluate the network architectures on four datasets, Fashion-MNIST,
CIFAR100, CIFAR10, and ImageNet, and compare them with other state-of-the-art manual-based methods and
NAS methods. The comparison results on CIFAR10 and CIFAR100 are shown in Table 3. According to Table 3,
the test error of PPCAtt-NAS is 2.51% (± 0.08), and the search phase time cost is 0.18 GPU days on CIFAR10.
PPCAtt-NAS has a test error of 16.42% (± 0.24), and the architecture search phase time cost of 0.18 GPU days
on CIFAR100. On CIFAR10, the search time cost of PPCAtt-NAS is significantly lower than that of most other
methods. Although the architectural accuracy of some methods is slightly higher than that of PPCAtt-NAS, they
require nearly twice the search time cost compared to our method. On CIFAR100, the architecture search cost
of PPCAtt-NAS is also significantly lower than that of other methods, and the architecture search accuracy is
comparable to that of most other search methods.

The comparison on the Fashion-MNIST is shown in Table 4. On Fashion-MNIST, we can see that the testing
error of our PPCAtt-NAS method is 3.61% (± 0.05), and the time cost of the architecture search phase is 0.18
GPU days. All other methods have higher time cost than PPCAtt-NAS, and have a lower architecture accuracy.
It can be seen that NAS methods are superior to manual-based methods. In summary, PPCAtt-NAS is advanta-
geous over the other methods, especially in lower architecture search time cost and higher architecture accuracy.

To further validate the migratability of the architectures searched by this paper’s method, we extend it to a
larger dataset, the ImageNet dataset, for experimental validation, and the results are presented in Table 5. Table 5
shows that this paper’s method outperforms most of the existing methods with an error rate of 24.6% (± 0.04).
The accuracy of the PPCAtt-NAS method is slightly lower than that of the P-DARTS method, but our method
reduces 40% of the architecture search time. In addition, we use data augmentation to further improve the archi-
tecture accuracy (PPCAtt-NAS-A in Table 5) and improve the accuracy by 0.3%, successfully outperforming all
the methods with an error rate of 24.3% (± 0.02).

Table 2.   Experimental ablation studies. PAS, PPCS and ATT stand for the strategies proposed in "Progressive
architecture search strategy" to "Attention module in the network architecture" sections of this paper,
respectively. TE-A, TE-B, EP, SC, stand for average test error, best test error, evaluation stage parameters, and
the time consumed in the search stage, respectively.

Method EP (M) SC (GPU-days) TE-A (%) TE-B (%)

DARTS 2.84 0.365 2.94 2.83

DARTS + PAS 4.25 0.176 2.90 2.81

DARTS + PAS + PPCS 3.56 0.183 2.70 2.51

DARTS + PAS + PPCS + ATT (PPCAtt-NAS) 3.63 0.184 2.51 2.43

Table 3.   Comparison Results on CIFAR10/CIFAR100. TE, EP, SC, SM, Mn, RL, Ev, SO, Gd stand for test
error, evaluation stage parameters, the time consumed in the search stage, search method, manual search,
Reinforcement Learning based NAS, Evolution based NAS, SMBO based NAS, and Gradient based NAS,
respectively. In the second and third columns, the left side of the symbol ‘/’ is the result of CIFAR10 and the
right side is the result of CIFAR100.

Architecture TE (%) (CIFAR10/CIFAR100) EP (M) SC (GPU-days) SM

DenseNet-BC7 3.46/21.56 25.6/26.0 – Mn

ResNet8 4.61/22.22 1.7/25.3 – Mn

SENet6 4.05/21.42 11.2/26.5 – Mn

NASNet-A10 2.65/18.34 3.3/3.3 2000 RL

AmoebaNet-A12 3.34 (± 0.06)/18.38 3.2/3.1 3150 Ev

PNAS13 3.41 (± 0.09)/19.53 3.2/3.2 225 SO

ENAS2 2.89/17.92 4.6/3.4 0.5 RL

DARTS14 2.76 (± 0.09)/17.76 3.3/3.3 1 Gd

PC-DARTS15 2.57 (± 0.07)/17.01 3.6/4.0 0.1 Gd

P-DARTS19 2.50/16.55 3.4/3.4 0.3 Gd

CDARTS20 2.48 (± 0.04)/15.69 3.9/3.9 0.3 Gd

GDAS22 2.93/18.38 3.4/3.4 0.2 Gd

Att-DARTS25 2.62 (± 0.10)/16.54 3.2/3.2 – Gd

ASM-NAS1 2.59/15.60 3.1/3.1 0.6 Gd

FairDARTS-a3 2.54 (± 0.05)/- 2.8/- 0.4 Gd

DARTS+4 2.50 (± 0.11)/16.28 3.7/3.7 0.4 Gd

DARTS−5 2.59 (± 0.08)/17.51 3.5/3.3 0.4 Gd

PPCAtt-NAS 2.51 (± 0.08)/16.42 3.6/3.7 0.18 Gd

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:6462 | https://doi.org/10.1038/s41598-024-57236-2

www.nature.com/scientificreports/

Conclusion
In this paper, we propose a new progressive partially connected network architecture Search Strategy based on
attention (PPCAtt-NAS). A progressive architecture search strategy is adopted to bridge the depth gap between
two phases of the neural architecture search. Meanwhile, a progressive partial connection search scheme is
implemented by gradually varying the channel sampling probability to reduce the computational cost of the
architecture search phase. And an attention mechanism is utilized to improve the network architecture search
performance, avoiding the performance collapse. Finally, extensive comparison experiments are carried on
several publicly available datasets. The results show that our proposed search strategy achieves higher architec-
ture performance compared to other state-of-the-art methods, and thus the effectiveness of our PPCAtt-NAS
method has been verified.

Data availability
The datasets generated and/or analysed during the current study are available in the Pytorch repository, [https://​
pytor​ch.​org/​vision/​stable/​datas​ets.​html].

Received: 2 March 2023; Accepted: 15 March 2024

Table 4.   Comparison results on fashion-MNIST.

Architecture TE (%) EP (M) SC (GPU-days) SM

DenseNet7 4.61 25.6 – Mn

ResNet8 5.10 11.1 – Mn

NASNet-A10 3.66 2.5 1800 RL

AmoebaNet-A12 3.67 2.3 3150 Ev

PNAS13 3.89 2.5 225 SO

ENAS2 3.79 2.6 0.5 RL

DARTS14 3.77 3.4 1.6 Gd

ASM-NAS1 3.70 2.6 0.5 Gd

GDAS22 3.76 2.4 0.2 Gd

P-DARTS19 3.75 3.4 0.3 Gd

PPCAtt-NAS 3.61 3.6 0.18 Gd

Table 5.   Comparision results on ImageNet. Top-1 TE, Top-5 TE, Flops stand for top-1 test error, top-5 test
error, floating-point operations per second, respectively.

Architecture Top-1 TE (%) Top-5 TE (%) EP (M) Flops (M) SC (GPU-days) SM

Inception-v131 30.2 10.1 6.6 1448 – Mn

MobileNet32 29.4 10.5 4.2 569 – Mn

NASNet-A10 26.0 8.4 5.3 564 2000 RL

NASNet-B10 27.2 8.7 5.3 488 2000 RL

NASNet-C10 27.5 9.0 4.9 558 2000 RL

AmoebaNet-A12 25.5 8.0 5.1 555 3150 Ev

AmoebaNet-B12 26.0 8.5 5.3 555 3150 Ev

AmoebaNet-C12 24.3 7.6 6.4 570 3150 Ev

NSGANet-A230 25.5 8.0 4.1 466 27 Ev

PNAS13 25.8 8.1 5.1 588 225 SO

DARTS14 26.7 8.7 4.7 574 4 Gd

PC-DARTS15 25.1 7.8 5.3 586 0.1 Gd

P-DARTS19 24.4 7.4 4.9 557 0.3 Gd

Att-DARTS25 26.0 8.5 4.6 – 10 Gd

ASM-NAS1 25.4 8.1 5.5 – 0.55 Gd

GDAS22 26.0 8.5 5.3 581 1 Gd

FairDARTS-a3 26.3 8.3 3.6 417 0.4 Gd

EnTranNAS21 24.8 7.6 4.9 562 0.03 Gd

PPCAtt-NAS 24.6 7.6 5.1 619 0.18 Gd

PPCAtt-NAS-A 24.3 7.4 5.1 619 0.18 Gd

https://pytorch.org/vision/stable/datasets.html
https://pytorch.org/vision/stable/datasets.html

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:6462 | https://doi.org/10.1038/s41598-024-57236-2

www.nature.com/scientificreports/

References
	 1.	 Hao, J. & Zhu, W. Architecture self-attention mechanism: Nonliner optimization for neural architecture search. J. Nonlinear Var.

Anal. 5, 119–140 (2021).
	 2.	 Pham, H., Guan, M., Zoph, B., Le, Q. V. & Dean, J. Efficient neural architecture search via parameters sharing. In Proceedings of

the International Conference on Machine Learning 80, 4095–4104 (2018).
	 3.	 Chu, X., Zhou, T., Zhang, B. & Li, J. Fair darts: Eliminating unfair advantages in differentiable architecture search. Proceedings of

the European Conference on Computer Vision 12360, 465–480 (2020).
	 4.	 Liang, H. et al. Darts+: Improved differentiable architecture search with early stopping. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Preprint at https://​arxiv.​org/​abs/​1909.​06035 (2020).
	 5.	 Chu, X. et al. Darts-: Robustly stepping out of performance collapse without indicators. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Preprint at https://​arxiv.​org/​abs/​2009.​01027 (2021).
	 6.	 Hu, J., Shen, L., Albanie, S., Sun, G. & Wu, E. H. Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42,

2011–2023 (2020).
	 7.	 Huang, G., Liu, Z., VDM, L. & Weinberger, KQ. Densely connected convolutional networks. In IEEE Conerence of the Computer

Vision and Pattern Recognition 4700–4708 (2017).
	 8.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In IEEE Conference on Computer Vision Pattern

Recognition 770–778 (2016).
	 9.	 Zoph, B. & Le, QV. Neural architecture search with reinforcement learning. Preprint at https://​arxiv.​org/​abs/​1611.​01578 (2017).
	10.	 Zoph, B., Vasudevan, V., Shlens, J. & Le, Q. Learning transferable architectures for scalable image recognition. In IEEE Conference

on the Computer Vision Pattern Recognition 8697–8710 (2019).
	11.	 Tan, M. et al. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE Conference on Computer

Vision Pattern Recognition, 2820–2828. Preprint at https://​arxiv.​org/​abs/​1807.​11626 (2019).
	12.	 Real, E., Aggarwal, A., Huang, Y. & Le, Q. V. Regularized evolution for image classifier architecture search. Proc. AAAI Conf. Artif.

Intell. 33, 4780–4789 (2019).
	13.	 Liu, C. et al. Progressive neural architecture search. Lect. Notes Comput. Sci. 11205, 19–35 (2018).
	14.	 Liu, H., Simonyan, K. & Yang, Y. Darts: Differentiable architecture search. In Proceedings of the International Conference on Learn-

ing Representation. Preprint at https://​arxiv.​org/​abs/​1806.​09055 (2019).
	15.	 Xu, Y. et al. Partial channel connections for memory-efficient differentiable architecture search. In Proceedings of the International

Conference on Learning Representation. Preprint at https://​arxiv.​org/​abs/​1907.​05737 (2020).
	16.	 Ding, Z. et al. BNAS: Efficient neural architecture search using broad scalable architecture. IEEE Trans. Neural Netw. Learn. Syst.

33, 5004–5018 (2022).
	17.	 Ding, Z., Chen, Y., Li, N. & Zhao, D. BNAS-v2: Memory-efficient and performance-collapse-prevented broad neural architecture

search. IEEE Trans. Syst. Man Cybern.-Syst. 52, 6259–6272 (2021).
	18.	 Kim, D., Singh, KP. & Choi, J. BNAS v2: Learning architectures for binary networks with empirical improvements. In Proceedings

of the IEEE Conference on Computer Vision Pattern Recognition. Preprint at https://​arxiv.​org/​abs/​2110.​08562​v1 (2021).
	19.	 Chen, X., Xie, L., Wu, J. & Tian, Q. Progressive differentiable architecture search: Bridging the depth gap between search and

evaluation. In Proceedings of the IEEE International Conference on Computer Vision., 1294–1303. Preprint at https://​arxiv.​org/​abs/​
1904.​12760 (2019).

	20.	 Yu, H. et al. Cyclic differentiable architecture search. IEEE Trans. Pattern Anal. Mach. Intell. 45, 211–228 (2022).
	21.	 Yang, Y. et al. Towards improving the consistency, efficiency, and flexibility of differentiable neural architecture search. In Pro-

ceedings of the IEEE Conference on Computer Vision Pattern Recognition, 6667–6676. Preprint at https://​arxiv.​org/​abs/​2101.​11342
(2021).

	22.	 Dong, X. & Yang, Y. Searching for a robust neural architecture in four gpu hours. In Proceedings IEEE Conference on Computer
Vision Pattern Recognition, 1761–1770. Preprint at https://​arxiv.​org/​abs/​1910.​04465​v1 (2019).

	23.	 Dong, X. et al. AutoHAS: Efficient hyperparameter and architecture search. In Proceedings of the Inernational Conference on Learn-
ing Representation. Preprint at https://​arxiv.​org/​abs/​2006.​03656 (2021).

	24.	 Weng, Y., Zhou, T., Liu, L. & Xia, C. Automatic convolutional neural architecture search for image classification under different
scenes. IEEE Access 7, 38495–38506 (2019).

	25.	 Nakai, K., Matsubara, T. & Uehara, K. Neural architecture search for convolutional neural networks with attention. IEICE Trans.
Inf. Syst. 104, 312–321 (2021).

	26.	 Zhang, Z., Liu, S., Zhang, Y. & Chen, W. RS-DARTS: A convolutional neural architecture search for remote sensing image scene
classification. Remote Sens. 14, 141 (2022).

	27.	 Jing, W., Ren, Q., Zhou, J. & Song, H. AutoRSISC: Automatic design of neural architecture for remote sensing image scene clas-
sification. Pattern Recognit. Lett. 140, 186–192 (2020).

	28.	 Peng, C., Li, Y., Jiao, L. & Shang, R. Efficient convolutional neural architecture search for remote sensing image scene classification.
IEEE Trans. Geosci. Remote Sens. 59, 6092–6105 (2021).

	29.	 Ahmad, M., Abdullah, M., Moon, H., Yoo, S. & Han, D. Image classification based on automatic neural architecture search using
binary crow search algorithm. IEEE Access 8, 189891–189912 (2020).

	30.	 Lu, Z. et al. Multiobjective evolutionary design of deep convolutional neural networks for image classification. IEEE Trans. Evol.
Comput. 25, 277–291 (2021).

	31.	 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. et al. Going deeper with convolutions. In Proceeding of the CVPR, 1–9 (2015).
	32.	 Howard, G., A., Zhu, M., Chen, B., Kalenichenko, D. & Wang, W. et al. Mobilenets: Efficient convolutional neural networks for

mobile vision applications. ArXiv Preprint Preprint at https://​arxiv.​org/​abs/​1704.​04861 (2017)

Acknowledgements
This work was supported in part by the National Natural Science Foundation of China under Grant 61305001
and the Natural Science Foundation of Heilongjiang Province of China under Grant F201222.

Author contributions
JJ.H. and C.J. conceived the experiments. C.J. and YJ.C. conducted the experiments. C.J. wrote the original draft.
JJ.H. and C.J. review and editing.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.H.

https://arxiv.org/abs/1909.06035
https://arxiv.org/abs/2009.01027
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1807.11626
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1907.05737
https://arxiv.org/abs/2110.08562v1
https://arxiv.org/abs/1904.12760
https://arxiv.org/abs/1904.12760
https://arxiv.org/abs/2101.11342
https://arxiv.org/abs/1910.04465v1
https://arxiv.org/abs/2006.03656
https://arxiv.org/abs/1704.04861

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:6462 | https://doi.org/10.1038/s41598-024-57236-2

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Neural architecture search via progressive partial connection with attention mechanism
	Method
	Progressive architecture search strategy
	Progressive partial connection search strategy
	Attention module in the network architecture
	Relationship to prior work

	Experiments
	Implementation details
	Architecture search
	Diagnostic experiments

	Conclusion
	References
	Acknowledgements

