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Experimental analysis and model 
prediction of elbow pipe’s erosion 
in water‑cooled radiator
Yongfei Wang 1, Xiaofei Li 1, Tong Wang 1, Jian Zhang 1, Longcheng Li 2* & Yu Zhang 2

The radiator with heat transfer capability is able to guarantee the stable operation of hydro generator 
set, while the long‑term and continuous scouring on radiator pipes by cooling medium will lead to 
thinning or even perforation of pipe wall, which triggers wall failure. This paper analyzes and predicts 
the failure mechanism of radiator’s pipe wall, and investigates the effects of water flow velocity, 
sand content and sand particle size on erosion damage of radiator pipe by establishing a test bench 
for pipe erosion. The results show that the increase of above parameters will lead to the increasing 
erosion rate, especially when the sand content is 1%, the velocity is 8 m/s and the sand particle size is 
0.85 mm, the erosion damage will be particularly serious. Based on experimental data, BP and LSSVM 
models are employed to predict the pipe wall failure, and PSO algorithm is used to optimize the two 
models. The optimized PSO‑BP has the highest accuracy with the mean absolute error (MAE) of 0.2070 
and the mean absolute percentage error (MAPE) of 4.702%. The findings provide a reference for wall 
failure analysis of radiator, which is of great significance for unit’s safe operation.

Keywords Single-span rotor bearing system, Spindle bending, Spindle crack, Convolutional neural network 
machine learning

List of symbols
Q  Flow in radiator pipe  (m3/s)
A  Cross-sectional area of radiator pipe  (m2)
U  Flow rate of cooling medium in radiator pipe (m/s)
Δω  Erosion rate of radiator pipe (g/(m2 h))
m0  Initial weight of bend (g)
m  Bend weight after erosion (g)
S  Effective overflow area of bend  (m2)
H  Erosion time (h)
MSE  Mean square error (–)
MAE  Mean absolute error (–)
MAPE  Mean absolute percentage error (–)
R2  Determination coefficient (–)

During the operation of hydro generator set, the high-speed rotation of rotor shaft generates a large amount 
of  heat1–3. The accumulation of heat will lead to abnormal heating of unit, damage to equipment and reduced 
economic efficiency. Radiator is the key equipment to transfer heat, the radiator is installed in bearing oil tank 
to ensure the safe and stable operation of  unit4,5. However, as the cooling medium of radiator pipeline is usually 
taken from river, the impurity-containing water flow will cause erosion damage to pipeline, which will make 
the radiator functionally ineffective.

There have been some studies on radiators applied to hydro generator sets. Sahel et al6. improved the heat 
transfer efficiency of tubular radiators by optimizing their geometry, and the proposed optimized heat exchanger 
has the best thermal performance coefficient of 3.58. Dreyer et al7. applied temperature sensors with distributed 
fiber Bragg gratings (FBGs) to bearings and radiators of a hydroelectric generator to closely monitor the radiators’ 
efficiency. Wang et al8. pointed out that heat exchangers with Quatrefoil Porous Plate (QPP) structures are a key 
technology for improving heat transfer performance, and numerical studies have shown that the performance 
of radiators with this structure has been improved by 27%-41%. Han et al9. investigated the expansion strength 
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of radiators with hydraulically expanding connections and experimentally noted that expansion of the joints of 
piping and fins resulted in more reliable radiator performance. Boukhadia et al10. compared the heat transfer 
performance of a plate-fin heat exchanger with and without baffles, and the results showed that a circular baf-
fle achieves the maximum heat transfer performance coefficient of 2,14. Zhang et al11. proposed an optimized 
scheme for heat-flow coupling of a water-cooled radiator, and stated experimentally that the average surface 
temperature rise of optimized radiator was reduced by 22.4%. Reviewing the above researches on radiator, most 
of them focus their attention on structural optimization to improve heat transfer performance or expansion 
strength, etc.

However, while improving the heat transfer efficiency of the radiator is certainly of interest, attention should 
also be paid to the effects of cooling medium on heat exchanger itself, such as clogging of  pipeline12 and perfora-
tion of pipe  wall13. In particular, erosion is the main factor leading to wall perforation. Erosive is mainly influ-
enced by hydrodynamic parameters, particle properties and material properties. It is the most intuitive way to 
study it by experimentally exploring the erosive wear properties of the material. Researchers have experimentally 
investigated the erosive behavior of different materials and factors affecting it. Akbar et al14. developed a rotary 
test setup, placed the samples in a slurry environment, and finally compared the microstructure, hardness, and 
erosive properties of four types of wear-resistant steels. Sarker et al15. developed an annular wear tester, and noted 
that the larger solid diameter leads to the faster settling rate. Li et al16. investigated the erosive characteristics of 
ZTAp / Fe composites and Cr15 at different rotational speeds. Al-Ithari et al17. investigated the causes and factors 
that lead to failures resulting from mechanical wear (erosion) on the internal surfaces of elbows and pipes made 
from mild steel, and they found ways to reduce such failures. A reduction in the wear rate of elbows and pipes 
can at least triple their life, thereby reducing maintenance costs by about 75%. Eichner et al18. investigated the 
erosion behavior of aero-engine materials after coating. Kanesan et al19. showed that the larger sand particle size 
leads to greater erosive wear of sand control material based on a jet erosion experimental setup.

It is intuitive to study the erosion phenomenon by experiment, but which cannot predict the service life of 
eroded pipe and maintenance strategies cannot be further proposed. Pandya et al20. modeled erosion using CFD 
method and machine learning, then proposed a multilayer feedforward artificial neural network. Wang et al21,22. 
developed predictive models of elbows for gas–solid flow conditions with Extreme Learning Machine (ELM), 
Kernel Extreme Learning Machine (KELM), Hybrid Kernel Extreme Learning Machine (HKELM) and Swarm 
Intelligence Algorithm (SI). Bahrainian et al23. used a novel non-linear method based on Gaussian Regression 
(GPR) to predict the erosion pattern of solid particles on elbows. Gl et al24–27. used decision tree, ANN and Bayes-
ian network, to determine the erosion rate of liquid hydrocarbon pipelines. Zahedi et al28. applied a random forest 
algorithm to predict the erosion rate of a 90° elbow, and the cumulative error of the erosion rate was significantly 
reduced. Zhu et al29. investigated the temperature distribution of erosion bends and proposed a new method for 
predicting erosion thickness. Using this formula, the thickness of erosion reduction can be calculated simply by 
monitoring the outer surface temperature of bend. Azhar et al30. developed a method to simulate the corrosion 
behavior of Steel 316L using Artificial Neural Net-works (ANN) and verified the performance of the corrosion 
modeling by comparing the predicted WT with the actual measurements obtained in experimental tests.

As mentioned above, the existing studies mainly focus their attention on the influence of radiator’s material 
on its life, and various models have been proposed to predict the bending life under specific operating condi-
tions. However, for radiators applied on hydro generator sets, the main factors affecting their tube wall failure are 
the cooling medium parameters, such as water flow velocity, sand content and sand particle size. Therefore, this 
paper carries out an experimental study and model prediction of pipe wall failure analysis, and the data of pipe 
wall erosion rate under the influence of water flow velocity, sand content and sand particle size are obtained by 
establishing a pipe erosion test bed and carrying out relevant experiments. Furthermore, based on this dataset, 
BP, LSSVM, PSO-BP and PSO-LSSVM algorithms are employed to predict the pipe wall failure. Which is appiled 
to achieve the goal of timely warning of pipe wall perforation and failure.

Test bench for elbow pipe erosion
Elbow pipe design
To cool down the bearing of hydroelectric generator sets, most water-cooled radiator adopts the copper drawer 
type, its structure is shown in Fig. 1. This type of drawer radiator consists of several U-shaped pipes, which is 
aimed at increasing the heat dissipation area and improving the heat dissipation efficiency. For simulating this 
bending effect, straight pipe with an inner diameter of 16 mm and a wall thickness of 1.5 mm is selected and 
machined into 90° bends with a bending radius of 70 mm. Moreover, it is necessary to clean, dry and weigh the 
manufactured elbow pipes to obtain the original weight, for the purpose of calculating the weight lost by the 
elbow pipes under erosion.

The experimental radiator consists of a straight section and a bent section. And the wear degree of those 
two section after erosion is different, while the wear behavior is similar. To simplify the analysis of experimental 
results, only five positions on the outer arch side of the elbow pipe are studied, as shown in Fig. 2. Starting from 
the pipe’s inlet, numbers 1–5 represent different parts for the outer arch side of pipe specimen, and the studied 
parts is corresponded to the positions of 0°, 30°, 45°, 60° and 90°, respectively. After erosion experiment, five 
copper sheets of different parts are obtained by wire cutting for morphological analysis, with a size of 3 cm × 3 cm.

Experimental setup
The test bench of elbow pipe erosion is built and shown in Fig. 3, which is mainly composed of solid–liquid 
mixing device, power transmission unit and erosion test section. Solid–liquid mixing device is mainly used to 
mix water and sand, which includes mixing tank, agitator and etc.; power transmission unit includes slurry 
pump, bellow and flange ball valve, etc.; erosion test section consists of bending pipe and supporting. Moreover, 
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considering the application of radiators in hydropower units, the cooling medium is generally river water, and 
the sand contained in different river sections varies, and the selection of a particular river is not representative. 
Therefore, quartz sand is selected as a solid medium for this test, the hardness of quartz sand is several times that 
of copper for pipe to ensure that it can impact and destroy the wall in the flow. The main component of quartz 
sand is  SiO2, which is mostly in angular form. The range of quartz sand particle sizes used is shown in Table 1.

Tap water enters the mixing tank through a pipeline and quartz sand in the required quantity and size is 
added. The agitator mixes the water with quartz sand to make a two-phase flow. The two-phase flow is pumped 
into power transmission unit, where the pressure and flow velocity are increased dramatically. High-pressure 
bellows conveys the pumped two-phase flow to test section. Flow regulation of the two-phase flow is achieved 
by employing flanged ball valves and an electromagnetic flow meter is used to measure the flow in test section. 
Elbow pipe is fixed on the supporting to prevent the violent vibration caused by high-pressure and high-velocity 
flow. Ultimately, the two-phase flow from the test section flows back into the mixing tank to complete its cycle.

Experimental condition setting
To make the erosion effect obvious, and to save the test material under reasonable conditions, the total time of a 
single erosion test condition is set to 24 h, and the elbow pipe is weighted every 2 h. Considering the loss of quartz 
sand after experiment, the two-phase flow is discharged, and the mixing tank is refilled with quartz sand and tap 
water. Additionally, only the two-phase flow erosive wear on the radiator pipe walls is considered in this work, 
i.e., the physical damage caused by the impact and scratches on pipe walls resulting from the water containing 
quartz sand. On the other hand, since the test time is only 24 h, the effects arising from tube wall oxidation in a 
short period of time are almost negligible. The experimental flow velocity can be obtained from U = Q/A, where 
Q represents the flow rate measured by electromagnetic flowmeter, and A is the cross-sectional area of the pipe.

Before the experiment, the elbow pipe should be cleaned with ethanol, and then weighed three times by 
electronic balance with an accuracy of 0.1 mg to take the average value, so that the original weight of the speci-
men before experiments could be recorded. Four types of quartz sand are used, then which are added to the 
mixing tank and mixed with tap water to make two-phase flow. During the experiment, the supporting and 

Figure 1.  Purple copper, drawer type radiator.

Figure 2.  Schematic diagram of different parts of the test piece of bend.
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quick release fixture for import and export are removed every 2 h, the elbow pipe is taken out, cleaned, dried 
and weighed. Meanwhile, to ensure the reliability of test results, the weighing is repeated 3 times, and the aver-
age value is taken as the final result. The total erosion time of a test condition is 24 h. Then, the experiment is 
repeated after changing the experimental conditions (flow velocity, sand content and sand particle size). Finally, 
the most seriously eroded elbow is selected and the copper sheets are cut at five positions on the outer arch side 
to observe the surface morphology using an electron microscope. The condition parameters set for the experi-
ment are shown in Table 2.

The weight changes before and after the test under different working conditions were measured, and the 
weight loss rate was used to calculate the erosion rate of the specimen, which was calculated by using the formula 
shown below:

where m0 and m are the mass of the specimen before and after the test, respectively; Δω is the erosion rate of the 
specimen expressed by weight; S is the effective overflow area of the specimen; H is the erosion time.

Machine learning fundamentals
BP neural network
BP neural network is the backward propagation network, which has the characteristics of strong nonlinear map-
ping ability, strong error tolerance and strong generalization ability. The core of BP is the forward propagation 
of sample signal and the backward propagation of error. The sample signal starts to propagate from the input 
layer, then passes between the hidden layers after activation, and finally enters the output layer. The output signal 

(1)�ω =
m0 −m

SH

Figure 3.  Water-cooled radiator pipe erosion and wear test bench.

Table 1.  Particle size of quartz sand.

Mesh number of quartz sand (Cw) Range of particle diameter (mm) Median particle diameter (mm)

20–24 0.8–0.9 0.85

30–35 0.5–0.6 0.55

40–45 0.4–0.45 0.425

70–75 0.2–0.224 0.212
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adjusts the weights and thresholds sequentially from the output layer to hidden layer along the direction of 
smaller error, and if there has been a loss until the predicted output reaches the desired output value or reaches 
the learning count, the weights and thresholds are adjusted sequentially between the hidden layer andoutput 
layer. The structure of a typical single hidden layer neural network consists of an input layer, a hidden layer and 
an output layer, which is shown in Fig. 4.

In Fig. 4, X = (X1, X2, …, Xm) and Y = (Y1, Y2, …, Ym) are the input and output values of the network, respec-
tively. The training ability of the neural network can be improved by adjusting the weights and thresholds, and 
usually the number of neurons covered by the hidden layer is determined by specific problem.

The specific modeling process is shown as follows:
The number of nodes m in input layer, the number of nodes l in hidden layer, the number of nodes n in output 

layer, the learning rate and the activation function are determined from the sequence of samples (X, Y), and the 
weights wij, wik and thresholds a, b are initialized. The hidden layer neuron data Hf, the predicted output data 
Ok, and the prediction error ek are computed sequentially:

(2)Hf = f
(

∑m

i=1
wijxi + aj

)

j = 1, 2, · · · , l

Table 2.  Test parameter setting.

Parameter Value

Bend test piece material Purple copper

Bend specimen placement method Horizontal placement

Inlet flow rate (m/s) 2, 4, 6, 8

Particle type Quartz sand grains

Sand content (wt.%) 0, 0.2, 0.6, 1.0

Sand grain size (mm) 0.212, 0.425, 0.5, 0.85

Contour Irregularly ribbed

Test time (h) 0–24

Figure 4.  BP neural network structure diagram.
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 where l is the number of nodes of the hidden layer neurons; f is the hidden layer activation function. The weights 
wij、wik and thresholds a and b are adjusted by gradient descent:

where μ is the learning rate. It is necessary to determine if the algorithm iteration has ended, and if not, the 
training continues.

Least squares support vector machine (LSSVM)
Support Vector Machine (SVM) is a supervised method for solving non-linear and high-dimensional problems, 
which is characterized by global optimization and simple  structure31. Least Squares Support Vector Machine 
(LSSVM) is an evolutionary algorithm, which modifies the inequality constraints with equation constraints, and 
avoids the quadratic regression problem by considering the problem to be solved as a linear  programming32. The 
radial basis function is chosen as the kernel function of least squares support vector machine, which is modeled 
as follows:

A training sample is given by {(xi, yi), i = 1, 2, …, n}, where n is the number of samples. The training samples 
φ(x) are mapped to the high dimensional space by a nonlinear mapping function, and the sample set is shown by

where ω is the weight vector; b is the bias.
Based on the principle of risk minimization, the regression problem is converted into solving the optimiza-

tion problem:

where ξ is the training sample regression error variable; γ shows the regularization parameter and ξi is the bias.
Lagrange functions is introduced to solve optimization problems as follows

Particle swarm optimization (PSO)
Particle Swarm Optimization (PSO) is a global stochastic optimization algorithm based on population intel-
ligence, which is characterized by high accuracy, few tuning parameters and fast convergence.

The particle is assumed to be searched in D-dimensional target space by a set of particles of size N. Xi = (xi1, 
xi2, …, xid) denotes the position vector of the ith particle, and Vi = (vi1, vi2, …, vid) denotes the velocity of the ith 
particle. The single extreme value pbest = (pi1, pi2, …, pid) denotes the best position searched by ith particle, and 
the global extreme value gbest = (pg1, pg2, …, pgd) represents the best position searched by ith particle in whole 
target space, expressed as

where vid shows the velocity vector of the ith particle after the dth iteration; w is the inertia weight, whose 
value is non-negative; c1, c2 are the learning factors of the particles, whose values are in the range of (0,2) interval; 
t is the algorithm after t iterations; r1, r2 are the two random numbers between (0,1); and xid is the position vector 
of the ith particle after the dth iteration.

A. PSO‑BP prediction modeling
The BP neural network algorithm has significant advantages such as ease of use and fault tolerance when dealing 
with multivariate and nonlinear modeling problems, but it is easy to fall into local optimal solutions and slow 
convergence. So, it is optimized by using the PSO algorithm, which introduces the global search capability of the 

(3)Ok =
∑l

i=1
Hiwik − bk k = 1, 2, · · · , n

(4)ek = Yk − Ok k = 1, 2, · · · , n

(5)wij = wij + µHj

(

1−Hj

)

xi
∑n

i=1
wjkek i = 1, 2, · · · ,m; j = 1, 2, · · · , l

(6)wjk = wjk + µHjek j = 1, 2, · · · , l; k = 1, 2, · · · , n

(7)aj = aj + µHj

(

1−Hj

)

∑n

k=1
wjkek

(8)bk = bk + ek

(9)yi = ω · ϕ(xi)+ b

(10)minM(ω, ξ) =
�ω�2

2
+

1

2
γ

n
∑

j=1

ξ 2

(11)L = (ω, b, ξ ,α) = J(ω, ξ)−
n

∑

i=1

(

ωT · xi + b+ ξi − yi

)

(12)Vid(t + 1) = w ∗ vid(t)+ c1 ∗ r1 ∗
(

pid − xid(t)
)

+ c2 ∗ r2 ∗
(

pgd − xid(t)
)

(13)xid(t + 1) = xid(t)+ vid(t + 1)
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PSO  algorithm33. With the introduction of the PSO algorithm, the convergence speed of the BP neural network 
is accelerated, the efficiency is improved, and the result of local optimization is avoided.

B. PSO‑LSSVM prediction modeling
As for the LSSVM model, its regularization parameter and kernel parameter are significant for the adaptive abil-
ity and prediction accuracy. Using of LSSVM to establish the nonlinear relationship between the radiator pipe 
erosion rate and its influencing factors, improves the model convergence speed and prediction accuracy, and 
realizes the optimization of the performance of the LSSVM model.

Experimental results analysis
Analysis of impact factors
The experimental erosion rates of the elbow pipe with time under different working conditions are shown in 
Fig. 5. The influencing factors in Fig. 5(a, b and c) are the sand content, flow velocity of the two-phase flow and 
sand particle size, respectively. The experimental results show that the weight loss of elbow pipe increases with 
the increasing erosion time, and the increase of sand content, flow velocity, and sand particle size also accelerates 
the erosion of bend. Moreover, the flow of water carrying quartz sand inside the radiator’s pipes, as a result of the 
collision between the quartz sand and pipe wall, will continuously lead to the shedding of metal particles from 
pipe’s wall, which causes a decrease in the bend’s quality and an increase in erosion rate, and this phenomenon 
is consistent with the results demonstrated in Fig. 5.

When erosion occurs in the elbow pipe, because of gravity and centrifugal force, the quartz sand in the two-
phase flow will be concentrated to impact the outer arch side of elbow pipe, so the erosion phenomenon occurring 
here is the most obvious. The increasing sand content, flow velocity and sand particle size will make the erosion 
more serious. Therefore, the extreme experimental condition (sand particle size of 0.85 mm, sand content of 
1.0%, inlet flow velocity of 8 m/s) is selected to test the elbow pipe, and the outer arch side of the elbow pipe as 
shown in Fig. 2 is cut, then five copper sheets are obtained after the erosion. The surface morphology of copper 
sheets is observed by employing an electron microscope, as shown in Fig. 6.

The hardness of the irregularly shaped quartz sand is much greater than that of copper, therefore, when the 
high-pressure, high-speed two-phase flow passes through the elbow, the quartz sand impacts the pipe wall and 
produces erosion damage to pipes. The tangential force of impact forms grooves and micro-incisions, the normal 
force directly on the pipe specimen causes extrusion plastic deformation and spalling. Figure 6(a, b, c, d and 
e) show five copper pieces cut from the outer arch side of the elbow pipe at 0°, 30°, 45°, 60° and 90° positions 
respectively. Horizontal cuts and grooves can be observed on the surface of specimen at 0°and 30° position, with 
abrasive build up on both sides of the grooves, as shown in Fig. 6(a,b). Deeper erosion pits and grooves can be 
viewed from Fig. 6c, which are oriented in the same direction as water flow. The abrasive particles accumulate 
on both sides and at the end of scratches. The surface morphology of the copper piece at 60°and 90° position is 
shown in Fig. 6(d,e), where the surface grooves are deeper overall, while the depth of abrasive marks becomes 
shallow in some areas. And shallow grooves and cuts develop on the surface resulting from the large horizontal 
component of impact.

Through the above analysis, it can be concluded that the erosion of elbow pipe exists cutting, extrusion, 
deformation and spalling effects, with the increasing angle, the erosion level is first serious and then reducing, 
the erosion in outside of the arch at 45° position is the most obvious.

Model predictions and comparisons
The dataset used for training and validation is derived from the bend erosion test, where sand content, inlet flow 
velocity, and sand particle size are varied by keeping other conditions unchanged, and the data are recorded 
every 2 h. 120 sets of test data are recorded. The prediction model is constructed based on the test data and the 
ordered samples are randomly disrupted, 80% data are taken as the historical data for the establishment of four 
erosion rate prediction models (BP, PSO-BP, LSSVM, and PSO-LSSVM), and the evaluation of model prediction 
is carried out for other 20% data shown in Table 3, which is also used to check the accuracy of model.

Figure 5.  Variation of elbow erosion rate with time affected by different (a) sand contents, (b) flow rates and (c) 
sand particle sizes.
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Figure 6.  Surface morphology of elbow specimens at different positions of (a) 0°, (b) 30°, (c) 45°, (d) 60° and 
(e) 90°.

Table 3.  Testing set of data.

Sample serial number Inlet velocity (m/s) Sand content (wt.%)
Sand particle size 
(mm) Erosion time (h) Erosion rates (g/m2)

1 8 1 0.85 8 23.0321

2 6 0 0.85 16 1.6342

3 6 1 0.55 18 23.7928

4 6 1 0.212 6 4.6727

5 6 1 0.55 14 19.4983

6 6 0.2 0.85 16 1.7187

7 8 1 0.85 16 42.4196

8 6 1 0.85 14 28.5176

9 6 1 0.55 2 3.8874

10 6 1 0.212 2 1.4252

11 8 1 0.85 10 0.8613

12 2 1 0.85 16 1.1245

13 2 1 0.85 12 0.9570

14 6 0.6 0.85 4 1.5872

15 4 1 0.85 18 6.1163

16 6 0.2 0.85 14 1.4620

17 6 0 0.85 10 0.9230

18 4 1 0.85 24 7.7685

19 4 1 0.85 8 3.7174

20 6 1 0.425 20 25.3467

21 6 1 0.85 2 4.7017

22 2 1 0.85 24 1.5870

23 6 0.6 0.85 20 10.5296

24 8 1 0.85 24 62.0623
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Results of BP and PSO‑BP prediction model
The fundamentals of BP and PSO-BP are presented in Section "Machine Learning Fundamentals", and it is nec-
essary to further discuss the method of introducing BP by PSO, the fitness and error of PSO-BP. A three-layer 
BP neural network structure with a single hidden layer is employed, and the number of nodes in hidden layer 
is directly related to the model training accuracy and training speed, and the trial-and-error method is used to 
obtain the range of node numbers in hidden layer, which can be calculated by l =

√
m+ n+ a , where: l, m and 

n are the node number in hidden layer , input layer and output layer, respectively; and a is the adjusting constant 
with the value interval of 1 ~ 10. The node number in hidden layer is finally set to be 9, so that it has the small-
est military error. At this point, the neural network structure is 4–9-1, and the model has a low complexity, and 
which is sufficient to fit the true rule without matching too much sampling error.

The output of PSO is used as the initial weights and thresholds of BP, the best particle position is updated 
by adaptation value, and the accuracy is improved by iterative optimization. The specific computational flow of 
PSO-BP model is shown in Fig. 7a. The particle population size selected for PSO is 50, the maximum number of 
iterations is 100, the learning factor shows c1 = c2 = 2, the inertia weight stands for 0.9, and the initialized particles 
take the velocity in range of [-3,3] and the position in range of [-3,3]. From the 4–9-1 structure of BP, the target 
space dimension can be determined by D = (m + n)·l + l + n, so D takes the value of 55. PSO’s fitness function is 
chosen to be the average of mean square error (MSE) for overall data from training and testing, and the smaller 
MSE represents the better performance of lattice. Adopt PSO to optimize the parameters of BP, and the model 
fitness curve is obtained as shown in Fig. 7b.The fitness curve of PSO-BP during the training process decreases 
rapidly within 50 generations with the smallest MSE, and the convergence reaches the global optimal value. As 
shown in Fig. 7c, as the number of iterations increases, the MSE of PSO-BP in the training set, validation set and 
test set decreases continuously, and its prediction accuracy gradually reaches the optimum.

The prediction results of the BP neural network and PSO-BP model are compared with the experimental 
values to obtain the errors, as shown in Fig. 8a. The error curves evidently show that, the fluctuation of the BP 
neural network error curve is larger than that of the PSO-BP neural network model, and the maximum value 
of the prediction error for BP neural network is 3.2945, while the maximum value of the prediction error of 
PSO-BP neural network is 0.6579. which suggests that, compared with the ordinary BP algorithm, the erosion 
of radiator elbow pipe can be predicted more accurately by using PSO-BP.

To test the accuracy of the BP and optimized PSO-BP prediction models, based on the 24 working conditions 
shown in Table 3, the variation of the erosion rate for the elbow pipe with different working conditions is plot-
ted, as shown in Fig. 8b. The results show that the prediction results obtained by the two neural network models 
are quite close to the experimental erosion rate curves. However, the prediction results of the PSO-BP network 
model are significantly better than those of BP model.

Figure 7.  (a) Algorithmic logic, (b) fitness curves, and (c) mean square error for PSO-BP.
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Results of LSSVM and PSO‑LSSVM prediction model
The regularization parameters are contained in LSSVM, which reduces the fit of objective function, and the 
PSO algorithm is used to determine the optimal value of regularization parameter. At the same time, in order 
to eliminate the computational errors generated by the different magnitudes of erosion influencing factors on 
model training, and to avoid the generation of singular sample data, the data are normalized to accelerate the 
convergence speed and prediction accuracy. In this case, each parameter of the selected sample values is normal-
ized into dimensionless quantity to ensure that all data are in the range of [0,1].

The constructed PSO-LSSVM is initialized with each parameter as follows: the spatial dimension and popula-
tion size are 2 and 30, the maximum number of iterations reaches 80, the learning factor is denoted as c1 = c2 = 2, 
the inertia weight is 0.9, and the regularization parameter γ and the kernel parameter σ take values in the ranges 
of [0.1,2000] and [0.1,1000], respectively. The resulting combination of γ and σ is trained as the parameters of 
LSSVM, and the fitness values of particle population for each generation are calculated by the fitness function. 
Similarly the MSE average of all data from training and testing is chosen as a function to evaluate the particle 
fitness. The modeling flow of PSO-LSSVM is shown in Fig. 9a. The fitness curve of PSO-LSSVM is shown in 

Figure 8.  (a) Errors, (b) comparision of predicted values and tested values of erosion rate for BP and PSO-BP 
under the test set.

Figure 9.  (a) Algorithmic logic, (b) fitness curves, and (c) comparison of predicted and true values of erosion 
rates for PSO-BP.
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Fig. 9b. it can be seen that the MSE decreases rapidly within 28 generations of iterations, and the convergence 
speed slows down from 28 to 43 generations, and the fitness curve reaches a stable state when the number of 
iterations amounts to 43 generations, which has a better convergence performance. Furthermore, the predic-
tion of PSO-LSSVM model determined by parameters on the dataset is shown in Fig. 9c. The model prediction 
and actual erosion rate of all the samples are basically consistent, the error is basically within 0.4, and the vast 
majority of them are in the range of 0–0.2, which indicates that the model regression fitting accuracy is high, 
and it can satisfy the actual demand for erosion of radiator pipe.

Figure 10a shows the errors of the LSSVM model and PSO-LSSVM model, which are calculated by compar-
ing the experimental data. The results show that the prediction errors of the 24 test samples are basically within 
1, and most of them are in the range of 0–0.5. The maximum value of the prediction error for LSSVM model is 
3.5740, and the maximum value of the prediction error for PSO-LSSVM model is 2.5917, which indicates that 
the overall prediction error of the model decreases and the performance of model improves after the optimiza-
tion of PSO. Similarly, to examine the prediction accuracy and generalization ability of the original LSSVM and 
the optimized PSO-LSSVM model, based on the experimental results of 24 working conditions as shown in 
Table 3, the erosion rates of the elbow pipe obtained by the experiment, LSSVM, and PSO-LSSVM under differ-
ent working conditions are plotted as shown in Fig. 10b. The prediction curves of the PSO-LSSVM model are 
almost overlapped with those of the experimental curves, which indicates that the effect PSO-LSSVM model is 
superior and the prediction value is closest to the real value of erosion rate.

Comparison of four prediction models
To compare the accuracy of four models more intuitively, MAE, MSE, MAPE and  R2 evaluation metrics are used 
to assess the model performance, as shown in Table 4. Among them, MAE, MSE and MAPE represent the mean 
absolute error, mean square error and mean absolute percentage error, respectively. When values of the three 
are smaller, the predicted values are more realistic and the accuracy of prediction model is better; the coefficient 
of determination,  R2, indicates the correlation between the predicted values and actual values, and when  R2 is 
nearer to 1, the accuracy of the prediction model is higher.

The results show that, LSSVM has the worst prediction accuracy and the largest fluctuation rate for erosion 
rate, with a mean absolute error (MAE) of 0.6450 and a mean square error (MSE) of 1.4528. The prediction 
accuracy of the optimized PSO-LSSVM is improved, however, there is still a gap in the prediction accuracy 
compared with that of BP neural network. Which is caused by that, LSSVM is more adaptable to small samples. 
PSO-BP has the highest prediction accuracy for mean square error (MAE) of 0.2070, and the mean absolute error 
(MSE) of 0.0895 and a mean absolute precision (MAPE) of 4.702%. Meanwhile, the PSO-BP model corresponds 
to the largest  R2 of 0.9997, while LSSVM model corresponds to the smallest  R2 of 0.9944. It can be seen that the 

Figure 10.  (a) Errors, (b) comparision of predicted values and tested values of erosion rate for LSSVM and 
PSO-LSSVM under the test set.

Table 4.  Comparison of prediction errors for the four models.

Predictive model MAE MSE MAPE/% R2

BP 0.5214 0.8816 14.515 0.9969

PSO-BP 0.2070 0.0895 4.702 0.9997

LSSVM 0.6450 1.4528 17.6362 0.9944

PSO-LSSVM 0.6185 1.437 15.3973 0.9950
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correlation between the predicted value and the test value of PSO-BP model is the best, which indicates that the 
optimized PSO-BP model can accurately predict the erosion of elbow pipe under different working conditions.

Conclusion
Hydro generator sets produce a large amount of heat during operation caused by the high-speed rotation of 
rotor, and the accumulation of heat will cause failure and shutdown, which results in equipment damage and 
huge economic losses. The radiator is the key equipment to take away this heat. This paper explores the effects 
of water velocity, sand content and sand particle size on pipe’s erosion rate of radiator, and the results show that 
the increase of these parameters will lead to more obvious erosion of the pipe, especially when the sand content 
of 1%, the flow rate of 8 m/s, the sand particle size of 0.85 mm, the erosion damage will be particularly serious. 
Further based on these experimental data, BP and LSSVM models are adopted to predict the pipe wall damage, 
and the PSO algorithm is used to optimize the two models. The optimized PSO-BP had the highest accuracy with 
a mean absolute error (MAE) of 0.2070 and a mean absolute percentage error (MAPE) of 4.702%.

The purpose of this study is to analyze and predict the thinning, perforation and failure of radiator wall under 
erosion, which is of great significance for safe and stable operation of the hydro generator set. When carrying 
out the design of cooler for bearing oil tank on hydro generator set, the cooling medium at radiator inlet can be 
initially processed so that the water flow rate, sand content, and sand particle size are basically the same as the 
test conditions, thus the node of pipe wall failure can be roughly predicted by counting the flow time of cooling 
water in pipeline. Furthermore, the cooling water can be carefully treated to reduce the amount and size of sand, 
which can slow down the erosion rate and increase the service life of radiator.

Moreover, when the cooling medium contains chemical ions such as SO2−
4  , the tube wall undergoes both 

erosive wear and corrosion damage, which may be closer to the practical application, and under prolonged scour-
ing, the tube wall failure of radiator may be accelerated, which is an interesting and worthwhile phenomenon 
to be further investigated.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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