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Vulnerability detection in Java 
source code using a quantum 
convolutional neural network 
with self‑attentive pooling, deep 
sequence, and graph‑based hybrid 
feature extraction
Shumaila Hussain 1,2*, Muhammad Nadeem 3, Junaid Baber 2,4, Mohammed Hamdi 5, 
Adel Rajab 5, Mana Saleh Al Reshan 6 & Asadullah Shaikh 6

Software vulnerabilities pose a significant threat to system security, necessitating effective automatic 
detection methods. Current techniques face challenges such as dependency issues, language bias, 
and coarse detection granularity. This study presents a novel deep learning‑based vulnerability 
detection system for Java code. Leveraging hybrid feature extraction through graph and sequence‑
based techniques enhances semantic and syntactic understanding. The system utilizes control flow 
graphs (CFG), abstract syntax trees (AST), program dependencies (PD), and greedy longest‑match first 
vectorization for graph representation. A hybrid neural network (GCN‑RFEMLP) and the pre‑trained 
CodeBERT model extract features, feeding them into a quantum convolutional neural network with 
self‑attentive pooling. The system addresses issues like long‑term information dependency and coarse 
detection granularity, employing intermediate code representation and inter‑procedural slice code. To 
mitigate language bias, a benchmark software assurance reference dataset is employed. Evaluations 
demonstrate the system’s superiority, achieving 99.2% accuracy in detecting vulnerabilities, 
outperforming benchmark methods. The proposed approach comprehensively addresses 
vulnerabilities, including improper input validation, missing authorizations, buffer overflow, cross‑site 
scripting, and SQL injection attacks listed by common weakness enumeration (CWE).

Keywords Vulnerability detection, Self-attentive QCNN, Feature extraction, Hybrid GCN, Software security, 
CodeBERT

The COVID-19 pandemic has dramatically intensified the use of computer applications, leading to an unprec-
edented increase in software vulnerabilities. According to the national vulnerability database (NVD), there were 
20,158 reported vulnerabilities in  20211. This exponential growth in security vulnerability is causing significant 
economic impacts and substantial financial  losses2–7.

Therefore, software vulnerability detection has become more crucial and challenging than ever. The need for 
generalized, scalable, accurate, fine-grained, and high-speed automatic vulnerability detection approaches is evi-
dent. Vulnerability typically stems from programming oversights, which the current detection tools, using either 
static or dynamic code analysis, often fail to address adequately. The analysis of code for security vulnerability 
without execution is the static code analysis technique, while in dynamic code analysis, the running application 
is tested for security vulnerability. Static code analysis techniques can be resource-intensive, while dynamic 
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code analysis can increase execution time and negatively impact  performance8. Both of these approaches are 
language-specific, rule-based, and dependent on the knowledge of the developers, making them prone to errors, 
biased, coarse-grained, and leading to unacceptably high false-negative rates.

Machine learning (ML) techniques have proven promising in vulnerability  assessment9–14. The deep neural 
networks (DNNs) have demonstrated capabilities in learning source code patterns, excelling in syntax-level 
bug detection and pattern  recognition15–17. However, existing deep learning (DL) solutions for vulnerability 
assessments have certain limitations; they primarily concentrate on the syntactic structure of code, neglecting 
its semantic  information18–20. They target either a single file of source code or a small dataset or rely on applica-
tion processing interface APIs to address the selected vulnerability. Furthermore, DL techniques often struggle 
to understand the value transfers within source codes due to a lack of semantic information, resulting in a high 
false-positive rate and less scalable  approach21–23.

The employed self-attentive quantum convolutional neural network along with deep learning techniques 
significantly improves the memory bottleneck issue, semantics understanding of code pattern and accelerated 
the performance. The proposed vulnerability detection system can detect a range of vulnerabilities, including 
improper input validation, SQL injection attacks, missing authorization, cross-site scripting, and buffer overflow 
attacks listed among the top 25 most impactful security vulnerabilities by common weaknesses enumeration 
(CWE). The CWE is a project of Mitre and is responsible for listing the software and hardware weakness types 
according to their impact to help prevent the vulnerability. This research paper contributes to the field of auto-
matic vulnerability detection in several significant ways:

1. It develops a novel vulnerability detection system that implies efficient and accurate vulnerability detection 
using hybrid feature extraction by concatenating graph-based and sequence-based approaches coping with 
complex vulnerability patterns, enhancing vulnerability detection granularity, and reducing false-positive 
rates.

2. It proposes a hybrid graph neural network based on GCN-RFEMLP to overcome the absence of order 
information of nodes in the graph. Our fused wrapper method has reduced the dimension of features and 
removed irrelevant features to improve efficiency.

3. It introduces bimodal pre-trained CodeBERT model to implement fine-tuned feature extraction, reducing 
thereby, the semantic gap to improve vulnerability detection.

4. It analyzes the vulnerability detection dataset and balances the dataset to avoid overfitting, thereby improving 
the performance.

5. It employs the benchmark comprehensive software assurance reference dataset (SARD) for model training 
and testing, preprocessing the datasets to achieve optimized results. The proposed system is tested with five 
different datasets to ensure its performance, robustness, and validity.

6. It employs novel quantum convolutional neural network using self-attentive pooling to improve the compu-
tation, long-term dependencies, and memory bottleneck issues to classify the vulnerable code and type of 
vulnerability. To the best of our knowledge, QCNN-Self Attentive pooling is used for the first time to classify 
the vulnerabilities.

7. It proposes a novel framework for effective feature selection, contributing to a broader understanding of this 
field and suggesting a more balanced and effective approach to vulnerability detection across diverse types.

The remainder of this paper is structured as follows:
"Related work" section delves into a review of relevant literature. "Methodology" section outlines the method-

ology employed in this research. "Experiments and results" section details the experiment and results, including 
the experimental setup and derived results from the proposed method. "Conclusion" section offers the conclu-
sions drawn from this study.

Related work
Manual source code auditing, involving a team of security experts, scrutinizing source code for vulnerability, is 
the most traditional approach to finding software  vulnerability24. However, conventional software vulnerability 
analysis techniques often struggle to cope with real-time and ever-increasing software security vulnerability.

Vulnerability detection based on code analysis is trending and is classified into three main approaches: 
static, hybrid, and dynamic vulnerability  detection25. Static analysis scrutinizes source code without execution, 
whereas dynamic analysis examines it through execution. The hybrid analysis combines the two. Many tools 
and techniques, such as code comparison, symbolic execution, and inference techniques, have been developed 
for static analysis. However, these techniques do not cover all existing vulnerabilities and are ill-equipped to 
analyze emerging security threats. Dynamic analysis techniques, including fuzzing and taint analysis, require 
substantial computational time and  resources26–31. Furthermore, the performance and reliability of these methods 
are insufficient to meet current security challenges.

The surge in software vulnerability has driven researchers to devise better detection strategies. Software secu-
rity researchers have begun leveraging machine learning’s predictive power to address these security challenges. 
Machine learning techniques, whether supervised, unsupervised, or semi-supervised, are increasingly used for 
vulnerability detection. Among various machine learning approaches, supervised machine learning is widely 
adopted for software vulnerability detection. Figure 1 illustrates the supervised machine learning approaches 
for vulnerability assessment.
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Code representation learning
The code must follow a specific format to implement machine learning techniques, categorized into three primary 
representation methods:

Sequence-based In this approach, data is divided into chunks, such as characters, tokens, or APIs, utilizing 
techniques like bag-of-words, n-gram, word2vec, etc. These techniques involve data preprocessing, tokenization, 
and the adoption of neural networks. However, they may lack long-term contextual code abstraction.

Tree-based This method employs a neural network structure on abstract syntax tree (AST)-based data rep-
resentation. The tree is subdivided into small statements containing code snippets. Challenges include code 
fragment complexity and gradient vanishing.

Graph-based This approach represents code in a graph structure, primarily using a code property graph (CPG) 
composed of an abstract syntax tree (AST), control flow graph (CFG), context flow graph (XFG), and program 
dependency graph (PDG) for intermediate code  representation32. While graph-based techniques can address 
long-term dependency issues, they require intensive computation.

In one of the related researches, a vulnerability analysis study used graph neural networks (GNN) and circle-
gated graph neural networks to detect the vulnerable  code33,34. In another study, the researchers used a flow 
graph for source code representation, performed vectorization through word2vec, and applied the graph neural 
network method to identify the  vulnerability35–37. The software vulnerability detector named DeepVulSeeker 
used a pre-trained model to convert natural language descriptions to programming code. Another research study 
in context used intermediate code representation by applying AST, CFG, and DFG and deployed a pre-trained 
model, while CNN and FNN neural networks were used to classify the  vulnerability38,39. The abstract syntax tree 
neural  networks40,41 and self-attentive deep neural network coupled with text mining were also  tried42. Similarly, 
ChatGPT involves human interaction to identify vulnerabilities and recommend  fixes43.

Another study explored regression trees for vulnerability  detection44. Similarly, a hybrid approach using 
deep learning-based lightweight-assisted vulnerability was used in a study pertaining to the same, while another 
research used minimum intermediate representation  learning45,46. The researchers exploit program slicing and 
binary gated recurrent unit (BGRU) in a similar nature of study, while code slicing using code metrics as features 
is used to detect vulnerabilities related to pointer  usage47,48. Other studies implemented deep learning techniques 
like CNN and others, along with feature selection, for detecting SQL and cross-site scripting  vulnerability48–51. 
Yet another study proposed a model based on source feature learning and  classification52. It has been observed 
that feature selection is frequently studied alongside machine learning approaches for vulnerability  detection53–55.

Two similar studies used word2vec and LSTM to identify code with cross-site scripting, SQL injection, cross-
site forgery, and open redirect  vulnerability56,57. The recurring neural network model called BiLSTM is used to 
focus on buffer errors and resource management vulnerability  detection58. Similarly, BiLSTM and taint analysis 
performed well in one of the research pursuits conducted in the same  context59. Techniques like CNN, long-
short-term memory (LSTM), and directed graphs were used for vulnerability  detection60.

One of the related studies in this regard compared the Random forest, CNN, and RNN techniques to bench-
mark vulnerability  detection61. Similarly, the GNN-based model outperformed for vulnerability  detection62,63. 
Another study presented a comparative analysis using Naïve Bayes, decision trees, SVM, k-nearest neighbor, and 
RF to evaluate software vulnerability detection  performance64–67. Yet another study focusing on SVM, multino-
mial Naïve Bayes classifiers, and bidirectional encoders based on BERT transfer learning concluded that BERT 
outperformed other methods in detecting  vulnerability68. Notably, none of the studies reviewed considered the 
semantic similarity of code, prominent the gap in the deep learning techniques used for vulnerability detection. 
In contrast, our work extracts the semantic similarity of the code, enhancing system performance, as further 
detailed in the results section.

Figure 1.  Machine learning techniques used for vulnerability assessments.
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Improper input validation, a major cause of security vulnerability in computing applications, can trigger 
SQL injection attacks, missing authorization, cross-site scripting (XSS) attacks, and buffer overflows. The Com-
mon Weakness Enumeration (CWE) project of the Mitre organization, a comprehensive dictionary of software 
weaknesses, ranked input validation as the fourth most frequently occurring and dangerous security vulner-
ability in  202169,70. Therefore, we selected improper input validation, cross-site scripting, buffer overflow, missing 
authorization, and SQL injection vulnerability ranked among the top 25 most impactfull and dangerous security 
vulnerabilities listed by CWE for evaluating our proposed system. Table 1 below shows some vulnerability detec-
tion techniques commonly used to analyze the selected vulnerability.

Methodology
This section describes our proposed system for vulnerability detection, which introduces fused feature extraction 
that leverages semantic and syntax understanding of code for a nuanced vulnerability assessment.

Framework of proposed vulnerability detection system
Code auditing is performed predominantly on C/C+ languages, while there is always a space for Java code audit-
ing due to deficient code auditing techniques quantified for this language. Our system aims to automatically 
detect software vulnerability from Java code using DL, considering syntactic structure and code semantics, 
focusing on fine-grained vulnerability detection. Given that existing DL techniques often overlook the semantic 
relationships in code, our system is designed to fill this gap and improve the false-positive rate. The proposed 
system uses a novel mechanism based on hybrid feature extraction that concatenates sequence-based and graph-
based feature extraction and detects the vulnerability using deep learning.

The proposed methodology is depicted in Fig. 2 given below. The proposed scheme is divided into three parts 
(1) Intermediate input representation (2) Hybrid feature extraction, and (3) Classification. The first step com-
prises a standard dataset converted into source code representation using code property graph and tokenization 
to get it presentable to leverage machine learning techniques. In the second step, the hybrid feature extraction is 
applied. The graph feature extraction used along with sequence-based feature extraction leverages the semantic 
and syntax structure of code. The extracted features are concatenated, and a quantum convolutional neural 
network with self-attentive pooling is employed to detect selected vulnerabilities.

The selected vulnerabilities are listed among the most impactful according to CWE and include improper 
input validation, SQL injection vulnerability, missing authorization, cross-site scripting, and buffer overflow. 
The system detects vulnerable functions and types of vulnerability.

Table 1.  Commonly used techniques for vulnerability detection.

Vulnerability Approach

Cross-site scripting XSS attacks

1. Cross-site scripting attack XSS detection using a modified CNN  model71

2. Automated server-side XSS attack detection using boundary  injection72

3. Taint tracking-based analysis of DOM cross-site scripting named as TT-XSS73

4. Support Vector Machine is used to detect blind cross-site scripting  vulnerability74

5. Reducing attack surfaces for cross-site scripting attacks using secure  SDLC75

6. Detecting cross-site scripting vulnerability using LSTM and recurrent neural networks (RNN) named 
 DeepXSS76

7. Using genetic algorithms and reinforcement learning for XSS attack  detection77

8. Using ML with hybrid features for XSS attack  detection78

9. Using Fuzzy inference for dynamic detection of XSS cross-site scripting  attacks79

Buffer overflow attacks
1. Analyzing network intrusion for buffer overflow  attacks80

2. Implementing string library function to detect integer overflow-to-buffer overflow  attacks81

3. Performed static buffer overflow detection and suggested automatic  detection82

4. Static buffer overflow detection and repair using the Bovlnspector  tool83

SQL injection attacks

1. SQL injection attacks detection using a decision  tree84

2. Using behavior and response analysis for SQL injection  attacks85

3. SQL injection attack detection in web applications using heuristic-based  analysis86

4. Applying neuro-fuzzy techniques to prevent and detect SQL injection  attacks87

5. Algorithm designed for black box testing to mitigate SQL injection  vulnerability88

6. A traffic-based technique called DIAVA to detect data leakages and SQL injection  attacks89

7. A hybrid method consists of augmenting database tables with symbols, then using an algorithm 
for queries and another algorithm designed for string matching to prevent and detect SQL injection 
 attacks90

8. Using intrusion set randomization to detect SQL injection  attacks91

9. A tool is developed to detect SQL injection attacks and display suggestions to fix  them92

Missing authorization

1. The tool is developed to detect missing authorization in distributed cloud systems using inferring vari-
able definition, user-owned data, and critical system  state93

2. The proposed role cast SE-based technique consists of the context of security-sensitive events that are 
control-dependent on  roles94

3. The Vanguard is an approach consisting of static analysis for sensitive operations, analyzing sustain-
ability using taint analysis, and the existence of risk degree of missing  authorization95

4. VRust is proposed to analyze vulnerability, including missing authorization for Solana, by assigning 
validation rules for vulnerable input  accounts96

5. The CRIX system consists of interprocedural, semantic, and context-aware  systems97

6. MACE is based on checking the authorization state  consistency98



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7406  | https://doi.org/10.1038/s41598-024-56871-z

www.nature.com/scientificreports/

Dataset/data acquisition
To train our proposed system, we have used the Software Assurance Reference Dataset (SARD) benchmark 
dataset, which contains hundreds of thousands of source code programs with known vulnerabilities. This dataset 
includes 42,212 files comprising 29,258 safe samples and 12,954 unsafe samples of source code, covering 150 
classes of bugs or weaknesses listed by  CWE99–104. For our study, we have selected 46,447 Java programs from 
SARD, including vulnerabilities related to SQL injection attacks, missing authorization, cross-site scripting, 
improper input validation, and buffer overflow. The proposed system is validated using other benchmark datasets, 
including Juliet java 1.3105–107, FUNDED, Vul4j, CVEfixes, and CodeXGLUE.

Dataset preprocessing
Data preprocessing involves several essential steps.

a. Dataset balancing.
  Addressing dataset imbalance is crucial for the optimal performance of machine learning algorithms. The 

benchmark dataset for vulnerability detection often exhibits a significant disparity between vulnerable and 
clean codes. Achieving a balanced dataset is vital for accurate and efficient algorithm performance, helping 
reduce false positive ratios. Additionally, missing values are appropriately handled.

b. Duplicate code removal
  Removing duplicate code enhances performance, reduces complexity, and minimizes execution time. 

Decision trees are employed for the efficient removal of duplicate code and code clones.
c. Handling outliers
  Organizing the dataset is essential for improved performance. Outliers are detected and effectively handled 

using log transformation, contributing to dataset normalization.
d. Vectorization
  Textual data is transformed into numerical form through vectorization, ensuring uniform scaling and 

enhancing algorithm performance.
e. Normalizing
  Further normalization of the dataset ensures consistent scaling without compromising range differences. 

Data normalization equalizes the impact of each feature, addressing potential accuracy issues arising from 
inherently large values. The Z-Scaling technique is employed for data normalization, converting text-based 
datasets into integers.

Graphical feature extraction
Intermediate code representation
We have applied the classical code property graph (CPG) for graphical code representation, which is a combina-
tion of abstract syntax tree (AST), control flow graph (CFG), and program dependency graph. It helps analyze the 
syntactic structure and code semantics. It is important to convert the code into intermediate code representation 
to remove the pointless points and reduce the dependencies.

a. Abstract Syntax Tree (AST)
  The AST is used to parse the syntactic structure of code effectively. The abstract syntax tree comprises a 

root node that holds functions, branches of statements, declarations, predictions, and expressions while the 
leaf nodes represent the operators, identifiers, and keywords.

b. Control Flow Graph (CFG)
  The CFG represents the order of code execution. It expounds statements and conditions that need to be 

met for the execution of code branches. The nodes in the CFG indicate the statements, while the edges denote 
the transfer of control.

c. Program Dependency Graph (PDG)

Figure 2.  The framework of the proposed vulnerability detection system.
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  It describes the control and data dependencies in the function. The data dependency edge holds the 
declared variable to be used later, while the control dependency edges denote the impact of predicates on 
variables.

Node embedding
Node embedding aims to reduce the nodes’ properties in smaller dimension vectors. The outcome of node 
embedding is fed as input to downstream machine learning-based processing techniques. Flexibility in exploring 
neighborhoods in node2vec has been observed to provide a richer representation. The rich structural informa-
tion improves the ability of features to imply nonlinear information. Therefore, the node2vec is used for node 
embedding with random walk using skip-gram with negative sampling technique to maximize the probability 
of preserving the neighborhood of nodes. The node2vec is a second-order Markov chain. It implements random 
walk on graphs to extract the context pair using bootstrapping approach and use them for training the word2vec 
model. It transforms graphs to numerical representation while preserving the structure of the network in a way 
that the close nodes remain close in embedding. The structure of node2vec is given in Fig. 3.

Feature extraction
We have employed hybrid graph neural network GCN-RFEMLP based on graph convolutional neural network 
(GCN) and multilayer perceptron fused with recursive feature elimination wrapper. The GCN lacks feature 
similarity, which can create noise. We, therefore, have concatenated RFEMLP with GCN to overcome this issue. 
The graph convolutional neural network is designed to deal with graph structure data. It implements a message-
passing technique where the embedding information of a node is updated based on the neighboring node. The 
node embedding is converted into graph embedding, serving as input to a fully connected classifier. We have 
added a bi-affine layer in GCN to achieve better dependency parsing and preserve code semantics. The structural 
composition of graph convolutional neural networks is illustrated in Fig. 4 given below.

We used an MLP neural network with a rectified linear activation function, ReLu, on the hidden layer and a 
Softmax activation function on the output layer. The generalized formula for ReLu is depicted in Eq. (1).

where O is the output before applying the activation function, W represents the weights, A represents the input 
to the layer, and B represents the bias.

The Fig. 5 illustrates structural composition of MLP network. We have used adam, adadelta, momentum, 
and stochastic gradient descent (SDG) optimizer along with loss functions mean square error (MSE) and mean 
absolute error (MAE) to select the best fit. We have paired each optimizer with a loss function to get the results. 

(1)O = WA+ B

Figure 3.  Structure of Node2Vec using random walk and skip-gram.

Figure 4.  Structure of graph convolutional neural network.
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The selections given below show the combination of each optimizer and loss function. Selection 1 shows the 
combination of the adam optimizer with the MSE loss function similarly; Selection 2 shows the combination of 
the adam optimizer with the MAE loss function, and so on.

Table 2 depicts different compositions of optimizers and loss functions. The results obtained from each selec-
tion are compared to implement the best combination of optimizer and loss function to improve the system’s 
accuracy. We have conducted experiments to acquire the optimal combination with minimal loss to improve 
the algorithm’s performance. The loss function enumerates the difference between the actual value and the 
predicted value. The selection 3 and selection 7 showed improved results. We, therefore, have selected selection 
7 to use with MLP to boost the performance. Moreover, the model training contains regulating the parameters, 
hyper-parameter tuning, CommitCount functions, setting bias, optimizers, loss functions, and weights to reduce 
false positive rate. The fine-tuned model detects the vulnerability. The specified learning rate set in the proposed 
model is 0.0005 on 300 epochs, neurons = 128, early stopping = 30, and batch size = 64. The RFEMLP imposes a 
machine learning-based wrapper technique called recursive feature elimination (RFE) on a multilayer percep-
tron neural network. The RFE keeps on eliminating the irrelevant feature on each iteration until it reaches the 
most impactful features. The RFE reduces the redundant features to improve efficiency. We have implemented 
a decision tree classifier for RFE. Based on the aggregate difference between the features space, we have set the 
ranking of features from the most important to the least important.

Figure 5.  Structure of multilayer perceptron neural network model (MLP).

Table 2.  Different combinations of optimizers and loss functions.

No Combination

Selection 1 Adam + MSE

Selection 2 Adam + MAE

Selection 3 AdaDelta + MSE

Selection 4 AdaDelta + MAE

Selection 5 Momentum + MSE

Selection 6 Momentum + MAE

Selection 7 SDG + MSE

Selection 8 SDG + MAE
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Input: Total selected features by GCN

Process:
Function FeatureSelection(MLP_features):

total_selected_features = 0

For each stf in MLP_features: // stf is the total selected features by MLP
If stf > 0:

For each f1 in stf:

TempM.append(f1.[a])  // Assign to a random temporary memory location
Score = eliminate(train, validate, TempM) // Evaluate feature's score for elimination
FX[f1[a]] = Score  // Store evaluated feature performance
FMax = getFMax(FX)  // Identify feature with maximum performance
a.remove(FMax)  // Remove feature with maximum performance from consideration
If FX[FMax] > SetMax: // Compare evaluated feature performance with maximum performance value, SetMax is 
the maximum performance value

SetMax = FX[FMax]  // Update maximum performance value
A = f1  // Store the selected feature
Increment counter

Else

Decrement counter

End For

Else:

Return f1

End For

Return Total selected features by RFEMLP

Algorithm 1 Feature selection using RFEMLP

Sequence‑based feature extraction
CodeBERT
The pre-trained models are effective in vulnerability  prediction108,109. The CodeBERT combines bidirectional 
encoder representation from transformers and optimized BERT called  RoBERTa110. The BERT is a self-supervised 
model that utilizes the characteristics of mask-based goals and a transformer-based architecture. The CodeBERT 
is the only large bimodal pre-trained model using natural and programming  languages111. It effectively analyzes 
the semantic connections between programming language and eliminates the long-range dependency in code. 
Moreover, the multi-head attention mechanism of transformers effectively analyzes multiple key variables of 
data flow.

The Fig. 6 illustrates the architecture of the CodeBERT model. In the first step, the CodeBERT takes code 
input and tokenizes the code. We have implemented the greedy longest match first algorithm for tokenizing. In 
the second step, the tokens are used to extract the features. To perform feature extraction, we have fine-tuned 

Figure 6.  Structure of CodeBERT model.
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the CodeBERT by setting the batch size to 32, the learning rate of  10–3, 50 epoch size, and used early stopping 
to avoid overfitting.

Classification
Quantum convolutional neural network with self-attentive pooling
The software Java source code has a complex lexical structure, and intricate syntactic and semantic features with 
longer length which is difficult to tackle. Moreover, the large and complex software can create computational and 
memory bottleneck issues while dealing with vulnerability detection. We have, therefore, employed a quantum 
neural network to overcome these issues with quantum mechanisms. The quantum mechanism is based on 
quantum entanglement and quantum superposition states. Quantum neural networks are embedding entangle-
ment and quantum superposition states to improve the accuracy of neural networks. It utilizes the quantum bit, 
interference, superposion, and entanglement mechanism for information processing. The q-bit is a state vector 
depicted in the equation below

where θ and δ are the probability amplitudes that are represented by complex numbers and |θ2| +|δ2|= 1. The 
quantum mechanism implies that any unitary matrix is a quantum gate U given below in Eq. (3).

where U† is the conjugate transpose of a matrix U, and I is an identity matrix. There are three qubit gates 1. one 
qubit gate, which is a square root of NOT gate, also known as Pauli gates 2. two qubit gate which work on 4 × 4 
unitary matrices; and 3. multiple-qubit gates which work on multiple qubits as 2n × 2n unitary matrices. The 
quantum mechanism resolved memory issues in huge computations and structural bottleneck issues and attained 
higher computing capabilities than classical computing.

The quantum convolutional neural network provides a promising machine learning paradigm. We have used 
a quantum pennyLane device to mimic the four-qubit device. The RY gate is responsible for converting the code 
into quantum bits. The quantum convolutional layer works as the conventional convolutional layer in the CNN 
model using a quantum computing mechanism. Quantum convolution works as small random quantum circuits 
(RQCs) to calculate convolution operation. It consists of three phases: encoding, RQC, and decoding. The RQC 
is applied to the convolutional layer and pooling layer. The encoding layer is responsible for converting the 
extracted features in classical form into a high-dimensional quantum bit state. We have applied basis encoding to 
convert the data into qubits. The concatenated features are converted into binary features and then into a quantum 
state. The embedded quantum state is the bit-wise conversion of binary string into a quantum subsystem; thus, 
the source code is transformed into the quantum bit. The paddle library in Python is used for basis encoding.

In the second layer, RQC is applied at a convolutional layer that uses multiple qubit gates among the adjacent 
qubit. Similarly, the qubit gates applied on pooling reduce the size of the quantum system. We have applied a 
self-attention mechanism on the pooling layer to improve the system’s performance. The fully connected circuit 
is responsible for decoding and classifying the vulnerable code and the type of vulnerability identified. The 
QCNN uses multiscale entanglement MERA in the reverse direction and repeats until sufficiently reduces the 
size of the quantum system.

We have applied a novel pooling technique using a multi-head self-attention mechanism to improve the 
computation and memory footprints, thus improving the model’s performance. The proposed self-attention 
mechanism comprised tokenization, multihead self-attention, spatial channel restoration, and sigmoid and soft 
max activation functions applied on the pooling layer to make it self-attentive. The input features are tokenized, 
and multi-head self-attention manages the long-term dependencies in the tokens, while the spatial channel 
restoration helps in decoding and restoring the tokens to self-attention maps. The activation function softmax 
rectifies the self-attention maps. Adding a self-attention mechanism in QCNN further improves the memory 
footprints and computation. The quantum convolutional neural network classifies the vulnerable code and 
identifies the vulnerability type.

The Fig. 7 above illustrates the overall structure of self-attentive QCNN model proposed to identify the 
security vulnerability and type of vulnerability.

(2)|�� = θ |0� + δ|1�

(3)UU† = U†U = I
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1. Input_dataset = load_dataset()     // Input dataset with Java/JavaScript Code (i.e. SARD)
2. Balanced_dataset = balance_dataset(input_dataset)     // Preprocess the data (dataset balancing, duplicate 
removal, handling outliers, missing values)
deduplicated_dataset = remove_duplicates(balanced_dataset)

processed_dataset = handle_outliers_missing_values(deduplicated_dataset)

3. Vectorized_data = vectorize_data(processed_dataset)     // Vectorize the data by converting string data into 
integers
4. Normalized_features = z_score_normalization(vectorized_data)     // Normalize feature scaling using z-
score
5. Intermediate_representation = generate_intermediate_representation(normalized_features)     // 
Perform graph-based feature extraction

node_embeddings = apply_node_embedding(intermediate_representation)

extracted_features = perform_feature_extraction(node_embeddings)

6. Sequence_features = extract_sequence_features(normalized_features, CodeBERT_model)     // 
Employ sequence-based feature extraction using a pre-trained model, CodeBERT
7. Concatenated_features = concatenate(sequence_features, extracted_features)     // Concatenate the 
sequence-based and graph-based features
8. Encoded_qubits = encode_code_to_qubits(concatenated_features)     // Apply quantum convolutional 
neural network with self-attentive pooling

rqc_output = apply_random_quantum_circuit(encoded_qubits)

self_attentive_output = self_attentive_pooling(rqc_output)

decoded_output = decode_output(self_attentive_output)     

9. Vulnerable_code, vulnerability_type = identify_vulnerability(decoded_output)

produce_output(vulnerable_code, vulnerability_type)     //Produce output as vulnerable code and type of 
vulnerability

Algorithm 2 Composition of the proposed vulnerability detection system

Experiments and results
Experimental setup
The proposed automatic vulnerability detection system was evaluated via numerous experiments on a Windows-
based computer equipped with an  Intel® Core™ i7-10700H processor and 128 GB of RAM. The model is imple-
mented using Python and Tensorflow framework using library packages like Keras, NumPy, sci-kit-learn, and 
Pandas. The hyper-parameters are set as epoch = 50, learning rate = 0.005, momentum = 0.9, dropout rate = 0.3, 
loss = cross-entropy.

Performance metrics
We assessed the performance of the proposed system using various metrics, including recall, precision, and 
accuracy. Accuracy was calculated according to Eq. (4).

Figure 7.  Structural composition of quantum neural network with self-attentive pooling.
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In this equation, TN stands for true negative, TP for true positive, FP for false positive, and FN for false 
negative. Additional metrics employed for performance validation were precision (see Eq. 5), which represents 
the fraction of correct positive predictions, and recall (see Eq. 6), which indicates the ratio of correct positive 
predictions with all positive predictions.

Comparative analysis
The proposed system is developed to effectively predict the software systems’ security vulnerability. To analyze 
the performance of the proposed system, it underwent testing on source code to identify potential security 
vulnerabilities.

The Table 3 compares our technique with other deep learning techniques like CNN, SVM, GNN, LSTM, 
BiLSTM, ANN, MLP, DNN, and FFDNN. The proposed model displayed superior accuracy, precision, and recall, 
suggesting its enhanced effectiveness in detecting maximum security vulnerability.

The research focused on different types of vulnerability, each possessing unique semantic features. The pro-
posed system underwent training with the balanced SARD dataset containing synthesized data, making it uni-
versally applicable to various vulnerability types. To effectively assess the validity and performance of our system, 
the system was trained using other datasets, including Juliet Java 1.3, FUNDED, Vul4J, and CVEfixes. The SARD 
and Juliet java 1.3 are benchmark datasets made public by NIST.

The Table 4 depicts that the proposed system performed well with the other datasets FUNDED, Vul4j, CVE-
fixes, CodeXGLUE, SARD, VUDDY, and Julia jave 1.3, which proves the proposed system’s validity.

In Table 5 our proposed model is compared with the commercial vulnerability detection tools VulDeepecker, 
SQVDT, Exp-Gen, PreNNsem, ISVSF, VULDEFF, SedSVD, VulANalyZeR, FUNDED, GraphSPD, BiTCN_DRSN, 
and VERI. The proposed system outperformed in accuracy, precision, and recall rates.

The Fig. 8 shows the proposed system’s training and test accuracy. Data underscores the superior performance 
of our system, achieved by integrating hybrid feature extraction with syntax and semantic information of the 

(4)Accuracy =
TP + TN

TP + TN + FP + FN

(5)Precision =
TP

TP + FP

(6)Recall =
TP

TP + FN

Table 3.  Comparative analysis with machine learning techniques.

Classifier Accuracy F1

CNN112 0.92 0.92

SVM113 0.96 0.95

GNN114 0.95 –

LSTM115 0.96 0.96

BiLSTM116 0.96 –

ANN117 0.98 0.98

MLP118 0.84 –

DNN119 0.82 –

FFDNN120 0.77 –

Proposed model 0.99 0.97

Table 4.  Performance evaluation of the proposed vulnerability detector using well-known datasets.

Dataset Precision Recall F1 score

FUNDED 0.95 0.92 0.91

Vul4J 0.96 0.96 0.95

CVEfixes 0.98 0.95 0.93

CodeXGLUE 0.96 0.98 0.99

SARD 0.98 0.97 0.95

VUDDY 0.92 0.97 0.97

Juliet java 1.3 0.98 0.95 0.96
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code. Notably, our system successfully reduced the false-positive rate while ensuring a minimum number of 
missing values.

Conclusion
This study proposes an innovative system designed to analyze vulnerability in software code, aiming to address 
limitations found in previous deep learning techniques. The vulnerability detection methods have fallen short 
in considering code semantics, leading to suboptimal performance. Our proposed system, combining graph-
based feature extraction and sequence-based feature extraction with a proposed novel GCN-RFEMLP neural 
network, pre-trained model CodeBERT, and QCNN-self-attentive pooling, successfully audits source code for 
any potential security vulnerabilities. We leverage intermediate code representation, using a code property graph 
(CPG) for graphical code representation, consisting of an abstract syntax tree (AST), control flow graph (CFG), 
and program dependency graph.

The dataset is preprocessed considering the importance of data balancing, duplicate code removal, missing 
values, handling outliers, vectorization, and normalization for robustness, efficiency, and computational speed. 
Moreover, a quantum convolutional neural network with self-attentive pooling is used as a classifier. Our research 
concentrates on specific types of vulnerability: improper input validation, cross-site scripting (XSS), missing 
authorization, integer overflow, and SQL injection, which are listed among the top 25 most significant software 
security vulnerabilities in the common weakness enumeration (CWE). The Software Assurance Reference Dataset 
(SARD), a benchmark dataset, was employed to train our model. Furthermore, to prove the system’s validity, the 
proposed system is used with other benchmark datasets, including FUNDED, Vul4j, CVEfixes, CodeXGLUE, 
SARD, VUDDY, and Juliet Java 1.3.

To validate the efficiency of our system, we compared its performance against not only prevalent deep learn-
ing approaches like CNN, SVM, GNN, LSTM, BiLSTM, ANN, MLP, DNN and FFDNN but also other available 

Table 5.  Comparative analysis with existing vulnerability detector.

Accuracy F1 Score Precision Recall

VulDeepecker121 0.95 0.93 0.92 0.94

SQVDT122 0.97 0.95 0.94 0.96

Exp-Gen123 – – 0.95 –

PreNNsem124 0.96 0.97 0.96 0.98

ISVSF125 0.95 0.90 – –

MFXSS126 0.98 0.98 0.97 0.96

VULDEFF127 – 0.88 0.91 0.85

SedSVD128 0.91 0.95 – –

VulANalyZeR129 0.89 0.90 0.85 0.95

FUNDED130 0.92 – – 0.94

GraphSPD131 0.80 – – –

BiTCN_DRSN132 0.95 0.95 0.92 0.98

VERI133 0.92 0.93 0.94 0.91

Proposed model 0.99 0.97 0.98 0.96

Figure 8.  The training and test accuracy of the proposed system.
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systems such as VulDeepecker, SQVDT, Exp-Gen, PreNNsem, ISVSF, VULDEFF, SedSVD, VulANalyZeR, 
FUNDED, GraphSPD, BiTCN_DRSN, and VERI. The results from our experiments demonstrate the superior 
performance of our proposed system across various metrics, signifying a promising advancement in the field of 
automatic vulnerability detection.

Future directions
The proposed security vulnerability detection system, with its efficient feature extraction and quantum mecha-
nism, including self-attentive pooling, successfully addresses existing issues in vulnerability detection in Java 
source code. While the system is tailored for the structural complexities of Java source code, extending the 
proposed mechanism to other programming languages is a crucial future direction to assess its effectiveness 
across diverse codebases. Additionally, exploring the applicability of the proposed system in resolving natural 
language processing (NLP) tasks holds promise for mitigating time, cost, and memory bottleneck issues in 
broader contexts.

Data availability
The datasets generated and/or analysed during the current study are available in the Github repository using the 
link https:// github. com/ Vul- Detect- Code/ Vul- Detect.
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