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Neural architecture search 
via progressive partial connection 
with attention mechanism
Cong Jin 1, Jinjie Huang 1,2* & Yuanjian Chen 1

Differentiable architecture search requires a larger computational consumption during architecture 
search, and there exists the depth gap problem under deeper network architecture. In this paper, 
we propose an attention-based progressive partially connected neural architecture search method 
(PPCAtt-NAS) to address these two issues. First, we introduce a progressive search strategy in the 
architecture search phase, build up the sophistication of the architecture gradually and perform 
path-level pruning in stages to bridge the depth gap. Second, we adopt a partial search scheme 
that performs channel-level partial sampling of the network architecture to further reduce the 
computational complexity of the architecture search. In addition, an attention mechanism is devised 
to improve the architecture search capability by enhancing the relevance between the feature 
channels. Finally, we conduct extensive comparison experiments with state-of-the-art methods on 
several public datasets, and our method is able to present higher architecture performance.

Neural Architecture Search (NAS)1–5 is intended to automatically search for the neural network architecture. 
It doesn’t require much priori knowledge for designing a good neural network architecture compared to tradi-
tional manually design methods6–8. However, NAS demands relatively much computing time and resources, for 
example, the early NAS methods took months to discover a suitable network architecture for a particular task 
or dataset9–13 and required hundreds or even thousands of computing devices. This fact makes the traditional 
NAS difficult for most scholars to conduct experimental studies.

To tackle these issues, Liu et al.14 proposed a more efficient architecture search approach known as Differ-
entiable Architecture Search (DARTS), which constantly relaxed the discontinuous search space. This allows 
the architecture to be optimized by the gradient descent method. However, the huge search space still requires 
a large amount of computation during the architecture search phase. DARTS is mainly divided into two phases: 
the architecture search phase and the architecture evaluation phase. Due to the limitation of GPU memory size, 
DARTS has to start searching in a shallow architecture network at the first phase, and evaluating on the deeper 
architecture network at the second phase. This leads to another problem, that is, the depth gap between the 
architecture search phase and the architecture evaluation phase. Because the depth gap cannot guarantee the 
correlation between the two phases, the performance of the cells for deeper network architecture requirements 
is reduced in the architecture evaluation phase, and the extension of the method to other different datasets or 
tasks is also limited.

Many different search strategies have also been proposed to overcome problems of the depth gap and the 
huge computational complexity of DARTS. Xu et al.15 proposed a partial channel connectivity strategy to per-
form stochastic partial sampling of all intermediate nodes in the cell, further reducing the computational cost. 
Ding and Kim et al.16–18 proposed Broad Neural Architecture Search (BNAS) based on the Broad Convolutional 
Neural Network (BCNN) to speed up the architecture search process. Chen et al.19 proposed the idea of the 
progressive search strategy, which alleviates the adverse effects of the depth gap problem to some extent. Many 
different search strategies20–23 have also been proposed to alleviate the adverse effects of the depth gap problem. 
In addition, the attention mechanism can help the neural network select useful features and discard the less-
useful ones. Attention mechanism modules have been introduced to enrich the search space24,25 to improve the 
architecture search performance. Some other methods have also used different search strategies26–30 to try to 
alleviate the above problems.

In this paper, firstly, we propose a new progressive search strategy that gradually increase the width and 
depth of the network architecture, to enable the architecture depth in the architecture search phase to gradually 
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approach the depth required in the architecture evaluation phase. In the early stage of the search phase, we use 
a small number of searches to roughly search to the importance of the architecture parameters sorting, and in 
the later stage when requiring a more refined sorting, we then increase the number of searches. Secondly, to 
reduce the computational burden, we present a progressive partially connected search scheme, which gradually 
increases the channel sampling probability, making the distribution of image features in each stage of the search 
more rationalized. Thirdly, we introduce an attention mechanism to improve the network architecture search 
performance by adding an attention module to the cell, which makes the search process focus more on important 
features. Synthesizing the above three aspects, a novel progressive search method for partially connected network 
architecture with attention mechanism (PPCAtt-NAS) has been completed.

The main contributions are as follows:

(1)	 We propose a new progressive network architecture search strategy that improves the efficiency of network 
architecture search and alleviates the adverse effects of the depth gap problem.

(2)	 We adopt a progressive partial connection search scheme to improve the network architecture search 
performance and reduce the calculation in the architecture search stage.

(3)	 We design a new attention module to the cells to achieve a more efficient architecture search process.
(4)	 We perform extensive experiments on several publicly available datasets to verify that the optimal network 

architecture gained from our proposed search method exhibits higher architectural performance.

Method
Progressive architecture search strategy
We use DARTS as the baseline architecture, which represents the cell as a directed acyclic graph (DAG) contain-
ing N nodes, each cell containing two input nodes, one output node and N − 3 intermediate nodes, according 
to the description in14. Each node in the graph represents the feature inputs for each layer, and each edge E

(

i, j
)

 
represents a continuous weighting operation o(i,j) for transforming input xi , denoted as

where o(i,j) belongs to the operation space O . The operations in the search space consist of separable and dilated 
separable convolutions with convolution kernel sizes 3 and 5, max pooling and average pooling with convolution 
kernel size 3, skip connection and none. The overall architecture is shown in Fig. 1. The architecture in DARTS 
stacks 8 cells in the architecture search phase, but stacks 20 cells for the evaluation phase. Such a large span cre-
ates a depth gap between the two phases. This leads to the fact that the cell searched in the search phase does not 
play the same role expected in the architecture evaluation phase.
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Figure 1.   The overall architecture of DARTS.
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To compensate for the depth gap, we adopt a progressive network architecture search strategy, which gradu-
ally increases the sophistication of the architecture by steps, so that the network architecture at the end of the 
architecture search phase is closer to that of the architecture evaluation phase. The selection of operations in 
the search space during the architecture search phase is mainly based on the ranking of the importance of the 
operations, denoted by α . A shallower and narrower network architecture with fewer searches is used to explore 
the architecture search space at the beginning of the architecture search thus obtaining a rough ranking of the 
α . In the later stages, as the ranking of the α gradually settles down, the operations of similar importance can-
not be further distinguished. We prune the search space O = {o1, o2, . . . , oi , . . . } , gradually discard the useless 
operations to reduce the number of operations in the search space. Thus, we can use a deeper and wider network 
architecture with more searches in a smaller search space to obtain a more accurate ranking of the α.

Concretely, we divide the architecture search phase into S = {s1, s2, . . . , si , . . . } stages. Each stage si consists of 
a stack of li cells (including ui normal cells (N-Cells) and li − ui reduction cells (R-Cells)) with an initial number 
of channels ci , and search ti times in a search space with a number of oi operations. The detailed architectural 
search flow chart is shown in Fig. 2. We increase the depth of the network architecture by gradually growing li , 
and increase the width of the network architecture by gradually growing ci . At the end of each stage, only top_ki 
operations are selected and di operations with lower weights are discarded. For the discarded operations, their 
weights are not updated in the next stage. And we gradually increase the number of searches ti in each stage. In 
addition, we use dropout in each stage and gradually increase the dropout rate to build a more fairly competing 
with other operations in the architecture search space during the architecture search.

Progressive partial connection search strategy
To reduce the cost of calculation, we propose a progressive partial connection search strategy. In the search 
space O ( o ∈ O ), taking the edge from xi to xj as an example, channel q of the input xi is partially sampled with 
sampling probability p and then the sampled portion is used for operation selection. After the calculation, it is 
then connected in series with the remaining unsampled input as the output xj , denoted as

We introduce Ŵi,j to mark whether the channel is sampled or not, if the channel is sampled then Ŵi,j is 1, 
otherwise 0. Then the computation between every two nodes can be further expressed as

We incrementally increase the channel sampling probability p in the search phase in stages. In the early stage, 
the sampling probability is small, and a coarse operation importance ranking is obtained based on a few image 
features with a small number of channels. In the later stages, the sampling probability is gradually increased to 
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Figure 2.   Progressive architecture search.
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select the best operation based on more image features with a larger number of channels. The structure diagram 
of the progressive partial connection search strategy is shown in Fig. 3.

Attention module in the network architecture
To strengthen the relevance between feature channels within the cell, enable the search process focus more on 
the important features, and extract the feature information of interest. We introduce the attention mechanism 
in the architecture search phase, add a new attention module in the cell. Specifically, we first convert the input 
xi
C×H×W to xi

′C×1×1
 by averaging pooling, where C and H ×W represent the channel count and dimensions 

of the input image, respectively. Then the converted image is fed into a multilayer perceptron containing three 
hidden layers, and finally multiplied by the input image, expressed as

where δ is the Sigmoid activation function, � is the weight of the MLP, �0 ∈ R(C/r)×C , �1 ∈ R(C/r)×(C/r) , 
�2 ∈ RC×(C/r) , r is the reduction ratio, and yi is the output of the attention module. After adding the above 
attention module to each intermediate node of the cell, it strengthens the interrelationship between each channel, 
which helps the architecture capture the spatial correlation between features, makes the architecture search pay 
more attention to the important operations in the search space, and selects a more suitable network architecture. 
It is proved that the attention module can greatly improve the architecture search performance. The structure of 
the network architecture basic unit after adding the attention module is shown in Fig. 4.
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Figure 3.   Progressive partial connection search strategy structure diagram.
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Relationship to prior work
Although the P-DARTS19 and GPAS28 methods have similar thoughts of staged progressive search with PPCAtt-
NAS method, PPCAtt-NAS method is more comprehensive. The P-DARTS method only takes into account the 
progressive approximation at the level of the number of operations, the number of cell stacks, and the dropout 
probability. The GPAS method considers gradual approximation at the level of the number of operations, the 
number of initial channels, the number of cell stacks, the number of epochs, and the proportion of the training 
set, and adds an artificial early stopping strategy, but we believe that we have to minimize the human interven-
tion to achieve the purpose of automatic search. In contrast to them, this paper considers the whole aspect of 
the progressive idea of the number of operations, the number of initial channels, the number of cell stacks, the 
number of epochs, and the dropout probability at the same time. In terms of the dataset to guarantee a greater 
degree of feature capture, this paper does not use a progressive approach.

This paper further adds the idea of progressive partial channel connection, the sampling proportion of the 
channel is also added to the progressive idea, thereby increasing the diversity of feature selection with the depth 
of the search process. The PC-DARTS method15, the RS-DARTS method26, and the AutoRSISC method27 also 
use the idea of partial channel sampling but do not take into account the progressivity of the sampling. In addi-
tion, the attention module is added in this paper, while none of the above methods consider the importance of 
the attention mechanism within the cell.

Experiments
Implementation details
We conduct experiments on three datasets for image classification, namely Fashion-MNIST, CIFAR10, and 
CIFAR100. We perform architectural search on the CIFAR10 dataset and then evaluate the architecture on each 
of the three datasets. The architecture search space is the same as DARTS. Our experiments were conducted on 
an NVIDIA GeForce RTX 2080Ti GPU.

According to the PPCAtt-NAS search strategy, we divide the architecture search phase S into three stages, 
where the first stage s1 , consisting of a stack of l1 = 5 cells (which contains u1 = 3 N-Cells) with an initial channel 
count of c1 = 8 , searches t1 = 20 times in a search space with an operation count of o1 = 8 , and at the end of the 
first stage, selects top_k1 = 5 operations, discards d1 = 3 operations with lower weights, and samples the input 
channels with sampling probability p1 = 0.25 . In the second stage s2 , we set l2 = 11 , u2 = 9 , c2 = 16 , t2 = 25 , 
o2 = 5 , top_k2 = 3 , d2 = 2 , and p2 = 0.5 . In the third stage s3 , we set l3 = 17 , u3 = 15 , c3 = 24 , t3 = 30 , o3 = 3 , 
top_k3 = 1 , d3 = 2 , and p3 = 0.75 . The batch size is 128. The dropout probabilities of the three stages are 0, 0.4, 
and 0.7, respectively. In each stage, the architectural parameters α are fixed in the first 10 epochs and only the 
network parameters ω (such as the weights of the convolution filter) are updated. Then α and ω are updated 
simultaneously in the remaining epochs. In the evaluation stage, the initial channel count is 36, the batch size is 
128, and the epochs are 600. For other settings, please refer to14 and19.

Architecture search
The best cell comparison of the two methods is shown in Fig. 5. It can be observed in Fig. 5 that the relationship 
between intermediate nodes of PPCAtt-NAS is more inclined to progressive relationship rather than juxtaposi-
tion in DARTS, indicating that our proposed search method focuses more on the interrelationship between 
intermediate nodes. Thus, the model architecture is deeper and more complex and can obtain better architec-
tural performance. In addition, the R-Cell of PPCAtt-NAS selects many convolutional operations rather than 

Figure 4.   Attention network architecture.
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non-parametric operations which the DARTS is more inclined to select, thus the sophistication of the network 
architecture is increased and the accuracy of the architecture is improved.

It is also noted that too many skip-connects may degrade the performance of the network architecture and 
thus cause performance collapse. Our method does not over-select skip-connects in the same or more epochs. 
Instead, the number of skip-connects is stabilized within 1 and 2. PPCAtt-NAS gradually selects non-parametric 
operations, avoiding the performance collapse that may occur during the search phase of the network archi-
tecture. This performance gain can be attributed to the introduction of the attention mechanism. The attention 
module added by PPCAtt-NAS to the network architecture increases the complexity of the network architec-
ture and makes the opportunity of all operations to be selected in the search space more fairly, otherwise, the 
architecture search more inclined to select non-parametric operations when the network architecture is deeper.

We compare the experimental parameters of PPCAtt-NAS in the architecture search phase with those of 
DARTS and P-DARTS, and the results are shown in Table 1. From Table 1, compared with DARTS, the time 
consumed for searching is nearly reduced by a half. Although the total number of parameters increases, the 
architecture search performance of the PPCAtt-NAS is still stable after 75 searches in the search phase, whereas 
in DARTS, the performance collapse happened after only 50 searches. Compared with P-DARTS, our method 
is obviously superior. In addition, we can use a larger batch size to obtain more feature information.

To further validate the effectiveness of the method proposed in this paper, we conduct an ablation study to 
experimentally verify the strategies introduced in "Progressive architecture search strategy" to "Attention module 
in the network architecture" sections of this paper, respectively, and the results are shown in Table 2. We rerun 
the DARTS method that serves as the baseline and add the progressive architecture search strategy, progressive 
partial connection search strategy, and attention module proposed in this paper, respectively. Through Table 2 
we can see that the three methods proposed in this paper all improve the architectural accuracy of the network 
architecture. Adding the attention module slightly increases 0.001 GPU-Days of search time and 0.07 M param-
eters, but improves the architectural accuracy by 0.19%, which is a significantly better improvement in terms of 
accuracy. In summary, it is verified that the search strategy proposed in this paper has feasibility.

Figure 5.   Best cells.

Table 1.   Comparison in architecture search stage. FP, SP, TP, TTP, TT, BS, Epoch stand for first stage 
parameter number, second stage parameter number, third stage parameter number, total search parameter 
number, total search time, batch size number, and epoch number respectively.

Method FP (MB) SP (MB) TP (MB) TTP (MB) TT (hours) BS Epoch

DARTS 1.93 1.93 0.37 64 50

P-DARTS 1.28 1.96 1.61 4.85 0.20 96 75

PPCAtt-NAS 0.09 0.93 3.52 4.54 0.18 128 75
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Diagnostic experiments
In the architecture evaluation phase, we evaluate the network architectures on four datasets, Fashion-MNIST, 
CIFAR100, CIFAR10, and ImageNet, and compare them with other state-of-the-art manual-based methods and 
NAS methods. The comparison results on CIFAR10 and CIFAR100 are shown in Table 3. According to Table 3, 
the test error of PPCAtt-NAS is 2.51% (± 0.08), and the search phase time cost is 0.18 GPU days on CIFAR10. 
PPCAtt-NAS has a test error of 16.42% (± 0.24), and the architecture search phase time cost of 0.18 GPU days 
on CIFAR100. On CIFAR10, the search time cost of PPCAtt-NAS is significantly lower than that of most other 
methods. Although the architectural accuracy of some methods is slightly higher than that of PPCAtt-NAS, they 
require nearly twice the search time cost compared to our method. On CIFAR100, the architecture search cost 
of PPCAtt-NAS is also significantly lower than that of other methods, and the architecture search accuracy is 
comparable to that of most other search methods.

The comparison on the Fashion-MNIST is shown in Table 4. On Fashion-MNIST, we can see that the testing 
error of our PPCAtt-NAS method is 3.61% (± 0.05), and the time cost of the architecture search phase is 0.18 
GPU days. All other methods have higher time cost than PPCAtt-NAS, and have a lower architecture accuracy. 
It can be seen that NAS methods are superior to manual-based methods. In summary, PPCAtt-NAS is advanta-
geous over the other methods, especially in lower architecture search time cost and higher architecture accuracy.

To further validate the migratability of the architectures searched by this paper’s method, we extend it to a 
larger dataset, the ImageNet dataset, for experimental validation, and the results are presented in Table 5. Table 5 
shows that this paper’s method outperforms most of the existing methods with an error rate of 24.6% (± 0.04). 
The accuracy of the PPCAtt-NAS method is slightly lower than that of the P-DARTS method, but our method 
reduces 40% of the architecture search time. In addition, we use data augmentation to further improve the archi-
tecture accuracy (PPCAtt-NAS-A in Table 5) and improve the accuracy by 0.3%, successfully outperforming all 
the methods with an error rate of 24.3% (± 0.02).

Table 2.   Experimental ablation studies. PAS, PPCS and ATT stand for the strategies proposed in "Progressive 
architecture search strategy" to "Attention module in the network architecture" sections of this paper, 
respectively. TE-A, TE-B, EP, SC, stand for average test error, best test error, evaluation stage parameters, and 
the time consumed in the search stage, respectively.

Method EP (M) SC (GPU-days) TE-A (%) TE-B (%)

DARTS 2.84 0.365 2.94 2.83

DARTS + PAS 4.25 0.176 2.90 2.81

DARTS + PAS + PPCS 3.56 0.183 2.70 2.51

DARTS + PAS + PPCS + ATT (PPCAtt-NAS) 3.63 0.184 2.51 2.43

Table 3.   Comparison Results on CIFAR10/CIFAR100. TE, EP, SC, SM, Mn, RL, Ev, SO, Gd stand for test 
error, evaluation stage parameters, the time consumed in the search stage, search method, manual search, 
Reinforcement Learning based NAS, Evolution based NAS, SMBO based NAS, and Gradient based NAS, 
respectively. In the second and third columns, the left side of the symbol ‘/’ is the result of CIFAR10 and the 
right side is the result of CIFAR100.

Architecture TE (%) (CIFAR10/CIFAR100) EP (M) SC (GPU-days) SM

DenseNet-BC7 3.46/21.56 25.6/26.0 – Mn

ResNet8 4.61/22.22 1.7/25.3 – Mn

SENet6 4.05/21.42 11.2/26.5 – Mn

NASNet-A10 2.65/18.34 3.3/3.3 2000 RL

AmoebaNet-A12 3.34 (± 0.06)/18.38 3.2/3.1 3150 Ev

PNAS13 3.41 (± 0.09)/19.53 3.2/3.2 225 SO

ENAS2 2.89/17.92 4.6/3.4 0.5 RL

DARTS14 2.76 (± 0.09)/17.76 3.3/3.3 1 Gd

PC-DARTS15 2.57 (± 0.07)/17.01 3.6/4.0 0.1 Gd

P-DARTS19 2.50/16.55 3.4/3.4 0.3 Gd

CDARTS20 2.48 (± 0.04)/15.69 3.9/3.9 0.3 Gd

GDAS22 2.93/18.38 3.4/3.4 0.2 Gd

Att-DARTS25 2.62 (± 0.10)/16.54 3.2/3.2 – Gd

ASM-NAS1 2.59/15.60 3.1/3.1 0.6 Gd

FairDARTS-a3 2.54 (± 0.05)/- 2.8/- 0.4 Gd

DARTS+4 2.50 (± 0.11)/16.28 3.7/3.7 0.4 Gd

DARTS−5 2.59 (± 0.08)/17.51 3.5/3.3 0.4 Gd

PPCAtt-NAS 2.51 (± 0.08)/16.42 3.6/3.7 0.18 Gd
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Conclusion
In this paper, we propose a new progressive partially connected network architecture Search Strategy based on 
attention (PPCAtt-NAS). A progressive architecture search strategy is adopted to bridge the depth gap between 
two phases of the neural architecture search. Meanwhile, a progressive partial connection search scheme is 
implemented by gradually varying the channel sampling probability to reduce the computational cost of the 
architecture search phase. And an attention mechanism is utilized to improve the network architecture search 
performance, avoiding the performance collapse. Finally, extensive comparison experiments are carried on 
several publicly available datasets. The results show that our proposed search strategy achieves higher architec-
ture performance compared to other state-of-the-art methods, and thus the effectiveness of our PPCAtt-NAS 
method has been verified.

Data availability
The datasets generated and/or analysed during the current study are available in the Pytorch repository, [https://​
pytor​ch.​org/​vision/​stable/​datas​ets.​html].

Received: 2 March 2023; Accepted: 15 March 2024

Table 4.   Comparison results on fashion-MNIST.

Architecture TE (%) EP (M) SC (GPU-days) SM

DenseNet7 4.61 25.6 – Mn

ResNet8 5.10 11.1 – Mn

NASNet-A10 3.66 2.5 1800 RL

AmoebaNet-A12 3.67 2.3 3150 Ev

PNAS13 3.89 2.5 225 SO

ENAS2 3.79 2.6 0.5 RL

DARTS14 3.77 3.4 1.6 Gd

ASM-NAS1 3.70 2.6 0.5 Gd

GDAS22 3.76 2.4 0.2 Gd

P-DARTS19 3.75 3.4 0.3 Gd

PPCAtt-NAS 3.61 3.6 0.18 Gd

Table 5.   Comparision results on ImageNet. Top-1 TE, Top-5 TE, Flops stand for top-1 test error, top-5 test 
error, floating-point operations per second, respectively.

Architecture Top-1 TE (%) Top-5 TE (%) EP (M) Flops (M) SC (GPU-days) SM

Inception-v131 30.2 10.1 6.6 1448 – Mn

MobileNet32 29.4 10.5 4.2 569 – Mn

NASNet-A10 26.0 8.4 5.3 564 2000 RL

NASNet-B10 27.2 8.7 5.3 488 2000 RL

NASNet-C10 27.5 9.0 4.9 558 2000 RL

AmoebaNet-A12 25.5 8.0 5.1 555 3150 Ev

AmoebaNet-B12 26.0 8.5 5.3 555 3150 Ev

AmoebaNet-C12 24.3 7.6 6.4 570 3150 Ev

NSGANet-A230 25.5 8.0 4.1 466 27 Ev

PNAS13 25.8 8.1 5.1 588 225 SO

DARTS14 26.7 8.7 4.7 574 4 Gd

PC-DARTS15 25.1 7.8 5.3 586 0.1 Gd

P-DARTS19 24.4 7.4 4.9 557 0.3 Gd

Att-DARTS25 26.0 8.5 4.6 – 10 Gd

ASM-NAS1 25.4 8.1 5.5 – 0.55 Gd

GDAS22 26.0 8.5 5.3 581 1 Gd

FairDARTS-a3 26.3 8.3 3.6 417 0.4 Gd

EnTranNAS21 24.8 7.6 4.9 562 0.03 Gd

PPCAtt-NAS 24.6 7.6 5.1 619 0.18 Gd

PPCAtt-NAS-A 24.3 7.4 5.1 619 0.18 Gd

https://pytorch.org/vision/stable/datasets.html
https://pytorch.org/vision/stable/datasets.html
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