
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6232  | https://doi.org/10.1038/s41598-024-56879-5

www.nature.com/scientificreports

Monitoring and predicting corn 
grain quality on the transport 
and post‑harvest operations 
in storage units using sensors 
and machine learning models
Dágila Melo Rodrigues 1,2, Paulo Carteri Coradi 1,2*, Larissa Pereira Ribeiro Teodoro 3, 
Paulo Eduardo Teodoro 3, Rosana dos Santos Moraes 1,2 & Marisa Menezes Leal 1,2

Monitoring the intergranular variables of corn grain mass during the transportation, drying, and 
storage stages it possible to predict and avoid potential grain quality losses. For monitoring the grain 
mass along the transport, a probe system with temperature, relative humidity, and carbon dioxide 
sensors was developed to determine the equilibrium moisture content and the respiration of the 
grain mass. These same variables were monitored during storage. At drying process, the drying air 
and grain mass temperatures, as well as the relative humidity, were monitored. For the prediction of 
the physical and physical–chemical quality of the grains, the results obtained from the monitoring 
were used as input data for the multiple linear regression, artificial neural networks, decision tree, 
and random forest models. A Pearson correlation was applied to verify the relationship between the 
monitored and predicted variables. From the results obtained, we verified that the intergranular 
relative humidity altered the equilibrium moisture content of the grains, contributing to the increased 
respiration and hence dry matter losses along the transport. At this stage, the artificial neural network 
model was the most indicated to predict the electrical conductivity, apparent specific mass, and 
germination. The random forest model satisfactorily estimated the dry matter loss. During drying, 
the air temperature caused volumetric contraction and thermal damage to the grains, increasing the 
electric conductivity index. Artificial neural network and random forest models were the most suitable 
for predicting the quality of dry grains. During storage, the environmental conditions altered the 
moisture contents causing a reduction in the apparent specific mass, germination, and crude protein, 
crude fiber, and fat contents. Artificial neural network and random forest were the best predictors 
of moisture content and germination. However, the random forest model was the best predictor of 
apparent specific mass, electrical conductivity, and starch content of stored grains.

Keywords  Artificial intelligence, Grain quality, Loss reduction and grain conservation, Post-harvest 
technologies, Predictive models

The increase in grain production in crops has been occurring year after year due to the application of new tech-
nological packages, mainly focused on precision agriculture to optimize the application of inputs, machinery, 
and the use of natural resources in order to improve agricultural processes and hence increased grain yields1. 
Thus, all the investment made in farming is expected to be converted into post-harvest grain yield2. Besides 
higher grain production, technologies that provide grain storage with quality for marketing and processing are 
required3 to ensure higher profits for the farmer and industry4.
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Post-harvest consists of different stages and processes that are at the end of the grain production chain5, where 
they also influence the sector’s logistics6 through transportation and grain storage7. Losses in these steps can occur 
by grain metabolic changes influenced by environmental conditions, process actions, and product movement7.

After harvesting, the grain mass with high impurity and moisture contents can be transported for long dis-
tances, remaining stored in the vehicle bodies without any control of the qualitative alterations that can occur 
due to temperature variations, relative humidity of the intergranular air8. The transfer of heat and humidity 
between the grains and the intergranular air can elevate the grain mass temperature and increase the product 
respiration, causing dry matter consumption and physical and physicochemical alterations of the grains. Often, 
the initial levels of deterioration of the grain mass during transportation are not immediately noticeable, and 
are aggravated throughout the drying and storage processes9.

In drying, the high temperature and the flow of the grain mass in the dryer are the main factors influencing 
the product quality. Thus, the control of the drying air and grain mass temperature, as well as the drying time 
on the initial and final moisture content of the product should be monitored to avoid losses10. The damage in the 
cellular tissues caused by drying adds to the deteriorations from the previous stages, aggravating even more in 
the subsequent stage, when the grains are stored inadequately11. At storage, even under safe conditions in terms 
of moisture content in the grains, the way, conditions and time of storage of the batches can cause heating and 
elevate the grain respiration rates12.

Advances in data acquisition and processing techniques have been applied with global success to aid decision 
making in different agricultural processes13. The use of crop sensors has become increasingly common in pre-
harvest grain yield estimation14, nutritional status and weed monitoring15, and determination of rates of cover 
nitrogen fertilization, water stress16 and grain protein content17. Technologies that assist in the estimation of the 
nutritional state, grain production and quality contribute to greater efficiency in the application of inputs, thus 
reducing spending on unnecessary inputs and decreasing environmental impacts10.

Using sensors associated with the Internet of Things and Artificial Intelligence can assist in monitoring and 
predicting the quality of grains in post-harvest processes. The application of these tools can support the control 
of post-harvest processes by using a set of advanced information, communication, analysis, and data processing 
techniques, such as Big Data analysis and digital platforms that allow extracting a large amount of information 
about the collected data for decision making10,18.

Therefore, the determination of the equilibrium moisture content of the grain mass by measuring the tem-
perature, the relative humidity of the intergranular air and the moisture content of the grains in the different post-
harvest steps can make it possible to control the intensity of deterioration and avoid the loss of grain quality11. 
Whereas measuring the carbon dioxide concentration in the intergranular air or in the environment that the 
grain mass is in can provide an early response to the respiratory intensity of the grain.

These monitored variables are used as input data for predicting grain mass quality through Machine Learning 
(ML) models19. Random Forests (FA) is an ML technique successfully used in yield prediction and grain quality 
assessment20. This model has proven to be efficient and easier to use for predicting corn and wheat quality when 
compared to multiple linear regression models21. Artificial Neural Networks (ANN) are another method that 
can be trained from data related to corresponding inputs and outputs22. ANNs are useful tools for analyzing and 
interpreting complex food safety data, predicting the physical and chemical quality of grains23. In this sense, 
machine learning models have been widely used to predict the quality of soybeans during transport21 and stored 
corn18, in determining the quality of wheat during storage24, as well as in the evaluation of the germination rate 
of stored soybean seeds25. Some recent studies have demonstrated the effectiveness of machine learning models 
in predicting the viability, vigor and germination speed of seeds of different crops. Lin et al.26 obtained satisfac-
tory results using machine learning algorithms; however, the models that best predicted soybean quality varied 
depending on processing and storage conditions.

Thus, the real-time monitoring of intergranular variables of the grain mass, in order to preserve the quality of 
the product and reduce as much as possible the losses in the different stages of post-harvest, makes it possible to 
indirectly evaluate the potential physical and technological changes of the grains using predictive algorithms20. 
In this context, the application of ML models can accurately predict the possible grain quality losses through 
easily measured variables10. Thus, the objective of this study was to predict corn grain quality at the transporta-
tion, drying, and storage stages by real-time monitoring of easily measured intergranular variables using sensors 
and ML models.

Material and methods
Experimental characterization
The experiment was carried out on a real scale in commercial storage units involving the transportation, dry-
ing and storage steps of corn grains (Fig. 1). The data collection for each step was performed through indirect 
monitoring of the corn grain quality, using technologies developed in the laboratory.

Technologies used for monitoring corn grain mass
For monitoring the corn grain mass, a portable device has been developed. The device consists of an Arduino 
Mega 2560 microcontroller (model Mega 2560, Arduino LLC, Italy) as the control core. The system hardware 
includes three digital sensors to detect air temperature and relative humidity (model DHT22, Aosong Electronics, 
Guangzhou, China), a non-destructive infrared sensor to detect CO2 concentration (model MHZ-14, Winsen, 
China), real-time clock modules (model DS3231, flip-flop, China), and a micro-SD card (model Greatzt micro SD 
card, import, China). A control system block diagram is shown in Fig. 2A. Output data from the digital sensor, 
infrared sensor, and modules are connected to the microcontroller’s I /O communication terminals responsible 
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for physical communication and component integration, and data calculation. A schematic of connecting each 
component via jumper cables is shown in Fig. 2B27.

The temperature and relative humidity sensors (model DHT22, Aosong Electronics, Guangzhou, China) were 
attached to three ends of a threaded bar and the CO2 sensor (model MHZ-14, Winsen, China) was attached to 
the central part. The real-time clock module (model DS3231, flip-flop, China) and the micro-SD card (model 

Figure 1.   Experimental characterization in the post-harvest, transportation, drying, and storage stages of corn 
grains.

Figure 2.   Block diagram of the components of the device control system (A), micro-controller connection by 
jumper cables (B), and conditioning and attachment of the set of sensors to the polyvinyl chloride probe (C).
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Greatzt micro-SD card, Import, China) were stored in a box. Figure 2C shows the structure of the device with 
the sensors arranged along the threaded bar and protected by a polyvinyl chloride probe. The device has a power 
supply with three batteries arranged in series, and the total power is 27 V27.

The software used on the Arduino board was programmed based on the C +  + programming language, with 
most of the libraries provided by the platform28. The Arduino IDE (Integrated Development Environment) was 
used to develop the embedded firmware for the Atmega 2560 microcontrollers29. A metal grain sampling tube 
was designed to couple the probe. The tube consisted of two overlapping tubes, with a tip at the bottom and a 
swivel arm at the top. This enabled the probe to be protected and increased the accuracy of the intergranular grain 
reading. The tube contained openings/cells at the top, middle, and bottom along its length, as shown in Fig. 327.

Monitoring the grain mass in transport
Metallic sampler and non-destructive probe with sensors were inserted in the grain mass to measure the vari-
ables temperature, relative humidity and carbon dioxide in the porosity, in real-time, at intervals of 1.87 s for 
24 h of transport with grains at 11, 14 and 18% moisture (Fig. 4). Grain sampling was performed at 0, 120, 480, 
and 1440 min of transport at three positions in the grain mass profile (top, middle, and bottom) of the load. 
With the results obtained from the monitoring, the equilibrium moisture content (EMC) of the grain mass was 
determined, and the dry matter loss (DML) was calculated. Furthermore, the monitored variables were adopted 
as input data in the machine learning models for grain quality prediction. For each sample collected, grain quality 
assessments such as apparent specific mass (ASM), electrical conductivity (EC), and germination (GERM) were 
performed and used for predicting corn grain quality.

Monitoring the grain mass during drying
The corn grains were harvested with 18% moisture content. Then, impurities and foreign matter were removed 
using an air machine and sieve. Afterwards, the grains were subjected to drying in a mixed-flow continuous 
dryer with a nominal capacity of 80 ton h-1 and drying air temperature of 80, 100 and 120 °C (Fig. 5). Three dry-
ing tests were performed, and during the tests, samples of 10 in 10 min at the bottom of the dryer (outlet) were 
collected for determination of moisture content (WC), as well samples to determine the volumetric shrinkage 
(VS), electrical conductivity (EC), and starch yield (STA). The drying was performed until the grains reached 
12% moisture content. During the drying, the grain mass temperature was monitored by using thermocouple 
sensors installed in the dryer itself at the drying chamber. The temperature and air relative humidity were moni-
tored during the process.

Figure 3.   Grain sampling tube for conditioning the probe. (A) internal and external view of the tube, (B) parts 
for sealing, (C) top view of the sampler tube, (D) complete view of the tube, (E) application of the monitoring 
system in the corn grain mass.
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Figure 4.   Experimental characterization of data collection at the corn grain transport stage.

Figure 5.   Grain Dryers: 1—Maximum level sensor, 2—Minimum level sensor, 3—Hot air inlet sensor, 4—Stop 
sensor, 5—Mass sensor, 6—Mass sensor, 7—Mass sensor, 8—Input product, 9—Load box, 10—Drying chamber, 
11- Drying tower, 12—Discharge table, 13—Drying air, 14—Maximum level sensor, 15—Hot air inlet sensor, 
16—Grounding sensor, 17—Minimum level sensor, 18—Equalization chamber, 19—Hot air chamber, 20—
Discharge table, 21—Product inlet, 22—Drying tower, 23—Fans, 24—Cold air chamber.
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Monitoring grain mass in storage
A mass of dried corn grains with 12% moisture content was stored in metal silos over six months (Fig. 6). During 
the three-month storage period, the temperature and relative humidity of the intergranular air were monitored 
to determine the equilibrium moisture content and the carbon dioxide (CO2) concentration to obtain the early 
dry matter loss over a 20-h period. With the results obtained from the monitoring, a prediction of the quality 
of the stored corn kernels was made.

Evaluations of corn grain quality
The calculations of the equilibrium moisture content of the grain mass were performed by Eqs. (1) (0 < RH < 55) 
and (2) (55 < RH < 100)30:

em que, EMC: Equilibrium moisture content (%, d.b.), RH: Relative humidity (%), T: Temperature (°F).
Dry matter loss was calculated by the monitored CO2 concentration in the corn grain mass, using Eq. (3)31:

wherein, DML: Dry matter loss (%), CCO2 : CCO2 concentration (v/v) measured inside the metal silos, �CO2 : 
change in O2 concentration throughout storage considering the initial concentration of 21%, ε : porosity of the 
granular mass (40%), P: pressão atmosférica local (96 kPa), Wg: molar mass of glucose (180 kg kmol−1), ASM: 
apparent specific mass of the grains (kg m−3) (750 kg m−3), MC: moisture content of the grains (decimal, d.b.), 
R: perfect gas constant (8,314 kJ Kmol−1 K−1), T: Temperature (K).

Moisture content of the grains (%) was determined by the gravimetric method (analytical balance 0.0001, 
model AUY-220-I)26. The volumetric contraction of the grains was determined by Eq. (4), in which the major, 
medium and minor axis of one hundred grains for each sample were measured using a digital pachymeter.

wherein: VS: volumetric shrinkage (mm3), a: main grain axis (mm), b: middle grain axis (mm), c: minor grain 
axis (mm).

The electrical conductivity test was performed with fifty grains in three subsamples of each treatment, weighed 
with precision to two decimal places (0.01 g). The samples were placed to soak in plastic cups with 75 mL of 
deionized water and kept in a refrigerated chamber with controlled temperature at 25 ± 2 °C for 24 h. The solu-
tions containing the grains were slightly shaken to homogenize the leachates and immediately read in a portable 
conductivity meter CD-850 "Instrutherm", with the results divided by the mass of 25 grains and expressed in 
µS cm−1 g−1 of grains32.

For the germination test, four subsamples of 50 seeds from each experimental unit were used, distributed on 
paper towel rolls (Germitest), and moistened with distilled water in an amount 2.5 times the mass of dry paper. 

(1)EMC =

3.96RH0.492

ln(T)

(2)EMC =

6.21exp(0.0274RH)

ln(T)

(3)DML = 100
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)
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)
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Figure 6.   Experimental characterization of data collection at the corn grain storage stage.
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Then, the rolls with the seeds were placed in a germinator (Mangesdorf), regulated at 25 °C ± 2 °C. The evalua-
tions were performed on the eighth day after the test installation, counting normal and abnormal seedlings and 
dead seeds according to criteria established in the Rules for Seed Analysis32.

To determine starch (STA), crude protein (CP), fat (FAT) and ash (ASH) in corn grains, near-infrared spec-
troscopy (NIRS) (Metrohm, DS2500 spectrometer, Herisau, Switzerland) with high optical accuracy was used. 
The samples were homogenized and placed in the sampling dish. The analysis was based on illuminating a sample 
with radiation of a specific wavelength in the near-infrared and then measuring the difference between the energy 
emitted by the spectroscope and reflected by the sample to the detector. This difference was measured in several 
bands, creating a spectrum for each sample. The result obtained was compared to a calibration set.

Correlation analysis
A Pearson correlation network between the monitored and predicted variables was generated. These analyses 
were performed using the Rbio software, following the procedures recommended by Bhering et al.33.

Machine learning analysis
Data were analyzed on Weka software version 3.9.5. testing the following models: multiple linear regression 
(MLR), artificial neural network (ANN), Quinlan’s M5 algorithm (M5P) and random forest (RF) (Fig. 7). The 
RLM model was used as a control model. The ANN tested consists of Multilayer Perceptron with a single hidden 
layer, whose number of neurons is equal to the number of attributes plus the number of classes, all divided by 
234. The tested M5P model is a reconstruction of Quinlan’s M5 algorithm that is based on the conventional deci-
sion tree with the addition of a linear regression function to the leaf nodes35. The RF model is able to produce 
multiple prediction trees for the same dataset and use a voting scheme among all these learned trees to predict 
new values36. The ML analyses were performed using the default software setting for all models tested37 on an 
Intel®CoreTM i5-3317U CPU with 4 Gb RAM.

Prediction of moisture content, apparent specific mass, dry matter loss, electrical conductivity, germina-
tion, volume shrinkage, starch yield, crude protein, fat and ashes contents in corn grains was performed using 
MLR, ANN, M5P and RF models with stratified cross-validation with ten folds (k-fold = 10) and ten repetitions 
(runs). Different inputs were used for each model to predict the quality variables. For transportation, moisture 
content, time, temperature, relative humidity, and equilibrium moisture content were used. For drying, drying 
air temperature, drying time, and moisture content were used. For storage, storage time, storage conditions, and 
grain moisture content were used (Tables S1, S2, and S3).

Statistical analysis
For the three post-harvest steps (transportation, drying, and storage), the correlation coefficient (r) and the 
mean apparent error (MAE) were obtained to analyze the prediction accuracy of the models. Next, variance 
analysis was performed adopting the completely randomized design, in which the ML models (ANN, M5P, and 
RF) and the multiple linear regression (MLR) were compared. Ten repetitions (folds) were adopted for each 
model. For comparison of the models, MAE and r means for each model were grouped by the Scott-Knott test 

Figure 7.   Experimental characterization of the applicability of Machine Learning models on monitored and 
predicted variables in the transportation, drying and storage stages of corn grains.
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at 5% probability and shown through boxplot graphs. These analyses were performed on the R software using 
the ExpDes.pt and ggplot2 packages.
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Results and discussion
Monitoring and predicting the quality of corn grains during transportation
When monitoring grains with 12% moisture content (Figs. 8A), the intergranular relative humidity remained 
constant and close to 70%. However, the intergranular air temperature oscillated throughout the monitoring time. 
For grains with 16% moisutre content (Fig. 8B), the intergranular temperature remained close to the conditions 
of 12% moisture content, while the intergranular relative humidity was above 86%. In addition, the equilibrium 
moisture content was found to rise to 20% and remained constant (Fig. 8C). The intergranular variables indicated 
possible cellular respiration, which in turn raised carbon dioxide (CO2) levels in the grain mass throughout the 
transport period, evidencing that the grain metabolism was active with high respiratory activity38. We point out 
that grain mass, when entering equilibrium moisture content with moisture contents above 12%, may indicate 
deterioration risks if travel time in transportation is prolonged, resulting in corn grain quality losses39.

At 12% moisture content conditions (Fig. 8D), the grain mass did not have marked respiration, remaining 
below and close to acceptable natural environment levels of 420 ppm. However, at 16% moisture content (Fig. 8E), 
carbon dioxide (CO2) levels were high, reaching 4960 ppm, indicating a high respiration intensity of the grains 
with high deterioration risks40. At 16% moisture content, there was an increase in intergranular relative humidity 
and heating of the corn grain mass, becoming metabolically active. With the heating of the grain mass, mass and 
heat transfer and grain cell respiration increased41,42.

In Fig. 8F, it can be seen that the grains with moisture contents at 12% did not alter the dry matter consump-
tion of the grains, agreeing with the results monitored in Fig. 8A and D. However, in the grains with 16% moisture 

Figure 8.   Monitoring relative humidity and intergranular air temperature at 12% (A) and 16% (B) moisture 
content, equilibrium moisture content at 12% and 16% moisture content (C), carbon dioxide concentrations at 
12% (D) and 16% (E) moisture content, and dry matter loss (F) at 12% and 16% moisture content in corn grains 
throughout transportation.
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contents, there were dry matter losses close to 0.06% over the twenty-hour monitoring period. This combination 
resulted in higher enzymatic and biological activities, favoring the development of insects and infection by fungi 
and bacteria, triggering reactions of degradation of the quality of the grains43.

Pearson’s correlation network (Fig. 9) indicated a relationship of the monitored variables with grain quality as 
a function of 12 and 16% moisture contents. There was a positive and strong correlation of dry matter loss (DML) 
with relative humidity (RH), moisture content (MC), equilibrium moisture content (EMC), and carbon dioxide 
(CO2), and strongly negative with apparent specific mass (ASMThese results are consistent with Fig. 8A–E for 
12% and 16% grain moisture contents. Germination analysis (GERM) obtained a positive and strong correlation 
with moisture content (MC), intergranular relative humidity (RH), and dry matter loss (DML). However, there 
was a negative correlation between these variables with apparent specific mass (ASM) and electrical conductiv-
ity (EC). The GERM was directly dependent on the intergranular relative humidity conditions, as well as the 
moisture levels with the metabolic activity of the grains.

The correlation of MC and RH variables affected dry matter and biochemical properties, inhibiting the 
components that conferred grain germination. The variable EC had a medium positive correlation with ASM 
and negative with RH, EMC and DML. There was negative correlation between time (ST) and temperature (T), 
CO2, EMC, RH, DML, MC, GERM, and EC, indicating that increased transport time provided higher changes 
in grain quality.

In Table 1 and Fig. 10A are the results of correlation coefficients (r), coefficients of determination (R2), and 
the mean absolute error (MAE) of the prediction of corn grain quality during transport: dry mass loss (DML), 
apparent specific mass (ASM), germination (GERM), and electrical conductivity (EC). Considering the dif-
ferent Machine Learning (ML) models and input variables in the models (moisture content, transport time, 
temperature, relative humidity, equilibrium moisture content, and carbon dioxide concentration), significance 
was observed at p < 0.05 by the Scott Knott (SK) test for the quality variables.

For the variable dry matter loss (DML) of grain mass during transport, we verified that the artificial neural 
network (ANN) and random forest (RF) models outperformed the other models (Table 1 and Fig. 10B). The 
grain mass during transport suffered actions of several variants, which are conditioning effects on grain cellular 
respiration, among them moisture content, temperature, and intergranular relative humidity. The metabolic 
intensification caused the grain mass to lose part of its dry matter, predicted by the response of the ML models, 
mainly by RF.

The RF algorithm presented alternatives for prediction, where they randomly chose the conditioning fac-
tors, electing a single variable that could interfere most with quality. Compared to other ML models, RF made 
a faster prediction, as observed in other studies for determining the quality of soybean seeds stored in different 
packages44. Some studies have found that the RF technique performs better for predicting soybean seed dry mass 
loss in environments with different relative humidity and storage temperature45.

For the ASM, the tested Machine Learning (ML) models showed high correlation coefficients, except for 
the M5P model (Table 1 and Fig. 10). When applied the SK test (p < 0.05), the ANN and M5P models had a 
better fit, satisfactorily predicting the apparent specific mass (Fig. 10B). During the transport time, the ASM 

Figure 9.   Pearson correlation network between the variables apparent specific mass loss (ASM), electrical 
conductivity (EC), germination (GERM), dry mass loss (DML), moisture content (MC), time (ST), temperature 
(T), relative humidity (RH), equilibrium moisture content (EMC), and carbon dioxide concentrations (CO2) at 
the transport stage.
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underwent changes, influenced by the variables moisture content and temperature that acted simultaneously 
on the respiration process.

ASM has been defined as a physical variable that relates the dry grain mass to its total volume46. The change in 
ASM inferred in technical grain breakage and influenced total dry matter, as they are correlated. This event can be 
verified by the ANN and M5P models, which provided the best results of (r) and (MAE). ANNs were algorithms 
with wide ability to predict the data set with longer occurrence47. Differently from traditional linear regression 
models, ANN processes large datasets and still allows for an eventual prediction through a single output signal48. 
This neuron represented, in this case, a variable of easy measurement monitored during the established time of 
grain transport. This predictive model made it possible to make decisions more assertively about the MAE49.

Regarding the electrical conductivity (EC), the M5P, and MLR algorithms outperformed the other models. 
For the M5P, there was a correlation of 0.93 and MAE OF 0.38, with R2 of 86.49% (Table 1) (Fig. 6D). Grains 
transported with high moisture contents suffered alterations at cellular levels by the intensification of the res-
piratory process of the grains50. The high electrical conductivity (EC) results occurred due to the rupture of the 
membrane and cell wall of the grains where the exudates were released and leached51. The damage to the cellular 
tissues also altered the physicochemical composition of the grains, especially the carbohydrates.

The M5P algorithm achieved the best results of r and MAE for predicting the electrical conductivity test in 
corn grains. Some studies comparing the use of algorithms to predict the changes in electrical conductivity in 
grains are still scarce in the literature. For this reason, M5P provided answers in a shorter time when compared 
to the traditional regression38. In the germination evaluation (GERM), the MLR, ANN, and M5P algorithms had 
the highest correlation coefficients (r) and lowest mean absolute errors (MAE) (Table 1 and Fig. 10C). However, 
applying the SK test (p < 0.05), the models that best predicted the germination results were the ANN and MLR 
algorithms (Fig. 2C). Grain germination (GERM) was susceptible to the effects of intergranular temperature and 
relative humidity, which indirectly interfered with moisture contents. This serial reaction impaired vigor, which 
consequently reduced grain germination52,53. However, from real-time monitoring of easily measured variables, 
grain germination can be predicted. The results of r and MAE demonstrated that the ANN models satisfactorily 
predicted germination. Grain germination (GERM) was susceptible to the effects of intergranular temperature 
and relative humidity, which indirectly interfered with moisture contents. This serial reaction impaired vigor, 
which consequently reduced grain germination52,53. However, from real-time monitoring of easily measured 
variables, grain germination can be predicted. The results of r and MAE demonstrated that the ANN models 
satisfactorily predicted germination.

Monitoring and predicting the quality of corn grains during drying
Figure 11 shows the drying curves of corn grains for different drying air temperatures. We observed that the 
drying temperature of 80 °C extended the drying time to 4.83 h. Whereas, at a drying temperature of 100 °C, the 
time was reduced to 4.5, while the drying time was only 3.5 h at 120 °C. The grains reduced the moisture content 
by up to 11% for all drying conditions.

The difference in drying time of 1.83 h from 80 °C to 120 °C temperature can be attributed to the drying speed 
and higher grain mass flow in the processes preceding the drying. Increasing the drying air temperature from 
80 °C to 120 °C can also affect the morphological structure of the grain and alter the cellular tissues, causing 
changes in starch, protein, and lipids. These findings were monitored and predicted to determine the best ML 
model to perform process control based on air temperature and drying time54–56.

Figure 12 presents the correlations of the monitored and predicted variables. Drying temperature (DAT) 
was strongly and positively correlated with electrical conductivity (EC), while EC was positively and weakly 

Table 1.   Correlation coefficient (r), mean absolute error (MAE), and coefficient of determination (R2) 
between the observed and estimated values of dry matter loss, apparent mass specific, germination, and 
electrical conductivity of corn grain in the transport operation for the different Machine Learning models. 
*Equal letters in the column do not differ at p < 0.05 by the Scott Knott test. Dry Matter Loss (DML). Apparent 
Specific Mass (ASM). Germination (GERM) and Electrical Conductivity (EC). Multiple Linear Regression 
(MLR). Artificial Neural Networks (ANN). Quinlan’s M5 Algorithm (M5P) and Random Forest (RF).

Models

r MAE R2 r MAE R2

DML ASM

MLR 0.99d 0.00a 98.01 1.00b 0.00b 100.0

ANN 1.00b 0.00b 100.0 1.00a 0.00c 100.0

M5P 0.99c 0.00c 98.01 1.00a 0.07a 100.0

RF 0.99a 0.00d 98.01 1.00b 0.00b 100.0

Models

r MAE R2 r MAE R2

GERM EC

MLR 0.98a 2.45c 96.33 0.92a 0.39b 84.64

ANN 0.98a 2.49c 96.19 0.92b 0.39a 84.64

M5P 0.98b 2.98b 96.33 0.93a 0.38b 86.49

RF 0.97c 2.72a 94.88 0.88c 0.50a 77.44
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correlated with volumetric shrinkage (VS). Ec had a strong and negative correlation with the grain starch yield 
(STA), while STA had a negative and moderate correlation with DAT. DT correlated negatively and strongly with 
moisture content (MC) and positively and strongly with VS, while VS had a strong and negative correlation with 
MC. There was a negative and weak correlation between DT x STA, VS x STA, MC x EC, and a weak and positive 
correlation between DT x EC and MC x STA.

Table 2 shows the results of correlation coefficients (r), coefficients of determination (R2), and mean absolute 
error (MAE) for predicting the corn grain quality variables at drying: volumetric shrinkage (VS), starch (STA), 
and electrical conductivity (EC). There were significant differences (p < 0.05) by SK test considering the different 
Machine Learning (ML) models and the monitored variables of drying air temperature (DTA), moisture content 
(MC), and drying time (DTA). Artificial neural network (ANN) obtained the highest r and lowest MAE and, 
therefore, is the most indicated model for predicting the variables VS, STA and EC (Table 2). In predicting the 

Figure 10.   Boxplot for mean comparison of correlation coefficient (r) and mean absolute error (MAE) between 
the multiple linear regression (MLR) and Machine Learning models: Artificial Neural Networks (ANN), 
Quinlan’s M5 Algorithm (M5P), and Random Forest (RF) for predicting dry matter loss-DML (A), apparent 
specific mass-ASM (B), germination-GERM (C), and electrical conductivity-EC (D), in corn grains at transport 
stage.
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variables VS, STA and EC, the ANN model showed the highest r correlations (0.99, 0.98, and 0.99, respectively), 
but did not differ from the MLR by the SK test (p < 0.05) (Fig. 13A). The ANN model also showed the lowest 
mean MAE (0.20 and 0.52, respectively).

The changes in the volumetric shrinkage (VS) resulted from the increase in drying air temperature that may 
have caused changes in the endosperm of the grains from the reduction of moisture contents. Thus, during 
the drying process, protein properties and total carbohydrates may have changed. When subjected to elevated 
temperatures, the carbohydrate molecules may have broken down and transformed into less complex molecules, 
multiplied in the intercellular space. These physicochemical changes compromised the quality of the grains50.

In starch yield prediction (STA), the ANN and RF models showed the highest correlation coefficients r (0.98 
and 0.94, respectively), not differing from each other by SK test (p < 0.05) (Fig. 13B). The mean absolute error 
(MAE) values for each model were 0.52 and 1.14, respectively, indicating the ANN models with R2 accuracy of 
96.04% (Table 2). Starch is a biomolecular carbohydrate that comprises most of the structure of corn grains and 
requires its components to be in perfect arrangements (H, O2, and C). Associated with the other components, 
when the grain undergoes high drying temperatures, molecular structures are affected50. Drying at temperatures 

Figure 11.   Drying curves of corn grains for different air temperatures.

Figure 12.   Pearson correlation network established between the variables: volumetric shrinkage (VS), starch 
(STA), electrical conductivity (EC), drying air temperature (DTA), moisture content (MC), and drying time 
(DT).
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above 80 °C affected the starch structure and its constituents57. In studies with corn drying, Timm et al.56 found 
that air drying temperature below 80 °C considerably extended the drying time, but the physicochemical consti-
tution, especially the starch, is preserved. Meanwhile, for electrical conductivity, ANN and MLR models showed 
the highest correlation values r (0.98 and 0.99, respectively) and lowest MAE (21.98 and 13.21, respectively), not 
differing from each other by SK test (p < 0.05) (Fig. 13C), with better accuracy of R2 (98.04%) for ANN (Table 2). 
The increase in CE was linked to the rise in drying air temperature. With a more intense moisture movement 
from the interior of the grains to the surface in the inner layers of the grains, the cell walls of the grain structure 
were affected, causing the rupture of their membranes. When this occurred, as a consequence, exudates were 
released, raising the electrical conductivity of the grains58.

Monitoring and predicting the quality of stored corn grains
The results of temperature (T), intergranular relative humidity (RH) for calculation of equilibrium moisture 
content (EMC) of stored corn grain mass are shown in Fig. 14A,B. During the twenty-four hours of monitoring, 
temperature remained constant but high, between 30 and 36 °C, while the (RH) remained close to 70%, reach-
ing 13% of EMC. From 7.5 h of monitoring, there was an increase in carbon dioxide (CO2) levels (Fig. 14C) 
and, consequently, higher dry matter consumption (Fig. 14D) at the end of the monitoring time (from 15 h on), 
following the peaks in grain respiration.

High temperatures, associated with high relative humidity, can trigger metabolic reactions in the grain59. 
During the release of these components, enzymes, and carbohydrates are degraded, reducing the quality of 
corn grains14. These relationships can be predicted and controlled to determine the optimal storage time of the 
grains without losses20.

Results of correlation between monitored and predicted variables are shown in Fig. 15. The variables RH 
and GERM had a high positive correlation between them and with ASM and medium positive correlation with 
CP. A medium positive correlation was also observed between FAT × ASM, GERM × CP, CP × ASM, CP × FAT, 
FAT × ASM, and EC x ASH. There was a high correlation between DML x T and a medium correlation between 
DML × STA, STA × T, and T × CO2. There was a high negative correlation between ASM × ASH, RH × ASH, and 
a medium negative correlation between GERM x ASH, ASM × EC, RH × EC, MC × EC. Furthermore, there 
was a weak but positive correlation between FAT × CF, PB × CF, CF × T, T × EC, T × ASH, CP × STA, CP × ST, 
GERM × ST, GERM × MC, GERM × T, CF × STA, DML × CO2, DML × CP, DML × FAT, DML × RH, DML × ASM, 
DML × EC, CO2 × STA, CO2 × CP, CO2 × FAT, and CO2 × CF. Weak and negative correlations were identified 
for ST × MC, STA × ST, T × MC, CP × EC, GERM × EC, CF × ASH, FAT v ASH, CP × ASH, and STA × ASH. It 
is noteworthy that among the monitored variables, RH had the most significant influence on grain quality60,61. 
Whereas, among the variables measured, ASM and GERM indicated positive and negative quality levels62,63.

Table 3 shows the results of the correlation coefficients (r), coefficient of determination (R2) and the mean 
absolute error (MAE) of the ML models for predicting the quality variables of stored corn grains: apparent 
specific mass (ASM), germination (GERM), electrical conductivity (EC), crude protein (CP), moisture content 
(MC), fats (FAT), crude fiber (CF), ash (ASH) and starch (STA) contents. The easy-to-measure input variables 
(T, RH, and ST) for the different ML models were significant (p < 0.05) by the Scott Knott (SK) test. The artificial 
neural network (ANN) and random forest (RF) models were the best predictors of MC, GERM, CP, CF, ASH, 
and FAT. Whereas the M5P model satisfactorily predicted ASM, EC, and STA.

The ANN and RF models stood out in predicting the MC variable, reaching high r values (0.96 and 0.97, 
respectively), but not differing from each other by the SK test (p < 0.05) (Table 3 and Fig. 16A). The lower MAE 
means (0.45 and 0.39) allowed a better fit of the observed and predicted data, differentiating them from the M5P 
and MLR models, since these, even presenting relatively high r (0.84 and 0.93, respectively), showed a higher 
the MAE (0.89 and 0.53, respectively).

Even corn grains stored with a moisture content between 12 and 13% are susceptible to quality variation, 
depending on the conditions established in the grain mass. Storage conditions associated with the humidity and 
temperature are related to the water reabsorption in the grain. The grain mass’s biological activity is more intense 
at high moisture content. In these cases, there is an increase in cellular respiration, besides the opportunity for 
pathogens to develop in the corn grains64–66. Furthermore, the moisture content in the grain mass can come 

Table 2.   Correlation coefficient (r), mean absolute error (MAE), and coefficient of determination (R2) 
between the observed and estimated values of dry matter loss, apparent mass specific, germination, and 
electrical conductivity of corn grain in the transport operation for the different Machine Learning models. 
*Equal letters in the column do not differ at p < 0.05 by the Scott Knott test. Dry Matter Loss (DML), 
Volumetric Shrinkage (VS), Starch (STA), and Electrical Conductivity (EC). Multiple Linear Regression 
(MLR), Artificial Neural Networks (ANN), Quinlan’s M5 Algorithm (M5P), and Random Forest (RF).

Models r MAE R2 r MAE R2 r MAE R2

VS STA EC

MLR 0.98a 0.46c 96.04 0.94a 1.14c 88.36 0.98a 21.98c 96.04

ANN 0.99a 0.20d 98.01 0.98a 0.52d 96.04 0.99a 13.21c 98.01

M5P 0.93b 0.97b 86.49 0.91b 1.84b 82.81 0.93b 81.68b 87.89

RF 0.88c 1.88a 77.44 0.86c 2.32a 73.96 0.89c 117.9a 80.96
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from steps before storage, such as in low-efficiency drying, allowing the grain to enter into equilibrium moisture 
content with high moisture contents without being in optimal storage conditions67.

ANN and RF models were the best predictors of stored grain control. When trained, the ANNs efficiently 
predicted corn grains’ physical and chemical quality during storage21. A study carried out by Córdova-Noboa 
et al.11 reinforces these findings, where stored corn grains dried at 35 °C obtained higher moisture contents 
(14.45%) over those dried at 120 °C (11.20%).

The ANN, M5P and RF models were superior in predicting the ASM variable, showing the highest r values 
(0.98, 0.97 and 0.98, respectively), without differing from each other by the SK test (p < 0.05) (Fig. 16B). The 
lowest r means (0.93) were observed for the traditional regression model, which consequently had the higher 
MAE (2.69) (Table 3).

Our findings indicated that ASM of corn grain were influenced by relative humidity and storage temperature. 
Furthermore, time was a factor that interfered with the specific mass of the stored grain68,69. Respiratory activity 

Figure 13.   Boxplot for means comparison of correlation coefficient (r) and mean absolute error (MAE) 
between the multiple linear regression (MLR) and Machine Learning models: Artificial Neural Networks 
(ANN), M5P Algorithm (M5P), and Random Forest (RF) in predicting volumetric shrinkage-VS (A), starch-
STA (B) and electrical conductivity-EC (C) in corn grains at drying stage.
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consumes dry matter and alters the properties of the grain mass, especially when temperature and moisture 
contents are high, boosting the process. Some authors have reported that, during serial reactions in the grain 
mass, oxidations of grain constituents occur, which consequently leads to losses of total carbohydrates, starch, 
proteins, and oils70. In research on grains stored in different packages, André et al.25 found that the ANN, M5P 
and RF models can be used to predict the apparent specific mass, supporting our results.

Even though the ANN, M5P, and RF models did not show significant differences among themselves by the SK 
test (p < 0.05) (Fig. 16C), they obtained the highest r values (0.92, 0.91, and 0.94, respectively) for CE. The high 

Figure 14.   Early monitoring of relative humidity and intergranular temperature (A), equilibrium moisture 
content (B), CO2 concentrations (C), and dry matter loss (D), in corn grains at storage.

Figure 15.   Pearson correlation network established between the variables: storage time (ST), intergranular 
temperature (T), intergranular relative humidity (RH), moisture content (MC), apparent specific mass (ASM), 
germination (GERM), electrical conductivity (EC), crude protein (CP), crude fiber (CF), fat (FAT), ash (ASH), 
starch (STA), carbon dioxide concentrations (CO2), and dry matter loss (DML).
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correlation was defined by the following MAE values (54.75, 57.33, and 46.41, respectively), while the random 
forests algorithm (RF) obtained the highest R2 (88.36%). Temperature, time, and moisture content influenced 
the increased electrical conductivity44,70. The contribution of these factors favored adverse reactions to grain 
quality, causing damage to the cell membrane44,45, which were best predicted by the RF, ANN, and M5P models.

Regarding the germination variable (GERM), the ANN and RF models obtained the highest r correlations 
(0.94 and 0.95, respectively), not differing from each other by the SK test (p < 0.05) (Fig. 17A). There was a higher 
accuracy between monitored and predicted variables by the RF model, with R2 of 90.25% and lower MAE values 
(3.45 and 3.13, respectively) (Table 3). The MLR and M5P techniques were less accurate in predicting GERM, 
showing higher MAE (6.74 and 4.47, respectively) and r values (0.75 and 0.89).

Storage time and storage conditions accelerated biochemical reactions in the grain, degrading protein 
reserves, carbohydrates and negatively impacting germination71,72. We observed that high moisture content, 
relative humidity, temperature, and storage time increased oxidations and deteriorations in the embryo, reduc-
ing germination73. RF and ANN models were able to predict the germination outcomes accurately, supporting 
the findings reported by Zeymer et al.43.

There was no statistical difference among the models evaluated for the FAT variable. However, analyzing 
each ML model separately, the ANN and RF models showed the best results for r (0.73 and 0.73, respectively) 
and MAE (0.14) (Fig. 17B). Likewise, regarding the ASH variable, there was also no statistical difference by SK 
test (p < 0.05) between ML models (Fig. 17C). However, taking into account the higher r values (0.91), the M5P 
obtained the most accurate prediction, with R2 of 82.81% (Table 3).

For starch (STA) prediction, the ANN, M5P, and RF models were the most accurate, which did not differ 
from each other by SK test (p < 0.05) (Fig. 18A). The traditional MLR model obtained the lowest accuracy, with 
the highest MAE (1.01) and lowest r value (0.68). It is also noteworthy that the model with the highest accuracy 
was RF, with R2 of 79.21%.

In the endosperm of corn grain, the average starch content is between 72.4 and 88%, corresponding to 83% 
of the dry grain mass58. As a carbohydrate, starch has a signaling function, regulating metabolic processes and 
stabilizing the cellular osmotic potential74–77. As a biochemical property, starch is vulnerable to the effects of 
storage conditions, especially grain mass temperature65.

Some studies have reported that corn stored for three months at temperatures below 20 °C maintained starch 
properties77. However, when high temperatures were checked, a reduction in corn starch contents and degrada-
tion was observed as early as 60 days78. Furthermore, corn storage technology may also contribute to reducing 
starch in corn. Studies find a reduction in total sugar contents in corn grain as a function of reduced starch 
contents when stored in paper packaging for 90 days78.

For reducing and estimating starch quality losses and assisting in decision making, the ANN, M5P and 
RF models obtained the best performance (Table 3 and Fig. 18A). For the crude protein (CP), there was no 
statistical difference among the models evaluated by the SK test (p < 0.05) (Fig. 18B). However, the random 

Table 3.   Correlation coefficient (r), mean absolute error (MAE), and coefficient of determination (R2) 
between the observed and estimated values of moisture content, apparent mass specific, electrical conductivity, 
germination, fat, ashes, starch, crude protein, and crude fiber of corn grain in the transport operation for the 
different Machine Learning models. *Equal letters in the column do not differ at p < 0.05 by the Scott Knott 
test. Moisture Content (MC), Apparent Specific Mass (ASM), Electrical Conductivity (EC), Germination 
(GERM), FAT (FAT), Ash (ASH), Starch (STA), Crude Protein (CP), Crude Fiber (CF). Multiple Linear 
Regression (MLR), Artificial Neural Networks (ANN), Quinlan’s M5 Algorithm (M5P), and Random Forest 
(RF).

Models

r MAE R2 r MAE R2 r MAE R2

MC ASM EC

MLR 0.84c 0.89a 70.56 0.93b 2.69a 86.49 0.65b 96.93a 42.25

ANN 0.96a 0.45c 92.16 0.98a 1.43b 96.04 0.92a 54.75b 84.64

M5P 0.93b 0.53b 86.49 0.97a 1.59b 94.09 0.91a 57.33b 82.81

RF 0.97a 0.39c 94.09 0.98a 1.24b 96.04 0.94a 46.41b 88.36

Models

r MAE R2 r MAE R2 r MAE R2

GERM FAT ASH

MLR 0.75c 6.74a 56.25 0.69a 0.15a 47.61 0.90a 0.05a 81.00

ANN 0.94a 3.45b 88.36 0.73a 0.14a 53.29 0.90a 0.05a 81.00

M5P 0.89b 4.67c 79.21 0.71a 0.14a 50.41 0.91a 0.05a 82.81

RF 0.95a 3.13c 90.25 0.73a 0.14a 53.29 0.90a 0.05a 81.00

Models

r MAE R2 r MAE R2 r MAE R2

STA CP CF

MLR 0.68b 1.01a 46.24 0.75a 0.24a 56.25 0.56a 0.13a 31.36

ANN 0.88a 0.66b 77.44 0.76a 0.24a 57.76 0.62a 0.13a 38.44

M5P 0.87a 0.67b 75.69 0.77a 0.23a 59.29 0.59a 0.12a 34.81

RF 0.89a 0.63b 79.21 0.78a 0.23a 60.84 0.61a 0.13a 37.21
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forest (RF) model presented the highest r (0.78) and lowest mean apparent error MAE (0.23), achieving an R2 
of 60.84% (Table 3). There was no statistical difference among all models evaluated (p < 0.05) by the SK test for 
CF (Fig. 18C). For this variable, a satisfactory correlation between monitored and predicted data could not be 
found (Table 3).

The variables CP, FAT, CF and ASH were accurately predicted by RF, M5P, and ANN, with no statistical dif-
ference between the models. In a study by Alvarez et al.78, the authors verified that storage conditions influenced 
crude protein contents in corn grain mass, reducing to 10.6% in the 60-day storage period at a temperature of 
16 °C. The quality of the stored grains is affected by elevating the moisture contents of the corn grain mass61. 
Analyzing some of these biochemical properties in corn grains stored at 180 days, Queiroz et al.79 found that 
ash and crude fiber contents increased from 1.27% to 1.45% and reduced from 11.1 to 9.5%, respectively, with 
no changes in lipids (4.7%).

Figure 16.   Boxplot for means comparison of correlation coefficient (r) and mean absolute error (MAE) 
between the multiple linear regression (MLR) and Machine Learning models: Artificial Neural Networks 
(ANN), M5P Algorithm (M5P), and Random Forest (RF) in predicting moisture content-MC (A), apparent 
specific mass-ASM (B) and electrical conductivity-EC (C) in corn grains at storage stage.
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Conclusion
Advances in grain quality monitoring technologies in post-harvest processes are being opened with the applica-
tion of artificial intelligence. These advances support strategies to prevent post-harvest grain spoilage. In this 
study, it was concluded that the corn grain quality at the different post-harvest stages was satisfactorily predicted 
by the Machine Learning models. At grain transport, the ANN, M5P, and RF models obtained the best prediction 
results for dry matter loss, apparent specific mass, electrical conductivity, and germination. At drying stage, the 
ANN and RF models are the best predictors of starch yield, volumetric shrinkage, and electrical conductivity. 
At storage, the ANN and RF models are suitable for predicting the moisture content and germination variables. 
The M5P model successfully predicted the bulk density, electrical conductivity, and germination. We highlight 

Figure 17.   Boxplot for means comparison of correlation coefficient (r) and mean absolute error (MAE) 
between the multiple linear regression (MLR) and Machine Learning models: Artificial Neural Networks 
(ANN), M5P Algorithm (M5P), and Random Forest (RF) in predicting germination-GERM (A), fat-FAT (B) 
and ash-ASH (C) contents in corn grains at storage stage.
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the RF model and ANN as the most suitable for predicting corn grain quality at different post-harvest stages 
due to its simplicity, processing speed, and ability to reveal the levels of importance of the variables that best 
contribute to the model fit. From this, it is suggested the application of sensors for real-time monitoring of eas-
ily measured variables makes it possible to more adequately control post-harvest processes (Fig. 19), as well as 
indirectly predict grain quality losses through machine learning models.

Figure 18.   Boxplot for means comparison of correlation coefficient (r) and mean absolute error (MAE) 
between the multiple linear regression (MLR) and Machine Learning models: Artificial Neural Networks 
(ANN), M5P Algorithm (M5P), and Random Forest (RF) in predicting starch-STA (A), crude protein-CP (B) 
and crude fiber-CF (C) in corn grains at storage stage.
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