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A new model using deep learning 
to predict recurrence after surgical 
resection of lung adenocarcinoma
Pil‑Jong Kim 1, Hee Sang Hwang 2, Gyuheon Choi 2, Hyun‑Jung Sung 2, Bokyung Ahn 2, 
Ji‑Su Uh 2, Shinkyo Yoon 3, Deokhoon Kim 2, Sung‑Min Chun 2, Se Jin Jang 2 & 
Heounjeong Go 2*

This study aimed to develop a deep learning (DL) model for predicting the recurrence risk of lung 
adenocarcinoma (LUAD) based on its histopathological features. Clinicopathological data and whole 
slide images from 164 LUAD cases were collected and used to train DL models with an ImageNet 
pre‑trained efficientnet‑b2 architecture, densenet201, and resnet152. The models were trained to 
classify each image patch into high‑risk or low‑risk groups, and the case‑level result was determined 
by multiple instance learning with final FC layer’s features from a model from all patches. Analysis of 
the clinicopathological and genetic characteristics of the model‑based risk group was performed. For 
predicting recurrence, the model had an area under the curve score of 0.763 with 0.750, 0.633 and 
0.680 of sensitivity, specificity, and accuracy in the test set, respectively. High‑risk cases for recurrence 
predicted by the model (HR group) were significantly associated with shorter recurrence‑free survival 
and a higher stage (both, p < 0.001). The HR group was associated with specific histopathological 
features such as poorly differentiated components, complex glandular pattern components, 
tumor spread through air spaces, and a higher grade. In the HR group, pleural invasion, necrosis, 
and lymphatic invasion were more frequent, and the size of the invasion was larger (all, p < 0.001). 
Several genetic mutations, including TP53 (p = 0.007) mutations, were more frequently found in the 
HR group. The results of stages I‑II were similar to those of the general cohort. DL‑based model can 
predict the recurrence risk of LUAD and identify the presence of the TP53 gene mutation by analyzing 
histopathologic features.
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Lung cancer is the leading cause of cancer morbidity and mortality worldwide, and the incidence of lung adeno-
carcinoma (LUAD) is still  increasing1,2. Currently, locoregional treatment such as surgical resection or radiation 
therapy is recommended as standard treatment in stages I–II LUAD, except for some cases of stage IIB showing 
invasive  growth3. However, postoperative recurrence is frequent even after complete resection of lung cancer, 
and the prognosis is generally poor even with salvage  treatment4. Therefore, predicting the risk of recurrence of 
lung cancer patients would be very useful when selecting the adjuvant treatment plan.

One of the key factors correlated with recurrence is tumor histology. Of note, a new international associa-
tion for the study of lung cancer (IASLC) grading system for invasive LUAD has been validated with improved 
recurrence-free and overall survival discrimination. Tumor spread through air spaces (STAS), a novel invasive 
pattern of non-small cell lung cancer (NSCLC), has been demonstrated in many studies to be strongly correlated 
with recurrence after resection, especially in stage I  cancers5,6 but the concept has been criticized because of the 
difficulty to discriminate the artifacts associated with specimen  handling7. In addition, various histopathologic 
features, such as pathologic TNM stage, tumor size, solid and micropapillary patterns, resection margin status, 
invasion of blood vessels and/or pleura, and tumor microenvironment have a significant correlation with patient 
 prognosis8. However, a detailed histopathologic examination of lung cancer is very difficult and laborious, mak-
ing it vulnerable to error. According to the results of a previous study, the reproducibility of the current IASLC 
grading system is good, but not very high, even for expert  pathologists9.
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Recent advances in digital pathology could help solve this problem. Developments in machine learning (ML)-
based image analysis techniques, especially in deep learning (DL), have shown that they can assist with diagnoses, 
identify novel features, and predict patients’  outcomes10. Research into ML-based histological analysis of lung 
cancer has mainly dealt with segmentation of tumor boundaries and the classification of tumor  types11–13. Several 
studies tried to predict patient outcomes by automatic histological analyses of histomorphometric  features14,15 
and tumor microenvironment  features16. Recent studies showed that DL-based analysis of images, not histomor-
phometric features, could predict the recurrence of  LUAD17,18. They had meaningful predictive performance, but 
they lacked analyses about the relationship between the models’ output and other histopathologic  parameters19.

In this study, we aimed to develop a new DL-based model to predict the recurrence of LUAD, and then we 
investigated the results in the context of histopathological parameters and tumoral genetic aberrations.

Materials and methods
Clinicopathological data acquisition
Clinical, pathological, and genomic data were retrieved from a previously reported  cohort20. It consists of 164 
cases of lung adenocarcinoma that were surgically resected from January 2015 to December 2015. Their data 
were retrospectively retrieved at Asan Medical Center (AMC), Seoul, Republic of  Korea20,21. The pathological data 
were reviewed by pulmonary pathologists (HSH and BA). Patients’ pathological diagnoses were established in 
line with the World Health Organization (WHO)  criteria8, IASLC  guideline9 and the 8th edition of the American 
Joint Committee on Cancer (AJCC) Cancer Staging  Manual22. Tumor samples were subjected to targeted next-
generation sequencing (NGS) using the AMC OncoPanel version 4, a custom cancer panel encompassing the 
entire exome area or mutation hotspot regions of 334 cancer-related genes and intron area of fusion hotspots 
of the ALK, EGFR, NTRK1, RET, ROS1, and BRAF  genes20. The inclusion and exclusion criteria for patients are 
summarized in Fig. 1.

Image data preparation for training the deep learning model
One representative hematoxylin & eosin (H&E)-stained slide was selected from each case by manual review 
blinded to clinical and pathological information. The slides were scanned with a 3D Histech Panoramic 250 
Flash II (Budapest, Hungary) scanner at 20× magnification and a resolution of 0.221 µm per pixel. Whole slide 
images (WSIs) were exported in mrxs format. Four expert pathologists (GC, HJS, JSU, and HG) annotated the 
boundaries of the tumor site using QuPath 0.3.0 (https:// qupath. github. io). It was reconfirmed in all images that 
the annotation results correctly indicated the tumor site.

For developing the DL model, image patches (256 × 256 pixels) were randomly extracted from the annotated 
tumor area with an average of 100 patches per non-recurrent case and 148 patches per recurrent case to balance 
the data size between the recurrent and non-recurrent groups. In total, 19,188 patches were retrieved. They 

Figure 1.  Flowchart of inclusion and exclusion of the patient cohort.

https://qupath.github.io
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were randomly divided into independent training and test sets at a ratio of 7:3. Cross validation method with 
fivefold was involved in train procedure. The images were normalized with the training set data in each channel.

Training method of the deep learning model
Due to the complexity and small size of this study’s data set, a lightweight network with fewer parameters was 
suitable because it requires less training time and achieves a performance comparable to other networks. To 
decide suitable DL model, we compared efficientnet-b2, densenet201 and resnet152. After comparing these DL 
modeling’s accuracy metrics in cross validation, we chose efficientnet-b2 architecture as our classifier, consider-
ing its special design for improving accuracy and efficiency through AutoML and model scaling with a verified 
ability to accomplish classification tasks with high accuracy while using a relatively small number of parameters 
(~ 7 million)23. The model network used ImageNet based pre-trained initialization of weights and was trained 
with cross-entropy as the loss function. The model parameters were updated by Adam optimizer with 0.9 β1 
and 0.999 β2

24. The network was trained with a batch size of 256 and an initial learning rate of 1e−6. The model 
parameters were iteratively updated to decrease the cross entropy. The model was saved when the least loss of 
cross-entropy was obtained in the validation set and then it was used for further evaluation and manipulation.

The input data were individual tumor image patches. Ground truth was the status of tumor recurrence of 
the case from which the image patch was extracted. During model training, data augmentation was applied 
to improve its robustness: flipping, translation, rotation, and color augmentations, including random contrast 
(multiplication by 0.5–1.5), brightness (multiplication by 0.65–1.35), hue (addition by − 32 to 32) and value 
(addition by − 32 to 32). The DL network was developed with the PyTorch framework (version 1.11.0) on a dual 
NVIDIA GeForce RTX 3090 under the Python (version 3.8) environment.

Performance evaluation of the model
The model classified each image patch into low-risk (LR) or high-risk (HR) groups according to the output 
(the model-based feature). Image patches classified as the HR group and extracted from a case with actual 
tumor recurrence were considered true positive, and vice versa. A case-level output was determined by multiple 
instance learning with 2-layer preNN and 1-layer afterNN with final FC layer’s 1408 features from a model from 
all  patches25.

The average value of the model-based features of the extracted patches. A confusion matrix was used to illus-
trate the performance of the trained model on the training, validation, and testing set with 4 categorical results 
[true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)]. Besides, additional 
parameters, including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) 
and F1-score were calculated to obtain a comprehensive performance measure of the results. The 95% confidence 
intervals (CIs) of sensitivity, specificity, PPV and NPV were calculated to estimate the corresponding  variability26. 
To validate its clinical performance, recurrence-free survival (RFS) rates by risk group were compared using the 
Kaplan–Meier method and the log-rank test.

Clinicopathological analysis and statistical methods
We analyzed the associations between the model-based results at the case-level and the pathological parameters. 
Whole data (164 cases) were used in this analysis because this was not for validating the model’s performance 
but for acquiring insights into the model’s interpretation. The proportion of poorly differentiated (PD) compo-
nents and complex glandular pattern (CGP) were evaluated by eyeballing by expert pulmonary pathologists. PD 
components include solid, micropapillary, cribriform, and CGP. CGP include fused glands with irregular borders 
and single cells infiltrating desmoplastic  patterns9. Differences between continuous variables in two groups were 
evaluated by Student’s t-test. Differences in frequencies of categorical variables were estimated by a chi-square test 
with correction. All statistical evaluations were performed with R version 4.2.1 (The R Foundation for Statistical 
Computing, Vienna, Austria). p value < 0.05 was considered statistically significant.

Ethical approval
This study was conducted according to the ethical guidelines of the Declaration of Helsinki. All studies involving 
patients were examined and approved by the Institutional Review Board of Asan Medical Center (IRB approval 
number: 2018-1198). The requirement for written informed consent was waived by IRB of Asan Medical Center 
because of the retrospective nature of the study and use of deidentified data.

Results
Risk prediction performance of the model
Efficientnet-b2, densenet201, and resnet152 were compared based on cross-validation accuracy at the patch 
level, and as a result, efficientnet-b2 was chosen as the final learning architecture (Supplementary Table S1). The 
model performance at the patch-level and case-level were summarized in Table 1. At the patch-level, the model 
achieved a sensitivity of 70.7% and a specificity of 46.0%. The F1 score was 0.6332 and the accuracy was 58.5%. 
The area under the curve (AUC) of the receiver operating curves (ROC) in the training, and test sets were 0.622 
and 0.604, respectively (Fig. 2A,B). At the selected threshold, 26 of the 50 cases were classified as the HR group 
in test set. The sensitivity was 75.0% and the specificity was 63.3%. The F1 score was 0.6522 and the accuracy 
was 68%. The AUC in the training, test sets were 0.796, 0.763, respectively (Fig. 2C,D).

The predicted HR groups were significantly associated with shorter RFS, even when the data were confined 
to stage I-II cases (Fig. 3A–C). The mean (± standard deviation [SD]) RFS was significantly shorter in the HR 
group (p < 0.001): HR group, 855.71 days (± 547.83), LR group, 1178.57 days (± 521.26). The mean overall survival 
(OS) was also shorter in the HR group, but the difference was not significant (p = 0.143).
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Histopathologic features according to risk group and recurrence
Histopathologic comparisons between the HR and LR group are summarized in Table 2. The tumor invasion size 
was larger in the HR group (p < 0.001). The proportion of the predominant histologic type was different between 
the groups (p < 0.001). Cases in which lepidic, acinar and papillary types were predominant, considered well 
to moderately differentiated histologic  subtypes27, were more likely to be assigned to the LR group. In contrast, 
solid, micropapillary, mucinous and cribriform-predominant cases were only observed in the HR group. IASLC 
grades of the tumors were higher in the HR group (p < 0.001). The HR group had a higher proportion of PD and 
CGP components (p < 0.001, both). Necrosis, STAS, pleural invasion and lymphovascular invasion (LVI) were 
more common in the HR group (p < 0.001 for all comparisons, except STAS’s p = 0.003). pT, pN and stage group 
tended to be higher in the HR group (p < 0.001 for all comparisons).

Class activation maps (CAMs) shown in Fig. 4 display representative image patches with the highest risk 
(Fig. 4A) and the lowest risk (Fig. 4B). Representative LR patches were composed of relatively monotonous cells 

Table 1.  Classification performance of the model. PPV positive predictive value, NPV negative predictive 
value.

AUC F1 PPV NPV Sensitivity Specificity Accuracy

Patch-level performance

 Training set (n = 13,368) 0.622 0.6332 0.5732 0.6051 0.7072 0.4602 0.5852

 Test set (n = 5820) 0.604 0.6300 0.5422 0.6335 0.7518 0.4033 0.5722

Case-level performance

 Training set (n = 114) 0.796 0.6526 0.6596 0.7463 0.6458 0.7576 0.7105

 Test set (n = 50) 0.763 0.6522 0.5769 0.7917 0.7500 0.6333 0.6800

Figure 2.  Receiver operating curves of the model at the patch-level (A–C, A: training set, B: validation set, C: 
testing set) and at the case-level (D–F, D: training set, E: validation set, F: testing set).
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with lepidic or papillary growth patterns, while the HR patches had tumor cells with pleomorphic nuclei and 
complex structures. At the case level, The WSIs classified under the HR group often exhibit pronounced cellular 
pleomorphism, solid structures, and overall poor histological differentiation (Fig. 5A,C). On the other hand, 
WSIs classified under the LR group predominantly include well-differentiated histologic features with minimal 
tumor cell pleomorphism, displaying lepidic patterns as shown in Fig. 5B,D.

Additionally, we compared histologic features between patients grouped by their status of actual tumor recur-
rence. These results are summarized in Supplementary Table S2. The mean tumor invasion size and proportions 
of PD and CGP components were significantly higher in the recurrence group. IASLC grade, necrosis, STAS, 
pleural invasion, LVI, pT, pN and stage group were significantly higher in the recurrence group. On the other 
hand, a predominant histologic type was not significantly associated with recurrence (p = 0.923), validating the 
performance of the IASLC grade.

Association with genomic alterations
NGS data from 163 cases were retrieved and the results are summarized in Table 3. Mutations in four genes 
were found in a significant number of patients: CDKN2A, TP53, KRAS and EGFR. The HR group was signifi-
cantly associated with TP53 alterations (p = 0.007) and in line with the model prediction, TP53 alteration was 
significantly associated with cases of actual recurrence (p < 0.001). ALK translocation was found in 2 cases, all 
of which were assigned to the HR group.

Clinical and histopathological characteristics of stage I–II cases
Stage I–II cases were analyzed with more attention because this model could have a significant beneficial impact 
on these patients by guiding the selection of their adjuvant treatment. Stage I–II patients comprised 125 of the 
164 cases (76.2%). Clinical and histopathological comparisons of the Stage I–II patients, when grouped by the 
model-based risk group and by actual recurrence status, revealed results similar to those of the all patients 
(Stages I–IV). Among the testing set data, 42 of 50 cases (84.0%) were Stages I–II and the HR group exhibited a 
significantly shorter RFS (Fig. 3C), validating its predictive performance in early-stage LUAD patients. OS was 
not significantly different. The detailed clinical and histopathological comparison data of this group are provided 
in Supplementary Tables S3 and S4.

Discussion
In this study, we developed a model to predict the risk of recurrence of LUAD by DL-based image analysis. 
This classification model showed good performance with high sensitivity, implying its potential usefulness as a 
screening tool. The model revealed an AUC of 0.763 in the testing set, which is better performance to the IASLC 
grade (an AUC of 0.690)9. The predicted risk groups were strongly correlated with histopathological features 
and several genetic mutations. Clinicopathologic results for stage I–II cases were virtually the same as those of 
the general group.

Pathological research typically sees strong AI model performance in areas where histological differences are 
easily recognized by pathologists. Unfortunately, in the case of LUAD, histological characteristics are diverse and 
complex, making it challenging for pathologists to discern differences easily. The present study was aimed an 
exploratory effort to determine if an AI model can successfully identify histological differences between recur-
rence and non-recurrence in early-stage lung cancer cases with partial resection—an unresolved challenge for 
pathologists. This study demonstrated the AI model’s potential to predict recurrence in partially resected lung 
tissue, marking a significant achievement. If efforts to introduce more advanced models based on this research 
and develop algorithms explaining the model’s decisions are attempted in future studies, it is anticipated that 
identifying patients in need of closer monitoring will become possible, leading to improved patient survival.

Lung cancer has various histological types such as LUAD, squamous cell carcinoma, and small cell lung 
 cancer28. Squamous cell carcinoma primarily originates in the central part of the lung, and when surgery is fea-
sible, lobectomy is commonly performed. Therefore, this type of tumor is generally not considered a candidate 
for partial resection. In the case of small cell lung cancer, which also typically arises in the central region of the 

Figure 3.  Kaplan–Meier estimation of recurrence-free survival. (A) General group, (B) testing set, (C) stages 
I-II in testing set.
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Table 2.  Clinicopathological characteristics of patients according to the model-based risk group. SD standard 
deviation, IASLC International Association for the Study of Lung Cancer, PD poorly differentiated, CGP 
complex glandular pattern, STAS tumor spread through air spaces, PL level of pleural invasion (PL1, visceral 
pleural elastic layer; PL2, visceral pleural surface; PL3, parietal pleura and/or chest wall).

Variables Total Low-risk (n = 91) High-risk (n = 73) p value

Age, year

 Mean (SD) 62.84 (10.67) 63.55 (10.65) 61.94 (10.69) 0.340

Sex

 Male 91 (55.5%) 45 (49.5%) 46 (63.0%)
0.114

 Female 73 (44.5%) 46 (50.5%) 27 (37.0%)

RFS, day

 Mean (SD) 1034.86 (555.42) 1178.57 (521.26) 855.71 (547.83)  < 0.001

OS, day

 Mean (SD) 1292.13 (483.20) 1341.74 (458.93) 1230.29 (508.24) 0.143

Tumor invasion size

 Mean (SD) 3.19 (1.76) 2.76 (1.43) 3.75 (1.97)  < 0.001

Predominant histologic type

 Lepidic 5 (3.0%) 5 (5.5%) 0 (0.0%)

 < 0.001

 Acinar 61 (37.2%) 38 (41.8%) 23 (31.5%)

 Papillary 43 (26.2%) 30 (33.0%) 13 (17.8%)

 Solid 33 (20.1%) 8 (8.8%) 25 (34.2%)

 Micropapillary 4 (2.4%) 2 (2.2%) 2 (2.7%)

 Cribriform 4 (2.4%) 1 (1.1%) 3 (4.1%)

 Mucinous 14 (8.5%) 7 (7.7%) 7 (9.6%)

IASLC grade

 1 7 (4.3%) 6 (6.6%) 1 (1.4%)

 < 0.001 2 51 (31.1%) 45 (49.5%) 6 (8.2%)

 3 106 (64.6%) 40 (44.0%) 66 (90.4%)

PD component, %

 Mean (SD) 49.09 (38.60) 30.23 (34.66) 72.60 (29.34)  < 0.001

CGP component, %

 Mean (SD) 19.49 (25.16) 14.12 (20.93) 26.19 (28.34)  < 0.001

Necrosis

 Absent 100 (61.0%) 71 (78.0%) 29 (39.7%)
 < 0.001

 Present 64 (39.0%) 20 (22.0%) 44 (60.3%)

STAS

 Absent 50 (30.5%) 37 (40.7%) 13 (17.8%)
0.003

 Present 114 (69.5%) 54 (59.3%) 60 (82.2%)

Pleural invasion

 Absent 105 (64.0%) 70 (76.9%) 35 (47.9%)

0.001
 PL1 27 (16.5%) 10 (11.0%) 17 (23.3%)

 PL2 19 (11.6%) 8 (8.8%) 11 (15.1%)

 PL3 13 (7.9%) 3 (3.3%) 10 (13.7%)

Lymphovascular invasion

 Absent 84 (51.2%) 62 (68.1%) 22 (30.1%)
 < 0.001

 Present 80 (48.8%) 29 (31.9%) 51 (69.9%)

pT stage

 pT1 70 (42.7%) 52 (57.1%) 18 (24.7%)

 < 0.001
 pT2 58 (35.4%) 26 (28.6%) 32 (43.8%)

 pT3 26 (15.9%) 10 (11.0%) 16 (21.9%)

 pT4 10 (6.1%) 3 (3.3%) 7 (9.6%)

pN stage

 pN0 117 (71.8%) 75 (83.3%) 42 (57.5%)

 < 0.001 pN1 17 (10.4%) 3 (3.3%) 14 (19.2%)

 pN2 29 (17.8%) 12 (13.3%) 17 (23.3%)

Stage group

 I  93 (56.7%) 64 (70.3%) 29 (39.7%)

 < 0.001
 II 33 (20.1%) 13 (14.3%) 20 (27.4%)

 III 36 (22.0%) 14 (15.4%) 22 (30.1%)

 IV 2 (1.2%) 0 (0.0%) 2 (2.7%)
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lung, standard treatments include radiation therapy or chemotherapy. LUAD, the most common histological 
subtype at 38.5%, is experiencing a significant increase in incidence and is the most common subtype for which 
partial resection is  performed29. Considering the significant histological differences among these three types, 
we chose adenocarcinoma as the focus of our study to create a meaningful model, specifically predicting tumor 
recurrence after partial resection, for clinical practice. We anticipated that creating a model encompassing all 
three histological subtypes would be challenging due to their distinct characteristics. Additionally, considering 
the target application of the model, we judged that including all three tumors from a clinical perspective would 
not be suitable.

The model’s output reflects histopathological features known to be associated with the tumor biology. The 
structural pattern is currently the most important factor in the histological subtyping of  LUAD9. The HR group 
showed not only significantly higher proportions of PD and CGP components, but also more complex pattern 
in representative image patches than the LR group. Enlarged and pleomorphic nuclei in the HR patches are con-
sistent with previous studies, which showed that nuclear size is more significantly associated with the prognosis 
than the nuclear to cytoplasm ratio (N/C ratio) in  LUAD30,31. In addition, we showed various histopathologic 
parameters like STAS, pleural invasion, and LVI were significantly associated with the HR group, although they 
might not be reflected in the patch-level evaluation of the model because they are usually observed in sparsely 
scattered areas around the tumor border. It suggests that the HR group has aggressive phenotype.

Detection of genomic alterations of LUAD by the DL-based model has been successful in previous  studies19,32. 
Our study also showed biological feature reflected by the model was its association with TP53  alterations33,34. 
TP53 are tumor suppressor genes, and its mutations are known to be associated with tumor progression and poor 
 prognosis33,34. From the perspective of the tumor immune microenvironment, TP53 alterations in LUAD have 
been reported to be associated with high infiltration of M0 macrophages and an immunosuppressive environ-
ment, along with KRAS  mutations35,36. These cases may have a high potential for the effectiveness of immune 
checkpoint inhibitors (ICIs). If the present model is tuned to more accurately predict TP53 gene mutations, it 
could serve as a valuable screening test for selectively applying adjuvant ICI treatment, such as PD-L1 inhibitors 
in LUAD patients who have undergone partial resection at the early stages of TP53 gene alterations.

This study and previous  studies17,18 demonstrated the potential of DL-based risk prediction of LUAD using 
histopathological images. This study lies in the utilization of actual patient data, serving as the direct application 
target for the developed model, employing various DL architectures, and notably enhancing predictive power 
through the application of MIL. Moreover, the study not only confirmed the model’s emphasis on distinguish-
ing HR and LR recurrence groups by comparing detailed interpretations of a specialized pulmonary pathologist 

Figure 4.  Class activation map of representative image patches. (A) Patches with the highest risk, (B) patches 
with the lowest risk.
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and various cancer genetic variations but also elucidated the model’s specific interpretability by highlighting its 
correlation with various histopathological findings and genetic changes currently crucial in LUAD pathology 
interpretation. The results from DL-based models were good but still suboptimal for clinical practice use. Insuf-
ficient data size, heterogenous histology of LUAD, confounding elements including epithelioid macrophages 
or lack of optimized DL architecture could limit the performance of histopathologic models. However, a study 
from the IASLC group showed that the power of histologic characteristics as a tool for prognosis prediction 
is  limited9. A critical improvement could be achieved by a multidisciplinary approach, including clinical and 
genetic data along with histological features. Several studies have attempted such an  approach37,38, but they did 
not fully integrate pathological images into their models. Further studies are warranted.

In conclusion, the DL model showed good performance in recurrence prediction by analyzing histopathologi-
cal images. The predicted risk group was associated with aggressive biological features. The model can provide 
useful information for the risk stratification and the selection of treatment of LUAD.

Figure 5.  Heatmaps indicating tumor probability in whole slide images. (A) Whole slide image with the highest 
tumor probability classification. (B) Whole slide image with the lowest tumor probability classification. (C) 
Magnified image from slide (A) highlighting details. (D) Magnified image from slide (B) highlighting details.
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Data availability
Data will be made available on request to corresponding author and with the permission of the institutional 
review board of Asan Medical Center.
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