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The processing of spatial 
frequencies through time in visual 
word recognition
Clémence Bertrand Pilon 1,3 & Martin Arguin 1,2,3*

This study examined the temporal profile of spatial frequency processing in a word reading task in 
16 normal adult readers. They had to report the word presented in a 200 ms display using a four-
alternative forced-choice task (4AFC). The stimuli were made of an additive combination of the 
signal (i.e. the target word) and of a visual white noise patch wherein the signal-to-noise ratio varied 
randomly across stimulus duration. Four spatial frequency conditions were defined for the signal 
component of the stimulus (bandpass Butterworth filters with center frequencies of 1.2, 2.4, 4.8 and 
9.6 cycles per degree). In contrast to the coarse-to-fine theory of visual recognition, the results show 
that the highest spatial frequency range dominates early processing, with a shift toward lower spatial 
frequencies at later points during stimulus exposure. This pattern interacted in a complex way with the 
temporal frequency content of signal-to-noise oscillations. The outcome of individual data patterns 
classification by a machine learning algorithm according to the corresponding spatial frequency band 
further shows that the most salient spatial frequency signature is obtained when the time dimension 
within data patterns is recoded into its Fourier transform.

Visual word recognition is a complex task which is a cornerstone for communication and that most human adults 
perform very efficiently and with little effort. Its execution involves a wide variety of intricate visual mechanisms 
as well as access to the separate domain of language processing. Previous studies have indicated that visual word 
recognition is largely based on our ability to recognize its component  letters1–3, a process that appears as a crucial 
interface between vision and language.

With respect to the visual processing involved in word recognition, a crucial stimulus dimension pertains 
to its spatial frequency (SF) content. For the recognition of individual letters, the literature unanimously dem-
onstrates that SFs in the range between 2 and 4 cycles per letter are those upon which the human visual system 
crucially  relies4–10. Similarly, an optimal SF range of about 3 to 6 cycles per degree (cpd) has been reported for 
the recognition of visually presented  words11,12.

An interesting feature of SF processing which has been the object of several previous investigations under the 
impetus of the coarse-to-fine theory of visual  recognition13,14 concerns the way SF preference evolves through 
time. According to the coarse-to-fine theory, visual processing initially focuses on low SFs, from which a coarse 
representation of the stimulus is passed on to the frontal lobes to obtain some approximation of its identity. This 
information is then fed back to the visual system to guide the processing of higher SFs, from which the exact 
identity of the item can be established. Substantial empirical support for coarse-to-fine visual processing has been 
reported using tasks involving the recognition of scenes, objects, and faces in a variety of experimental paradigms.

Perhaps the first empirical study pertaining to the issue is that of Schyns and  Oliva15, which used hybrid 
stimuli made by the superposition by transparency of the image of a low SF filtered scene (2 cpd) with that of 
another scene that had been high SF filtered (6 cpd). Their results show a bias towards recognizing the low SF 
filtered scene with brief exposure durations whereas longer durations were associated with a bias for the high SF 
scene. The authors concluded that these findings imply coarse-to-fine visual processing. Other studies that have 
similarly used hybrid stimuli with congruent results are those of Oliva and  Schyns16 with letters, Morrison and 
 Schyns17 with objects, Kauffmann, Roux-Sibilon, Beffara et al.18 with scenes, and Wang et al.19 with emotional 
faces.

An alternative approach to investigate the issue is to use bandpass filtered stimuli of various SF ranges and 
examine performance according to whether the SF content varies from low-to-high or high-to-low across the 
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target duration. An instance of this method is the study of Kauffmann, Chauvin, Guyader &  Peyrin20, who used 
a task of rapid scene categorization and stimuli that were spatially filtered to central frequencies of 1.0, 1.4, 2.0, 
2.9, 4, 4.2, or 6.0 cpd using bandpass filters with a standard deviation of 1.07 cpd. They report shorter response 
times in the so called coarse-to-fine condition (i.e. SF content going from low to high), which was expected under 
the assumption that low SF information becomes available earlier than high SFs in scene categorization. Similar 
findings were obtained in other studies using this  technique18, with  scenes21, with digits). In the context of an 
fMRI study using a similar stimulation method, Peyrin, Schwartz, Seghier et al.22 reported evidence congruent 
with coarse-to-fine processing in the right occipito-temporal cortex but the opposite processing sequence in 
corresponding regions of the left cerebral hemisphere.

Yet another method by which the issue of coarse-to-fine visual processing may be investigated is to use 
stimuli with an SF content that varies randomly throughout exposure to then construct classification images 
(CIs) reflecting the correlation between processing efficiency and SFs as a function of time since the beginning 
of stimulus exposure. Among others, this method was used by Caplette, Wicker &  Gosselin23 in a study involv-
ing object recognition. Their findings from normal observers indicate that low SFs (below 20 cycles per image) 
were the most useful for accurate recognition. However, high SFs were increasingly useful as target exposure 
progressed, which was interpreted as supporting the coarse-to-fine hypothesis. Other studies using a similar 
method are those of Caplette, Wicker, Gosselin &  West24 and Caplette, Gosselin &  West25 with objects,Wiesmann, 
Caplette, Willenbockel et al.26 with scenes. Again, these studies report observations in support of coarse-to-fine 
visual processing.

An important issue that may be noted regarding the literature cited above on coarse-to-fine processing is that 
they used rather peculiar stimuli that diverge in major ways from our daily experience and for which the human 
visual system may be poorly adapted. Thus, the hybrid stimuli used in a subset of these investigations are images 
comprising a double identity, those of the low and high SF items. It cannot be excluded that such self-conflicting 
images may trigger processing mechanisms that are normally not involved in visual recognition. With respect 
to the other experiments which used images with an SF content that evolved either continuously or randomly 
through time, we again have a stimulation modality that is quite unusual, with a fundamental image property 
(i.e. SF content) that is unstable through time. Although we know of no actual evidence showing that either 
stimulation modality is bound to produce artifactual results, it seems indicated to investigate coarse-to-fine 
visual processing using an alternative method, in the spirit of converging  operations27.

Another notable issue pertaining to the above studies is that none of them examined the notion of coarse-
to-fine processing in the context of a word recognition task. The only such study of which we are aware is that 
of Winsler, Holcomb, Midgley &  Grainger28. They assessed the effect on event-related potentials (ERPs) of 
lowercase broadband, low-pass (< 3.7 cpd) or high-pass (> 15.2 cpd) 50-ms masked primes on the processing of 
a subsequent broadband uppercase target word. The priming effects with high-pass primes roughly resembled 
those with broadband primes whereas those with low-pass primes failed to show any previously documented ERP 
repetition priming effect. The authors conclude that word recognition fails to replicate the coarse-to-fine effects 
that have been reported with other stimulus classes. They suggest that this may relate to the fact that “words 
fundamentally require more precise and complex processing than most other categories of visual stimuli” (p. 11).

The aim of the present study was to assess the time course of SF processing in the specific context of a visual 
word recognition task. On any given trial, the target word was spatially filtered according to one of four SF bands 
(retinal spatial frequencies of 1.2, 2.4, 4.8 or 9.6 cpd; object spatial frequencies of 1.7, 3.5, 7.1 or 14.1 cycles per 
letter – cpl) and remained thus for the entire exposure duration of 200 ms. However, the target was superimposed 
with a white noise mask and the image displayed was an additive combination of both, with a signal-to-noise ratio 
(SNR) that varied randomly through time. CIs of processing efficiency as a function of time were then calculated 
to illustrate how the processing of each SF band evolves through time. According to the coarse-to-fine theory 
of visual recognition, low SFs should dominate early processing whereas the processing of high SFs should gain 
in relative efficiency at later periods of stimulus exposure. This observation should however interact with the 
range of SFs that has previously been found to be optimal for word recognition, such that our two conditions 
of intermediate SFs are likely to dominate over the more extreme conditions of highest and lowest SFs ranges 
regardless of time during exposure.

Results
Response accuracy was very close to 50% correct for all conditions (Table 1), which did not differ from one 
another (F(3, 45) < 1). The contrast of targets required to reach these accuracies differed significantly across 
conditions (Table 1; F(3, 45) = 17.6; p < 0.001). Thus, the lowest and highest SF conditions required a higher target 
contrast than the two intermediate conditions, which broadly correspond to SFs in the range that has previously 
been found optimal for reading (see “Introduction”).

Table 1.  Response accuracy (in % correct) and levels of target contrast for each SF condition.

SF condition Accuracy (%) Contrast (%)

1.2 cpd/1.7 cpl 50.2 18.5

2.4 cpd/3.5 cpl 52.1 12.4

4.8 cpd/7.1 cpl 50.6 13.1

9.6 cpd/14.1 cpl 50.0 18.1
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Figure 3 shows the CIs of processing efficiency as a function of time for each SF condition. Strikingly, if we 
follow the SF range with the greatest level of efficiency from target onset to offset, the order is condition 4 (high-
est SF range), followed by 3 (second highest SF range), each for a 33 ms duration. Only then, starting at 67 ms 
does condition 1 (lowest SF range) lead to the greatest efficiency until 150 ms, which is followed by condition 2 
(second highest SF range) and then by a brief reprieve of condition 1 on the last display frame. This pattern of 
results is almost directly opposite to that expected on the basis of the coarse-to-fine theory.

The time-domain CIs from individual participants were submitted to an SVM classifier (with leave-one-out 
cross validation) which had the task of deciding the SF condition which had produced the set of CI features it 
was exposed to. The purpose of this procedure was threefold. One was to assess the magnitude of the differences 
across conditions in the temporal profiles of processing efficiencies illustrated in Fig. 3 and another was to assess 
their reliability across participants. This last aspect is especially critical given that the Pixel test (used to assess the 
significance of points in the CIs, see “Methods”29) completely ignores whether the patterns of results are replicable 
across participants. Thus, given sufficiently large differences across the mean patterns of the SF conditions and a 
good degree of replicability of these patterns across individual participants, then the SVM should attain a high 
level of accuracy. Given such an occurrence, then we would be able to follow up with the third purpose of using 
the SVM classifier, which is to illustrate the features of processing efficiency that characterize each condition.

Exposed to features from the time-domain CIs, the SVM classifier reached a maximum response accuracy of 
42.2%, which is highly significant against the chance level performance of 25% (binomial test p < 0.005). Most 
impressively, the SVM needed exposure to only three features (i.e. 12.5%) from the 24 available in the time-
domain CIs. These features correspond to the processing efficiency values at time frames 3, 7, and 14 (25, 58 and 
117 ms, respectively). These correspond to time periods when SF conditions 4, 3, and 1, respectively, offered the 
best processing efficiency.

In other studies from our lab using random temporal  sampling1,30,31, classifier performance was typically 
substantially improved when the data patterns exposed to the SVM pertained not to the CIs themselves, but 
rather to their Fourier transforms (i.e. phase x power). We will return to this issue in the Discussion section. 
Given this previous experience, we replicated the SVM classification task, but this time using features that were 
extracted from the Fourier transforms of the individual time-domain CIs. This led to an improved performance 
from the classifier, with a maximum classification accuracy of 56.3% correct (significantly superior to the 25% 
chance performance,binomial test p < 0.001) while using 58 features (i.e. 40.3%) out of the 144 available.

Other random temporal sampling studies from our lab also showed systematically that the passage of time 
since target onset was not the only factor affecting processing efficiency. Indeed, time–frequency CIs demon-
strated very strong effects of the predominant SNR oscillation frequencies within the stimulus which interact 
in complex ways with the time dimension. This general rule is verified in the present study, as shown in Fig. 4. 
Thus, for each SF condition, we find a unique pattern of processing efficiency that is jointly affected by time and 
the oscillation frequencies within the stimulus.

Again, we used an SVM classifier which was exposed to features from these time–frequency CIs with the 
task to determine the SF condition from which they originate. Classification performance reached 51.6% correct 
while using 79 features out of the 264 available (29.9%). This exercise was next repeated using features from the 
Fourier transforms of the time–frequency CIs (i.e. combined outcomes of the Fourier analysis of each stimulus 
oscillation frequency as a function of time). Remarkably, the accuracy of the SVM classifier was 90.6% correct 
(significantly superior to the 25% chance performance; binomial test p < 0.001) while using only 127 of the 1584 
available features (i.e. 8.0%). The characteristic features for each SF condition which were extracted from the 
Fourier transformed time–frequency CIs are shown in Fig. 5.

Discussion
The technique of random temporal sampling was used in the context of a word recognition task to examine 
how processing efficiency varies across exposure duration according to four conditions of bandpass SF filtering.

A first important aspect of the results is that the medium SF conditions (i.e. conditions 2 and 3) required about 
2/3 of the target contrast of the more extreme SF conditions (i.e. conditions 1 and 4) to lead to identical levels 
of response accuracy (Table 1). Those intermediate SF conditions, with center frequencies of 2.4 and 4.8 cpd 
respectively, are in the 2 to 6 cpd range that is known as optimal for visual word recognition (see “Introduc-
tion”). If expressed in terms of object spatial frequency, these intermediate SF conditions have center frequen-
cies of 3.5 and 7.1 cpl, respectively. The first condition matches the 2–4 cpl range known as optimal for single 
letter recognition (see Introduction) whereas the second is a bit higher. Overall, it may be concluded that the 
present study replicates the basic phenomenon of middle-range spatial frequencies being the dominant source 
of information in reading tasks.

One main outcome of the experiment with respect to the coarse-to-fine visual recognition theory are the 
time-domain CIs illustrated in Fig. 1. Excluding a potential interaction with the optimal SF range for word 
recognition, this theory predicted low SFs to dominate early processing, then followed by higher SFs. However, 
the findings from the time-domain CIs rather suggest an opposite SF order. Thus, upon target onset, it was the 
highest SF range that showed the greatest processing efficiency, then followed by the second highest SF range 
and then by the lowest of all.

Upon a deeper examination of the data, it became obvious that the time-domain CIs capture an incomplete 
story. Thus, the results show that processing efficiency for the different SF conditions is affected not only by the 
passage of time but also by the temporal frequency content of the SNR oscillations which control target visibility. 
This is evident from Fig. 2, which shows the time–frequency CIs for each SF condition. As far as visual word 
recognition is concerned, these findings indicate that the notion of a temporal order in spatial frequency pro-
cessing proposed by the coarse-to-fine theory does not grasp the full breadth of the phenomenon under study. 
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Figure 1.  CIs of processing efficiency as a function of time for each SF condition. The two horizontal dashed 
red lines indicate the significance criterion which was determined by the Pixel  test29. All portions of a curve 
above the upper threshold indicate a processing efficiency significantly superior to zero whereas those below the 
lower threshold indicate a processing efficiency significantly below zero.

Figure 2.  CIs of processing efficiency as a function of time and stimulus oscillation frequencies for each SF 
condition. Points in the CIs that are colored white do not differ significantly from zero, as determined by the 
Pixel  test29.
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At present, the aspect of visual processing affected by the temporal frequency content of the SNR oscillations 
remains unknown. Regardless of what this may be however, the present findings clearly show that it is connected 
to way the visual system carries out the processing of spatial frequencies in a reading task.

Whether the complex interaction documented here between the frequency content of SNR oscillations, 
spatial frequencies, and time also occurs for other stimulus classes such as objects, scenes, or faces, is presently 
unknown. Thus, most of the previous studies investigating these stimulus classes have, in some way or another, 
manipulated the availability of spatial frequencies through time without jointly examining the impact of the 
temporal frequency content of such changes. Under the assumption that the processing of spatial frequencies 
occurs very early in the cortical visual pathways, one might be tempted to predict that the type of interaction 
documented here should be replicated with others stimulus classes. However, the dominance of intermediate 
spatial frequencies in visual word recognition seems to reflect the joint effects of two fundamental factors; i.e. 
the human contrast sensitivity function on the one hand and the spatial frequency range that best discriminates 
among letters on the  other4. If this is so, and that the most discriminant spatial frequencies for others stimulus 
classes are different, then phenomena pertaining to spatial frequency processing should vary accordingly.

The available observations seem to militate in favor of the latter view. Thus, as noted above, if the passage 
of time is the only factor taken into consideration, the present observations suggest a fine-to-coarse processing 
order (i.e. high spatial frequencies first, followed by lower ones). In contrast, studies investigating other stimulus 
classes rather point to a coarse-to-fine processing order. This clearly implies that the way spatial frequencies are 
processed is strongly determined by the type of stimulus used. The word recognition study reported by Ref.28, 
(see “Introduction”) also supports this view by producing evidence incongruent with the notion of coarse-to-
fine processing.

Figure 3.  The temporal features characterizing each SF condition. These features are those which supported 
the 90.6% accuracy of the SVM classifier in categorizing the Fourier transforms of the time–frequency CIs of 
individual participants according to SF condition. The horizontal axis corresponds to the temporal frequencies 
extracted from the CIs, the vertical axis reflects the phase values of the extracted components and the colour 
code serves to illustrate the corresponding power values which have been normalized in the range – 1 to 1 
(see description of methods for details). The numbers in the coloured patches indicate the frequency of target 
visibility oscillations that produced the Fourier features illustrated. The reader may zoom in to make them more 
readable. Phase x frequency cells may be occupied by more than one colour patch in cases where the Fourier 
analysis of the CI produced two or more features contributing to the SVM with the same phase x frequency 
combination but which came from different stimulation oscillation frequencies.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6628  | https://doi.org/10.1038/s41598-024-57219-3

www.nature.com/scientificreports/

Another important observation from the present study is that the CIs of individual participants contain 
highly potent information regarding the spatial frequency band of the stimulus they are exposed to. Thus, the 
classification of individual data patterns according to SF condition by an SVM machine learning algorithm was 
well above chance regardless of the data format. In other words, this classification performance demonstrates 
a spatial frequency-specific signature within the CIs of individual participants. This signature within the IC 
frequency by SNR frequency domain is illustrated in Fig. 3.

What is striking in this regard, is the exceptionally high level of accuracy that was attained while using fea-
tures from the Fourier transformed time–frequency CIs. Thus, using this data format, the SVM classifier reached 
90.3% accuracy with only 8.0% of the total set of features available. This contrasts with the performance levels of 
about 40–50% correct achieved with the other data formats. Other random temporal sampling studies from our 
laboratory also produced similar findings. Clearly, the way the information content of CIs is coded may crucially 
affect the saliency of the spatial frequency-specific signature they contain.

It should not be surprising that the SVM classifier was more successful with the time–frequency than the 
time-domain CIs. Indeed, the former capture an aspect of the stimulation which interacted with the spatial fre-
quency content of stimulation whereas the latter is blind to this information. What may seem shocking however, 
is the enormous gain in classification accuracy that is offered by the Fourier transforms of the time–frequency 
CIs compared to their untransformed versions. After all, their information content is identical and one can be 
transformed into the other with zero loss. A similar phenomenon was also reported by Arguin and Fortier-St-
Pierre1 and Lévesque &  Arguin31. What we believe is at play here is that transforming time–frequency classifica-
tion images into their Fourier parameters eliminates the time dimension, which becomes recoded as a collection 
of phase and power values for several ranges of temporal frequency (i.e. 5–55 Hz in 5 Hz steps). It appears that 
this recoding may offer the CIs that are to be classified a better alignment to the brain mechanisms tapped by 
the task. We suggest that it will be important to investigate this issue in future studies.

Figure 4.  Each panel illustrates the French word “achat” spatially filtered according to each SF condition: (a) 
1.2 cpd/1.7 cpl, (b) 2.4 cpd/3.5 cpl, (c) 4.8 cpd/7.1 cpl, (d) 9.6 cpd/14.1 cpl. In the present images, the SF content 
is obviously function of observation distance.
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Conclusion
This study investigated the processing of spatial frequencies through time in a visual word recognition task using 
the paradigm of random temporal sampling. The main results point to a processing order going from high to 
low spatial frequencies. This is in contradiction to the theory of coarse-to-fine processing for visual recognition 
which had been supported by previous studies using other stimulus classes. Also important, our findings indicate 
that the temporal frequency content of the stimulus has a major impact on the processing of spatial frequencies 
which interacts with the passage of time. We propose that this complex interaction needs to be investigated 
further in future studies to offer a better grasp of how the human visual system uses spatial frequencies for the 
purpose of recognition.

Methods
Participants
Sixteen adults (4 men and 12 women; mean age of 21.8 y.o) with normal or corrected vision and normal neu-
rological function were recruited for this experiment. All participants gave their informed consent and the 
experimental protocol was approved by the Comité d’Éthique de la Recherche en Éducation et Psychologie of the 
University of Montreal. All methods were performed in accordance with the relevant guidelines and regulations. 
Participants each received 60$ as compensation.

Materials and stimuli
The experiment was programmed in MATLAB (©1994-2017, The MathWorks Inc.) and made use of functions 
from the Psychophysics  toolbox32 for stimulus display. It was run on an ASUS VG248QR HD monitor with 
maximum luminance of 200 cd/m2 and a 120 Hz refresh rate. All manipulations of pixel luminance were linear. 
The observation distance of the participants was 57 cm with their heads supported by a chin rest. Stimuli were 
424 five-letter French common words printed black on white in Tahoma font. Their horizontal spatial extent 
was of 3.4 deg and x-height was of 0.75 deg. Word images were filtered according to four SF conditions using a 
bandpass Butterworth filter (Fig. 4). The center frequencies and cutoffs (in parentheses for each condition) were 
1.2 (0.9–1.5), 2.4 (1.8–3.0), 4.8 (3.6–6.0), and 9.6 (7.2–12) cpd (in object spatial frequency metric: 1.7 (1.3–2.2), 
3.5 (2.6–4.4), 7.1 (5.3–8.8), and 14.1 (10.6–17.6) cycles per letter – cpl).

Figure 5.  Illustration of the composition of the stimuli displayed on each trial, which were made of an additive 
combination of the target image and of a white noise field. In the present example, the signal was the spatially 
filtered word “punch”. Below is the white noise field with which it was combined to produce the ‘Display’ portion 
of the figure. This latter panel shows four different levels of signal-to-noise ratio, from high to low as one moves 
downwards. On each trial, the signal and noise portions of the stimuli remained constant but the signal-to-noise 
ratio varied randomly throughout exposure duration.
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The stimuli were a linear summation of the signal (i.e. spatially filtered target word) and the noise, which 
was an overlaid white noise field (Fig. 5) and the stimulation area of 8.9 × 8.9 deg was displayed over a black 
background. These stimuli were presented for a duration of 200 ms through which the SNR varied according to a 
random sampling function made by the integration of sine waves with frequencies ranging between 5 and 55 Hz 
in steps of 5 Hz with random amplitudes and phases. This SNR function was then normalized in the range 0 to 
0.75. Thus, the visibility of the target word among the noise varied randomly throughout its exposure duration. 
New, independent SNR functions and white noise fields were generated for each trial.

Procedure
Prior to the experimental phase, participants went through a practice round that consisted in 24 five-letter 
French words (different from those used in the experimental phase) that were spatially filtered according to the 
SF conditions described above (6 trials per condition). For the experimental phase, participants went through 
four blocks of 200 trials each (i.e. 800 trials) per session, for a total of 3200 trials over four sessions. No target 
word was repeated in a block and each word was presented a total of eight times in the experiment, that is twice 
for each SF condition.

The time course of each trial was as follows: 1- onset of white noise field without target for a duration of 
1000 ms; 2- a white fixation cross (1.1 × 1.1 deg) was then added over the white noise field for 250 ms and then 
withdrawn; 3- in the 250 ms time interval between the offset of the fixation cross and the onset of the target, 
a 900 Hz, 75 dB tone of 50 ms duration was presented; 4- target display lasting 200 ms which was made of a 
sequence of 24 images with randomly varying SNR (see “Materials and stimuli”) at a 120 Hz rate; 5- onset of four 
response choices displayed in normal (i.e. unfiltered) print above, below, to the right and the left of the target 
display area. The response choices remained visible until the participant indicated which he/she thought was 
the target by pressing the up, down, right or left arrow key on the computer keyboard. The computer emitted a 
high-pitch tone (1000 Hz, 100 ms) following a correct response and a low-pitch one (300 Hz, 300 ms) following 
an error. The response was followed by a 1000 ms delay before the following trial was initiated.

The three distractor images for the four-alternative forced-choice task (4AFC) were selected among the 
list of experimental words (excluding the target) based on their image cross-correlation (used here as a proxy 
for visual similarity) with the target. The distractor selection algorithm was applied at the beginning of the 
experiment and preset the distractors to be used on every experimental trial. Its goal was to maximize the visual 
similarity between distractors and the target while maintaining an overall difficulty level (i.e. summed image 
cross-correlations with the target for the three distractors) as equal as possible across all trials. A final constraint 
was that no word could be used as distractor for more than 6 different targets.

The performance of participants in the experimental phase was maintained at about 50% accuracy for each 
condition by using a staircase procedure manipulating the contrast level of the signal (i.e. the image of target 
word) portion of stimuli. Target contrast was of 35% in the practice phase and remained thus at the beginning of 
the experimental phase. Following the first 20 experimental trials, response accuracy for the preceding 10 trials 
of the condition tested on the last trial was assessed. If accuracy was above 50% correct, target contrast for that 
condition was decreased by one step whereas it was increased by one step when accuracy was below 50%. The 
initial step size for a change of target contrast was of 16%. After every reversal in the direction of adjustments 
for a condition, this step was halved, down to a minimum of 1%. The state of this contrast adjustment algorithm 
was maintained across consecutive experimental blocks.

Each test session lasted about 60 min, for a total duration of the experiment of four hours per participant.

Data analysis
Time-domain CIs were calculated for each participant and each SF condition by doing a weighted subtraction 
of the SNR sampling functions of experimental trials associated with errors from those associated with correct 
responses. These CIs reflect processing efficiency as a function of the time elapsed from target onset to its offset. 
The notion of processing efficiency is not to be confused with actual performance. It rather reflects the capacity 
of a participant to use whatever information is available from the stimulus (here, at a particular time) to reach 
a correct response.

As will be shown in the “Results” section, the pattern of results reflected by the time-domain CIs was quite 
different from our expectations. This led us to a deeper examination of the results by considering not only time 
as the single factor potentially affecting processing efficiency, but also the oscillatory power of the SNR sampling 
functions along a range of frequencies. This was done by calculating CIs based on time–frequency representations 
of the SNR sampling functions. Thus, the SNR sampling functions of each individual trial were submitted to a 
wavelet analysis using three-cycle complex Morlet wavelets varying in temporal frequency from 5 to 55 Hz in 
5 Hz steps. The number of cycles selected for the Morlet wavelet was aimed at obtaining a high precision along 
the time dimension, while somewhat sacrificing precision on the frequency dimension. As for the time-domain 
CIs, those in the time–frequency domain were calculated by the weighted subtraction of sampling functions 
associated with errors from those associated with accurate responses.

Individual raw CIs were transformed into Z scores by a bootstrapping  operation33. Once in a common scale, 
the CIs of individual participants were averaged and then smoothed using a Gaussian filter. For time-domain 
CIs, this filter had a full width at half maximum (FWHM) of 19.6 ms. For the time–frequency CIs, the filter 
had a FWHM of 29.3 ms on the time dimension and of 17.7 Hz on the frequency dimension. The filtered CIs 
were then submitted to a two-way Pixel  test29 with α = 0.05 to determine which points in the images differed 
significantly from zero.

The assessment of the distinctiveness of data patterns across conditions was done using the classification 
performance of a linear support vector machine  (SVM34) along with a leave-one-out cross-validation procedure 
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applied to either the CIs themselves or their Fourier transforms. To learn the mapping from a particular data 
pattern format to the corresponding SF condition, the SVM was given a subset of the available features from 
all the individual CIs (or their Fourier transforms) but one. Then, the SVM had to determine the condition 
corresponding to the data pattern that had been left out of the learning phase. This was repeated by leaving out 
a different CI (or its Fourier transform) until we had iterated through all of them. The percentage of iterations 
on which the SVM reached a correct response was used to determine classification accuracy. Binomial analyses 
assessed if classification accuracy deviated significantly from chance.

The classification of data patterns using an SVM satisfied several important aims. The most obvious is that 
an accuracy that is greater than chance implies that there exist important (i.e. significant) differences in the data 
patterns that are contrasted. Of course, standard statistical procedures can do so as well. However, less obvi-
ous but crucially important is that it also provides an indication that these data patterns are replicable across 
individuals. Indeed, even if average data patterns are markedly different across the conditions compared, if they 
are not replicable across individuals, the performance of the classifier will be poor. In other words, to obtain 
a highly accurate classifier, the relevant features in the training patterns must retain their value in the pattern 
that is used in the test phase. This feature of an SVM classifier is particularly important here since the Pixel 
test used to determine whether individual points in CIs differ from zero ignores individual differences in data 
patterns. Finally, an added bonus of using a classifier is that we can determine the features in the data patterns 
from which its discriminatory power is derived. This thus permits to specify the feature values that characterise 
each SF condition.

In order to retain only the most relevant features that discriminate among conditions, we used a stepwise 
procedure for the introduction of features to the model one at a time, in a way that resembles the technique of 
stepwise multiple regression. In an initial step, only the most valuable feature was offered to the SVM. The next 
best feature was then added to the model on the following step, and so on. The procedure was interrupted when 
either the SVM achieved a classification performance of 90% correct or when all the available features had been 
presented, whichever occurred first.

The order in which CI features were introduced to the SVM model was based on the capacity of each possible 
feature to discriminate among the SF conditions. This index of discrimination capacity was analogous to an F 
ratio; i.e. it was measured by the ratio of the variance of the means across conditions over the error variance. 
Thus, the feature with the greatest discrimination index was entered first, followed by the second greatest, and 
so on, until the stopping criterion was reached.

For the illustration of the characteristic features of each SF condition, the data retained was that pertaining 
to the features used at the point when the stopping criterion was reached. The representation of a feature at each 
SF condition was based on the squared difference between its mean and the overall mean across conditions, 
which was divided by the error variance (see above). These values were then linearly normalized in the range -1 
to 1 based upon the maximum absolute value among the full set of features to illustrate across all conditions. To 
facilitate focussing on the strongest levers for classification, i.e. the features with the most extreme values, the 
contrast of the color code used to illustrate feature values was linearly diminished according to their distance 
from the extremes of the scale (i.e. − 1 or 1), down to a minimum of 30% (to maintain visibility of even the 
weakest features illustrated). However, when the value of a feature for a particular condition was exactly 0, it 
was omitted from the figures.

Repeated measures analyses of variance (ANOVAs) were conducted to compare the SF conditions on response 
accuracy as well as on the average level of contrast under which these performances were attained.

Data availability
The raw data from the present study will be made available upon request to MA (martin.arguin@umontreal.ca). 
We will be placing this data in an open access repository in the near future.
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