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Performance evaluation 
of automated scoring 
for the descriptive similarity 
response task
Ryunosuke Oka 1*, Takashi Kusumi 2 & Akira Utsumi 3

We examined whether a machine-learning-based automated scoring system can mimic the human 
similarity task performance. We trained a bidirectional encoder representations from transformer-
model based on the semantic similarity test (SST), which presented participants with a word pair 
and asked them to write about how the two concepts were similar. In Experiment 1, based on the 
fivefold cross validation, we showed the model trained on the combination of the responses (N = 1600) 
and classification criteria (which is the rubric of the SST; N = 616) scored the correct labels with 83% 
accuracy. In Experiment 2, using the test data obtained from different participants in different timing 
from Experiment 1, we showed the models trained on the responses alone and the combination of 
responses and classification criteria scored the correct labels in 80% accuracy. In addition, human–
model scoring showed inter-rater reliability of 0.63, which was almost the same as that of human–
human scoring (0.67 to 0.72). These results suggest that the machine learning model can reach 
human-level performance in scoring the Japanese version of the SST.

Crystallized intelligence is knowledge acquired from culture, education, and daily  experiences1. Because crystal-
lized intelligence is related to language production (e.g. sentence  completion2) and comprehension (e.g. irony 
 detection3) abilities, evaluating crystallized intelligence is important in both clinical and experimental settings. 
For example, in clinical setting, by using crystallized intelligence score subtracted by fluid intelligence (the abil-
ity to solve problems that cannot be solved using existing knowledge) score could be a predictor of preclinical 
Alzheimer’s  disease4. For another example, in experimental setting, creativity score (as operationalized by the 
Finke Creative Invention task, which ask participants to generate something new but  meaningful5) is related to 
the crystallized intelligence (overall correlation between the crystallized intelligence and the creativity score was 
r = 0.426). Finally, the meta-analysis study showed crystallized intelligence predicted the real-world attainment 
(i.e. job performance) than fluid  intelligence7 (see also  Schmidt8) how the crystallized intelligence related to 
academic attainment, occupational performance, and mental function at older ages). Thus, crystallized intel-
ligence is not just important as the language abilities but also important as preclinical diagnosis, creativity, and 
real-world attainment.

Crystallized intelligence is measured using three facets: vocabulary, information, and similarity. Among the 
three, the similarity facet, which measures participants’ ability to find the commonality of the two given concepts, 
is important because it is the only facet that requires not only the ability to retrieve knowledge but also the ability 
to evaluate the aptness of the response (i.e. participants have to choose the best commonality that captures the 
nature of the two given words).

More concretely, the similarity facet is measured using the descriptive similarity response task (in short, 
“similarity task”), which presents a word pair (e.g. “diamond – snowflake”) to participants and asks them to 
write about how the two concepts are similar (e.g. “has a crystal structure”). Participants’ responses are scored 
into three classes (2 points [pts]: perfectly captures the relationship; 1 pt: partially captures the relationship; and 
0 pts: bad response) using classification criteria rubrics designed by psychological professionals. Though the 
rubrics are carefully designed for both each word-pair criteria (e.g. “diamond – snowflake” has three criteria 
for 2 pts and seven criteria for 1 pt) and overall instruction for scoring (e.g. responses based on participants 
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personal experiences were scored 0 pts; for example, “the item reminded me of a scene from Indiana Jones” to 
“riddle – labyrinth”), the final scoring decision depends on the evaluators.

Although the similarity task is a useful measure to assess participants’ crystallized intelligence, evaluators (e.g. 
psychological professionals) spend a lot of time scoring participants’ responses. For example, based on the first 
author’s experience in the scoring similarity task, it took approximately two min to score each item. Therefore, 
if there are 20 items for the similarity task, it takes approximately 40 min for scoring, which is hard work. A tool 
to reduce evaluators’ scoring time would be helpful.

To reduce evaluator scoring time, applying an automated scoring system (e.g. machine learning) to a similarity 
task is a good candidate method. Here, we briefly explains how machine learning techniques can apply to the 
task like an automated scoring system. Machine learning is the statistical algorithm learns from data, extract 
patterns and solve the task. In this article, we focus only on the supervised learning, an approach in machine 
learning where a model learns from inputs and labelled outputs. There are five steps to complete the supervised 
learning. First, we needs to prepare the data. For example, in the similarity response task, there are word-pairs 
(e.g. “diamond” and “snowflake”) and the sentence to explain the similarity of given two concepts (“has a crystal 
structure”) as the inputs, and the points (e.g. 0, 1, and 2 pts) as the labelled outputs. Second, we needs to select 
the model which can correctly predict the expected results. In the similarity task, we needs to prepare the model 
which can transform the words-pair and sentence into points. Third, we needs to train the model so that it can 
produce the expected results even when presented with inputs that were not seen in the prepared data. Fourth, 
we needs to evaluate the model. This could be done by splitting the data into training data and test data (as we do 
in Experiment 1 in this article) and checking how the trained model correctly classifies the test data. Finally, we 
needs to use the model to predict unseen data (as we do in Experiment 2). Following this process, the supervised 
learning aims to create the model which can transform the input to the expected output using labelled data.

Machine learning approaches performed well in the short-answer scoring task, which focused on the content 
accuracy of participants’ responses to the rubrics. The similarity task is a type of short-answer scoring task; the 
similarity task is scored based on multiple classification criteria, and participants’ responses are mainly short 
compared to other types of classification tasks (e.g. document classification). For example, Riordan et al.9 showed 
that applying a machine learning-based scoring model (i.e. consisting of an embedding layer, convolutional neu-
ral networks, long short-term memory networks, and a linear classification layer for scoring) to a short-answer 
scoring task (i.e.  SRA10, which consists of questions, reference responses, and each participant’s response; the 
question is derived from the student responses from interacting with a tutorial dialogue system) showed better 
performance than at baseline (non-machine learning approach). In addition, Mizumoto et al.11 proposed a bidi-
rectional long short-term memory-based scoring model (i.e. consisting of an embedding layer, bidirectional long 
short-term memory layer, and sigmoid layer to classify each rubric, and summed all rubric scores to calculate 
holistic scores) and revealed that the model outperformed the support vector regression  model12 and the model 
performance (average 86% accuracy) was comparable to human performance (average 87% accuracy). Both 
studies showed that by feeding approximately 1000 training data points, the model showed good performance 
and sometimes reached human-level performance in short-answer scoring tasks. Although these studies did not 
evaluate the model performance on the similarity task, by using this type of automated scoring system on the 
similarity task as a reference, evaluators can reduce scoring time.

The aim of this study was to test whether a machine learning-based automated scoring system can simulate 
human similarity task performance. If the system shows a comparable performance to that of humans, the model 
can help psychological professionals score clients’ crystallized intelligence more efficiently.

As our machine-learning-based automated scoring system, we chose a Bidirectional Encoder Representations 
from Transformers (BERT)-based  model13. BERT is a stack of transformer  layers14 capable of learning flexible rep-
resentations from the training data. When applying supervised learning to sentences (i.e. the similarity response 
task), it is crucial to select a superior pre-trained language model that can accurately capture the semantics of 
words and sentences. BERT is one model of this line – in BERT, the vector of words and sentences can not only 
captures the left-to-right and right-to-left context of the word (as in  word2vec15, which is previously one of the 
best language model) but also utilize the meaning of long context (by the help of transformer layers). As a result, 
BERT is succeeded to output high quality words and sentence vector. By using BERT as the language model, the 
model shows a strikingly high performance in language understanding, question answering, and common-sense 
 inference13. We selected BERT for three reasons: First, the pre-trained BERT model, which learns word embed-
ding from Wikipedia and other Internet documents worldwide, is easily implemented using the Hugging Face 
platform (e.g. https:// huggi ngface. co/ cl- tohoku/ bert- base- Japan ese). This advantage makes it easy to provide the 
code and model to replicate our results; the implementation becomes simpler compared to previous studies that 
applied complex models to short-answer  scoring9,11. Second, because the pre-trained BERT model has already 
learned word and concept knowledge in the pre-training phase (i.e. whole-word masking and next-sentence 
prediction), we need only a small amount of training data to adjust the model to a certain task (e.g. similarity 
task). This “pretrain, then fine-tuning (so called transfer learning)” is common to use BERT model and showed 
strikingly high performance in language understanding, question answering, and common-sense  inference13. 
Third, BERT can correctly understand the semantic similarity of words, similar to humans. A recent review 
showed that by feeding psychological data—feature norms, which are dozens of pairs of conceptual knowledge 
(e.g. a bird) and its features (e.g. has feathers, is  fluffy16,17)—to BERT, the model can simulate human cognition 
regarding similarity  perception18. For example, the BERT model reflected asymmetry perception of two-words 
similarity (human perception of similarity sometimes does not show symmetry; “age is an era” is not equal to 
“era is an  age19”), distinguished similarities from synonymity (the model and human similarity judgment  scores20 
have Pearson correlations that ranged 47–0.51.) and reflected human-like within-category similarity judgment 
(the model and human similarity judgment scores had Pearson correlations that ranged 0.53–0.5821). Although 
previous studies did not determine whether the BERT model can simulate human similarity task performance 

https://huggingface.co/cl-tohoku/bert-base-Japanese
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because the model can capture human similarity perceptions (i.e. Likert rating of similarity by human  judges19,20), 
there is a possibility that the model accurately mimics human performance even in similarity tasks.

As a human similarity task, we focused on the Japanese version of the Semantic Similarity  Test22 (SST). The 
original  SST23 is a test that mimics the composition of the similarity task in the Wechsler adult intelligent scale 
(WAIS; a de facto standard test of participants’ intelligence) but uses different word pairs and rubrics. The original 
SST is administered in English. There were two significant differences between the WAIS similarity task and the 
SST. Although the WAIS similarity task asks participants to respond orally, the SST asks participants to respond 
in writing. However, although the word pairs and rubrics for each were not publicly available in the WAIS simi-
larity task, all the word pairs and rubrics for each were publicly available in the SST. The Japanese version of the 
SST follows the original SST: most word pairs and rubrics are the same as in the original SST, but some word 
pairs and rubrics are different based on the pilot study. The Japanese version of the SST was also administered 
in a written format. The Japanese version of the SST scores showed weak but positive correlations with the Japa-
nese vocabulary size estimation  test24 (rs = 0.29–0.3116), which estimated participants’ vocabulary size (strongly 
related to crystallized intelligence) based on a recognition test (i.e. participants’ tasks were to choose the words 
they knew as much as possible from a given word list). The results imply that the Japanese version of the SST has 
convergent validity for estimating participants’ crystallized intelligence.

To evaluate the model performance on the Japanese version of the SST, we prepared three training datasets: 
participant responses obtained in the pilot study (responses), classification criteria for each word pair of the 
Japanese version of the SST (classification criteria), and the combination of responses and classification criteria 
(combination). Previous  studies9,11 showed by using trained participants’ responses, the automated scoring system 
displayed high performance (sometimes comparable to human performance) on short-answer scoring tasks. 
Thus, we expect that the BERT model trained by responses will show comparable performance to the human 
annotator (i.e. inter-rater consistency).

However, a model trained using classification criteria on an automated scoring system has remained unclear 
in previous studies. There were three differences between the responses and the classification criteria. First, 
although responses are sometimes strange (e.g. incomplete or nonsense responses), the classification criteria are 
written in a complete sentence and are clear because a professional created it. Second, the number of classifica-
tion criteria was smaller than the number of responses. Third, the classification criteria do not have 0-pt criteria; 
this is because, in this study, we did not use overall instructions for scoring (e.g. responses based on participants’ 
personal experiences were scored 0 pts). To collect the 0-pt criteria of a word pair, the criteria of other pairs are 
taken at random (e.g. “bird – airplane”: “has crystal structure”). Although we do not have an a priori hypothesis, 
we anticipated the classification accuracy calculated from the model trained by classification criteria to be lower 
than that of the model trained by responses and combinations because the number of criteria is small, which 
would lower the model performance.

Two experiments were conducted. Experiment 1 examined whether the model trained by responses (response 
model), the model trained by classification criteria (classification criteria model), and the model trained by 
combination (combination model) trained by data collected in the pilot  study22 could achieve human-level per-
formance. In this experiment, the training data and test data were divided by fivefold cross validation manner: 
that is, 80% of the data are used for training and 20% of the data are used for test. We also examined whether 
the use of the same word pairs in the training and test data affected the model performance. In our dataset, each 
word pair has multiple responses and criteria. In model training, there is a possibility that whether the same word 
pair is included both in training data and test data (e.g. “bird – airplane” is included in both training data and 
test data) or not (e.g. “bird – airplane” is included in training data but test data) affects the model performance. 
To test this, we prepared both the word-pair condition and the without-word-pair condition and compared 
model performance. Experiment 2 examined whether the models showed human-level performance even in test 
data prepared from different participants (i.e. Study  122). If the model can achieve human-level performance in 
Experiment 2, we can conclude that it can be applied to unseen responses from future participants.

Experiment 1
Methods
Design
To compare the effects of the dataset type (i.e. responses, classification criteria, and combinations) and whether 
the same word pairs were used in the training and test data, we set six conditions. First, in the “responses/same-
pair” condition, both the training data and test data in each fold (i.e. 5) must include all word pairs (but remove 
the same response). Second, in the “responses/different-pair” condition, there was no overlap of word pairs in 
each fold between the training data and the test data: 4 to 5 word pairs were only included in the test data, and 
the rest ware only included in the training data. Third, in the “classification criteria/same-pair” condition, all the 
criteria were included in the training data and the test data of each fold were the same as that of the “responses/
same-pair” condition. Fourth, in the “classification criteria/different-pair” condition, only the criteria that were 
derived from the same word pairs in each fold used in the training data of “responses/different-pair” condition 
were included in the training data. The test data in each fold were the same as in the “responses/different-pair” 
condition. Fifth, in the “combination/same-pair” condition, all the combination of responses and classification 
criteria (except duplication) were included in the training data. The test data of each fold were the same as that 
of the “responses/same-pair” condition. Finally, in the “combination/different-pair” condition, only the criteria 
that were derived from the same word pairs in each fold used in the training data of the “responses/different-
pair” condition were included in the training data. The test data in each fold were the same as in the “responses/
different-pair” condition.
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Datasets
We used the responses, classification criteria, and combinations obtained by Oka et al. (under review)22 as 
datasets. The response dataset comprised 1600 responses from 80 participants (Mage = 42.4 years, 50 men) for 20 
word pairs. Although the pilot study conducted by Oka et al. (under review) included 24 word pairs, because 
the purpose of this pilot study was to determine which items to include as word pairs of the Japanese version 
of the SST, and four items were dropped in the main analysis, we used the same 20 word pairs as a target in this 
study. All the data used in Experiment 1 and Experiment 2 were obtained from Oka et al. (under review)22. All 
participants provided written informed consent to these experiments. All researches conducted in Oka et al. 
(under review)22 followed the Declaration of Helsinki and approved by the Ethics Committee at the Graduate 
School of Education, Kyoto University.

Examples of word pairs, participant responses, and scores are summarized in Table 1. The sentences in par-
ticipants’ responses were short. In addition, 0 pt responses included incomplete responses (e.g. in “time is like 
a flowing river,” no mention of what is like a river flow) and responses that deviated from common knowledge 
(e.g. a diamond is not “fragile”). To test the inter-rater reliability of the classification, the first and second authors 
individually scored 11% of participants’ answers. Fleiss’ kappa was calculated as an index of inter-rater consist-
ency and found that the consistency was moderately high (Fleiss’ kappa = 0.67, z = 10.1, p < 0.001). Responses with 
different scores between authors were discussed and discrepancies were resolved. Subsequently, all the responses 
were scored again by the first author.

The classification criteria included 413 criteria for 20 word pairs. For the classification criteria dataset, there 
were additional zero-pt classification criteria. These were collected as follows: in each word pair, we sampled half 
the number of criteria from the rest of the word pairs (i.e. we did not include correct word pair-criteria pairs). 
We then prepared the pseudo 0-pt labels by combining correct word pairs (e.g. “bird – airplane”) and sampled 
(incorrect) criteria (e.g. “bird – airplane” to “crystal structure” sampled from “diamond – snowflake”). As a result 
of combining the original classification criteria and pseudo 0-pt labels, the classification criteria dataset had 616 
criteria. Examples of the word pairs, classification criteria (including pseudo-criteria for 0 pts), and scores are 
summarized in Table 2.

Finally, the combination dataset comprises the response and classification criteria datasets. After eliminating 
duplicate items, the final combination dataset contained 1591 word pairs and items (response and classification 
criteria).

Models
To score participants’ responses automatically, we used a pre-trained BERT model (https:// huggi ngface. co/ cl- 
tohoku/ bert- base- japan ese) as the base model. The BERT model analysis was performed using Python 3.10.12. 
The Hugging Face library (transformer) version was 4.31.0, and the Torch version was set to 1.10.0. We used 

Table 1.  An example of the word pairs, participants responses, and the scoring results (English translation 
with original Japanese text).

Word pair Participant response Score

Bird–airplane (鳥–飛行機) Flies (空を飛ぶ) 2

Bird–airplane (鳥–飛行機) Has wings (羽がある) 1

Time–river (時間–川) Runs (流れる) 2

Time–river (時間–川) Long and endless (長く果てしない) 1

Time–river (時間–川) Time is like a flowing river (時は川の流れのよ
うに) 0

Diamond–snowflake (ダイヤモンド–雪片) Crystal structure (結晶構造) 2

Diamond–snowflake (ダイヤモンド–雪片) Sparkly stuff (キラキラしたもの) 1

Diamond–snowflake (ダイヤモンド–雪片) Fragile (脆い) 0

Table 2.  An example of the word pairs, classification criteria, and the scores (English translation with original 
Japanese text).

Word pair Classification criteria Score

Sun–light bulb (太陽–電球) Shed light (光を放つ) 2

Sun–light bulb (太陽–電球) Heats up (熱を持つ) 1

Sun–light bulb (太陽–電球) Fun (楽しい) 0

Thinking–net (思考–網) Woven in (編み込まれている) 2

Thinking–net (思考–網) Have an eye (目がある) 1

Thinking–net (思考–網) Fast (速い) 0

Memory–prison (記憶–牢獄) Be seized (捕われる) 2

Memory–prison (記憶–牢獄) Packed (詰め込む) 1

Memory–prison (記憶–牢獄) Harmonize (調和する) 0

https://huggingface.co/cl-tohoku/bert-base-japanese
https://huggingface.co/cl-tohoku/bert-base-japanese
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the BertForSequence Classification library to classify the responses into three classes (2 pts, 1 pt, and 0 pts). 
Because the Japanese version of SST is a classification task, the last layer of the BERT model was combined with 
a linear classification layer with cross-entropy loss. To fine tune the BERT model, the input of each model in the 
sixth condition was set to “[CLS]WORD1[SEP]WORD2[SEP]RESPONSE(or CLASSIFICATION CRITERIA).” 
Here, [CLS] and [SEP] are special tokens used to separate each feature (i.e. WORD1, WORD2, and RESPONSE/
CLASSIFICATION CRITERIA). For example, if the word pair was “bird – airplane” and the response was “flies,” 
then the model input became “[CLS]bird[SEP]airplane[SEP]flies”. The output of each model for the six condi-
tions was set as the score.

In addition, because the amount of data differs among the three classes (e.g. the number of 0 pts in the 
response dataset was extremely small relative to other scores because many participants could find at least some 
commonality between word pairs), when calculating the cross-entropy losses, we weighted the cross-entropy loss 
function based on the reciprocal of the number of each label divided by the total number of labels.

Here, we describe the specific parameters in detail. Regarding the training details, the batch size was set to 32 
because when the number increased (e.g. 128), the model performance drastically dropped (a small number of 
items might have caused this). Early stopping, with patience times set to 3, was adopted. The number of epochs 
was set to 10. The learning rate for each model was set as 0.0002. The weight decay was set to 0.01. All other 
parameter settings followed the default settings (i.e. https:// huggi ngface. co/ docs/ trans forme rs/ model_ doc/ bert).

Results
The model performance is summarized in Table 3. There are four indices of model performance, and there were 
four measures (accuracy, precision, recall, f1 score). In addition, there are two ways to calculate the average 
(macro average and weighted average) for precision, recall, and f1-score. The mean precision, mean recall, and 
mean f1 scores were calculated using the average of fivefold performances. In all measures, “combination/same-
pair” condition showed the highest performances (accuracy: 0.828, weighted average of mean precision: 0.828, 
weighted average of mean recall: 0.828; summarized in the fifth row in Table 3). These results show that the BERT 
model trained using a combination of responses and classification criteria was the best model. Regarding the 
average accuracy among the three datasets (i.e. the average of the same pair and different pair in each dataset 
condition), the combination (0.821) showed a higher performance than the responses (0.598) and classification 
criteria (0.589). In addition, the average accuracy of the same-pair in each dataset condition (0.727) showed a 
higher performance than the different-pair condition (0.611).

Discussion
In Experiment 1, we examined whether the response, classification criteria, and combination models trained 
using the data collected in a pilot  study16 could achieve human-level performance. The results showed that the 
BERT model trained using the combination of responses and classification criteria exhibited high performance 
(i.e. 0.828 in accuracy). The results suggest that by aggregating the responses and classification criteria, the model 
can achieve human (may be, like) performance in the similarity task.

As expected, the use of the same word pairs in the training and test data affected model performance. It 
suggested that by including the same word pair (e.g. “bird – airplane”: “can fly”), the model learn the essence 
of the similarities between two word pairs and can predict the degree of similarity in the same word pairs and 
responses which were not included in the training data (e.g. “bird – airplane”: “have wings”). Even if the model 
did not learn the same word pairs in its training data, the BERT model could learn and predict the correct labels 
with high accuracy if the model learned the combination (accuracy: 0.814). This suggests that the model can 
predict not only the same similarity task (e.g. the Japanese version of the SST) but also the unseen but the same 
form of the similarity task (e.g. WAIS).

In Experiment 2, we trained the BERT model on three datasets and examined whether the test data prepared 
from different participants could also be correctly predicted. In Experiment 1, participants in the response 
training data were the same as those in the test data; even if the word pairs were removed from each other (i.e. 
different-pair condition), some participants’ responses might be trained in model learning. Thus, the result 
obtained in Experiment 1 could be because the model learned the habits of participants’ responses; that is, the 
model cannot be applied to the responses obtained from different participants. To eliminate this possibility, in 

Table 3.  Model performance in each measure (Experiment 1). The highest performances in each performance 
measure are provided in bold.

Condition Accuracy

Macro average Weighted average

Mean precision Mean recall Mean f1 score Mean precision Mean recall Mean f1 score

Responses/same-pair 0.724 0.636 0.666 0.640 0.742 0.724 0.730

Responses/different-pair 0.472 0.454 0.468 0.404 0.510 0.472 0.476

Classification criteria/
same-pair 0.630 0.498 0.486 0.486 0.668 0.630 0.644

Classification criteria/
different-pair 0.548 0.466 0.460 0.438 0.644 0.548 0.580

Combination/same-pair 0.828 0.714 0.692 0.694 0.828 0.828 0.828

Combination/different-pair 0.814 0.698 0.690 0.690 0.818 0.814 0.814

https://huggingface.co/docs/transformers/model_doc/bert
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Experiment 2, we applied the model to responses that differed from those of the participants and the timing of 
data collection.

In Experiment 2, we calculated the inter-rater reliability of the predictions of each model and the first-author 
classification on the dataset. As explained in the Methods section for Experiments 1 and 2, Fleiss’ kappa, which 
is the index of the inter-rater reliability of the first and second author, ranged 0.67 to 0.72. If Fleiss’ kappa was 
calculated by first author scoring and the model prediction (i.e. human–model scoring) was comparable to that 
of Fleiss’ kappa obtained in the previous study (i.e. human–human scoring), it suggests that the model has the 
ability to score participants’ responses as accurately as humans in the Japanese version of the SST.

Experiment 2
Methods
Design and datasets
To compare the effects of the dataset type (i.e. responses, classification criteria, and combination), we set three 
conditions. First, in the “responses in Experiment 1″ condition, we trained all the responses obtained in the 
pilot  study22 as training data (1600 responses). Second, in the “classification criteria” condition, we trained all 
the classification criteria with pseudo 0-pt labels obtained in the “classification criteria/same-pair” condition” in 
Experiment 1 (616 criteria). Finally, in the “combination” condition, we trained the combination of responses in 
Experiment 1 and the classification criteria condition (except duplicates).

Following the training data, we prepared test data from the responses obtained in Study 1 by Oka et al. (under 
review)22. The original data comprised 2000 responses from 100 participants (Mage = 41.8 years; 52 men) for 20 
word pairs each. To test the inter-rater reliability of the classification criteria, the first and second authors indi-
vidually scored 22% of participants’ answers. Fleiss’ kappa was calculated as an index of inter-rater consistency. 
The consistency was moderately high (Fleiss’ kappa = 0.72, z = 21.2, p < 0.001). Responses with different scores 
between authors were discussed and discrepancies were resolved. Subsequently, all the responses were scored 
again by the first author.

In addition, for the item the first and second author scored (i.e. 22% of participants’ answer), we asked 
another two annotators (both woman, 50 and 51 years old each, and the highest level of education is completion 
of vocational school and junior college) without practical experience in clinical psychology and assessment to 
score individually. By recruiting another annotators (especially, excepts authors) and check the inter-rater consist-
ency (i.e. Fleiss’ kappa), we can evaluate whether the moderately high inter-rater consistency of the annotators 
were not just because the annotators have skilled in scoring (i.e. authors) but because the scoring based on the 
classification criteria were easy and have enough consistency. Two annotators were provided the classification 
criteria made by authors and some sample classification obtained in Experiment 1 (31 items). We then calculated 
Fleiss’s kappa based on their scores. Results showed that the both Fleiss’ kappa calculated by all four annotators 
(first author, second author, and two new annotators; 0.73, z = 52.6, p < 0.001) and by these two new annotators 
(0.74, z = 21.8, p < 0.001) showed moderately high consistency. Therefore, we concluded the annotation criteria 
is clear and human evaluation of the task has enough variability.

In Experiment 2, because there was a possibility to inflate the model performance if the test data included 
multiple responses about the same content (e.g. many participants responded “can fly” for “bird – airplane”), we 
excluded duplication and final test data included 1309 unique responses.

Model training
The model training settings (pre-trained model, model input/output, and calculation of cross-entropy loss) and 
their hyperparameters were the same as those in Experiment 1.

Results
The model performance metrics are summarized in Table 4. Regarding accuracy and weighted average of mean 
recall, the responses in Experiment 1 showed the highest performance (accuracy: 0.800; weighted average of 
mean recall: 0.800). In the weighted average of mean precision, the combination condition showed the highest 
performance (0.780). These results show that the BERT model trained using the responses in Experiment 1 and 
the combination of responses and classification criteria performed better than the classification criteria model.

Subsequently, we calculated the Fleiss kappa value for each model. The results showed that although the 
classification criteria model (0.312) showed poor performance, Fleiss’ kappa of the responses model (0.633) and 
combination model (0.627) showed high performance comparable to that of human–human scoring (0.67 to 
0.72). In addition, to clarify the error pattern of the best model (response model), we prepared a confusion matrix 

Table 4.  Model performance in each measure (Experiment 2). The highest performances in each performance 
measure are provided in bold.

Condition Accuracy

Macro average Weighted average

Mean precision Mean recall Mean f1 score Mean precision Mean recall Mean f1 score

Responses in Experiment 1 0.800 0.690 0.620 0.620 0.770 0.800 0.780

Classification criteria 0.570 0.510 0.520 0.500 0.640 0.570 0.600

Combination 0.790 0.670 0.650 0.660 0.780 0.790 0.780
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that summarized the human labels obtained in the first author scoring in Oka et al. (under review)22 and the 
predicted labels obtained in the response model (Table 5). Although the model showed high performance in 2-pt 
(precision: 0.83, recall: 0.88, f1 score: 0.85) and 1-pt (precision: 0.78, recall: 0.85, f1 score: 0.82) labels compared 
with humans, the model showed low performance on 0-pt labels (precision: 0.47, recall: 0.12, f1 score: 0.19).

For detailed analysis, based on the confusion matrix of the responses in Experiment 1, we analyzed the 
errors for each human label. In the error of the 0 pt human labels, there were three types of misclassifications. 
First, some responses were classified as zero points based on the overall instructions for scoring, which were 
not included in our training data. For example, the responses based on phonological similarity (e.g. “marriage 
– alloy” to “phonologically similar (in Japanese, 結婚(ke-kkon) and 合金(go-kin) is similar)”; responses that just 
noted the phonological similarity were classified 0 pts) and the incomplete responses (e.g. “bird – airplane” to 
“air”; responses that were classified 0 pts) were defined 0 pt in overall instruction for scoring. Second, there were 
“there is no similarity” responses, and these were misclassified. Third, there were some responses in which there 
was no concrete similarity (e.g. “memory – prison” to “brain”). In the error of 1 pt human labels, although there 
were a few misclassification characteristics, 82 out of 92 misclassified responses were labeled as 2 pts. Finally, 
there were two types of misclassifications in the error of 2-pt human labels. One concerns the orthographic dif-
ferences between the training and test data. For example, though “sun – lightbulb” to “light (in Japanese, 光る
(hika-ru))” was included in training data, the same but different response “sun—lightbulb” to “light (in Japanese, 
ひかる(hika-ru)” in test data was misclassified as 0 pts. The other is that some 2-pt answers were included in 
the response but misclassified because there was 1-pt criterion. The overall instruction for scoring has a rule 
that if the 1-pt individual criterion is met, but the 2-pts individual criterion is also met, it is considered 2 pts. 
For example, “sword – pistol” to “where it is a tool to attack people (in Japanese, 人を攻撃する道具である),” 
tool to attack (攻撃する道具) should be scored 2 pts but misclassified into 1 pt (because only attack (攻撃) was 
classified into 1 pt in criteria).

Finally, to confirm the effect of the number of data, we trained the BERT model with the data combined 
by rubric data used in Experiment 1 and 2 (616 criteria) and randomly selected human responses data used 
in Experiment 1 (total: 1,219 responses). Because the model performance in “Classification criteria” condition 
showed low performance (i.e. 0.570 in accuracy) and “Combination” condition showed high performance (0.790), 
there was benefit of adding some annotated human responses in addition to the classification criteria. Therefore, 
it was useful to evaluate how many other human responses were needed to elevated the model performance other 
than classification criteria. To do so, the proportion of the selected data were increased by 10% increments from 
0% (which was equal to the results obtained in “Classification criteria” condition) to 100% (which was equal to the 
results obtained in “combination” condition). The relationship between the proportion of human responses and 
the accuracy of the model was summarized in Fig. 1. As the line graph showed, with 50% (about 600) additional 
human responses made the model performance 75%. However, even in 70% to 100%, there were slight increment 
of the model performance. Therefore, though the performance will be increased if there are many more data 
to the combination model, we confirmed 600 additional data will be enough to reach the similar performance 
obtained in the full combination model.

Discussion
In Experiment 2, we examined whether the test data prepared by different participants could also be correctly 
scored. The results revealed that the responses in Experiment 1 were scored with 80% accuracy. This result was 
the same as the best performance in Experiment 1 (83% accuracy in the combination/same-pair condition). 
Moreover, the combination model still exhibited high performance (i.e. 79% accuracy). These results suggest 
that the model trained on the responses (with 1,600 training data points) showed high performance in scoring 
the responses obtained from different participants. It also suggested that the results obtained in Experiment 1 
were not owing to the model learning participants’ response habits but because the model learned the response 
similarity to word pairs.

In addition, based on the Fleiss’ kappa obtained in each model prediction and human scoring (i.e. the first-
author classification in Oka et al. (under review)22 Study 1), we found that responses in the Experiment 1 model 
and combination model showed comparable results to those of human–human scoring in Oka et al. (under 
review)22. This suggests that by using the BERT model trained on the responses and the combination of the 
responses and classification criteria, the model could help raters (i.e. psychological professionals) by suggesting 
model prediction.

Moreover, the error analysis revealed that some misclassifications were caused by the lack of training data 
for the overall scoring instruction. This was especially true for the 0 pt label (because there were no individual 
criteria for each word pair).

Table 5.  Confusion matrix of the human label and predicted label obtained in responses in Experiment 1 
model.

Model prediction

Human label

0 pts 1 pt 2 pts

0 pts 14 10 6

1 pt 87 538 61

2 pts 19 82 492
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Finally, we confirmed that if there were 600 more human responses with classification criteria, the model 
performance could reach the combination model performance. This could be the benchmark especially when 
the practitioner wants to make model performance better with classification criteria.

Presentation Information
Part of this study (analysis of Experiment 1 without 5 fold cross validation) was presented at the 37th Annual 
Conference of the Japanese Society for Artificial Intelligence, Kumamoto-jo Hall, Kumamoto, Japan, June 6–9, 
2023.

General discussion
We tested whether a machine-learning-based automated scoring system could mimic human similarity task 
performance. Both Experiment 1 and Experiment 2 showed that by training the model on responses (approxi-
mately 1600 responses) and on the combination of responses and classification criteria, the model performance 
reached approximately 80% accuracy (the best performance in Experiment 1: 83%, Experiment 2: 80%). In 
Experiment 2, we confirmed that the inter-rater reliability between human and machine raters (Fleiss kappa: 0.63) 
was comparable to that between human raters (Fleiss kappa: 0.67–0.72). These results suggest that the machine 
learning-based model can achieve human-level performance when scoring the Japanese version of the SST.

Moreover, in Experiment 1, although the model performance decreased slightly, the model of the combina-
tion/without the word-pair condition showed high performance (81% accuracy) even if the training data did 
not include the word pairs used in the test data. This also suggests that the model has the potential to correctly 
score not only the same task (Japanese version of the SST) but also other similarity tasks with different word 
pairs (e.g. the WAIS similarity task).

As implied by some previous  studies18,21 the BERT model trained on a similarity task exhibited good perfor-
mance. Although previous studies did not examine the similarity task (i.e. participants were given word pairs 
and asked to respond to the commonality of these) but examined the similarity rating  task19,20, we confirmed that 
the model was also applicable to the similarity task. Regarding language understanding, question answering, and 
common-sense  inference11, the BERT model has strong capabilities to learn task representations to find similari-
ties between word pairs. In addition, similar to the short-answer scoring  task9,11, the BERT model can simulate 
human-level performance in a similarity task with approximately 1000 training data points (in this study, 1600). 
The model required only 80 participants for 20 word pairs. The size of the dataset is quite small compared to 
other language tasks (e.g. SQuAD 2.025, which is a common benchmark in BERT and contains 100,000 question-
and-answer pairs). This suggests that the similarity task requires relatively few training data for correct scoring.

The BERT model trained on the similarity task reduces the scoring time of evaluators by showing sugges-
tions on which score to assign to participants’ responses. Although we did not calculate the time evaluators 
spent on scoring, including with and without the model, because the model provides the reference score (with 
approximately 80% confidence), their time to check the obvious items (e.g. frequently appearing responses) will 
decrease. Future studies should conduct experiments to verify whether the model actually helps with scoring.

There were at least two limitations for this study. For one thing, it was important to note that the automated 
scoring method utilizing language model (e.g. BERT) has some potential bias which will decrease the scoring 
performance of the response similarity task. For example, because the model we used (https:// huggi ngface. co/ 

Figure 1.  The proportion of human responses and the accuracy of the model.

https://huggingface.co/cl-tohoku/bert-base-japanese
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cl- tohoku/ bert- base- japan ese) was trained only on Wikipedia, the model performance will be degraded if there 
were no document about the word-pair or the participants responses. Moreover, it was reported that some doc-
ument-intrinsic bias (e.g. gender bias) occurred in Japanese Wikipedia. Panatchakorn et al.26 showed that BERT 
model trained on Japanese Wikipedia showed gender bias, which is examined by utilizing the revised version 
of Natural Language Inference (in short, NLI) task. NLI task is to judge whether the first sentence contradict/
neutral/entailment to the second sentence. For example, if the first sentence is “the man played the tennis” and 
the second sentence is “the man used the racket and the ball”, the correct answer is “entailment”. In Panatchakorn 
et al.26, they mixed the gender-biased sentence as NLI task – that is, though two sentences were neutral (e.g. “the 
doctor played the tennis” and “the man played the tennis”), the subject words were biased (i.e. “many doctors 
are the man”). As expected, the BERT model trained on Wikipedia showed gender bias in this experiment- thus, 
even if the mixed sentence were designed to be “neutral”, about 40% of the sentences were misclassified into 
“contradict” and “entailment”. Though we do not include gender-related word pairs in the response similarity 
task, it is important to supposed there are documents related biases in the automated scoring system.

For the other thing, though the rubric is supposed to be the core of training set, we confirmed that learning the 
rubric (“Classification criteria” condition) showed worse accuracies (“Classification criteria/same-pair” condition 
in Experiment 1:0.630, “Classification criteria” condition in Experiment 2: 0.570) than those of “Combination” 
conditions (“Combination/same-pair” condition in Experiment 1: 0.828, “Combination” condition in Experi-
ment 2: 0.790). We supposed there were three reasons. First, as the original rubric of  SST23 and WAIS similarity 
subscale, it was difficult to cover all the possible responses beforehand in Japanese version of Semantic Similarity 
Test. Second, there were no 0 pt labels (except pseudo 0 pt labels we assigned) in classification criteria condition. 
Third, the classification criteria contains only a small number of examples (N = 616). One countermeasure for this 
issue is to add some human annotated responses to the classification criteria, as reported in results of Experiment 
2. If we add 600 more data (in Japanese version of SST, about 30 participants data), the model performance can 
achieve the enough performance.

Finally, three promising areas for future studies should be addressed. First, future studies should handle 
the overall instructions for scoring the training data. In this study, we did not include the overall instructions 
for scoring in the model training. However, some tasks may be handled through preprocessing. For example, 
orthographic differences (e.g. kanji and hiragana in Japanese) are normalized by lemmatizing using a tokenizer 
(e.g.  MeCab27 and  Sudachi28). For another example, frequently generated incorrect responses, which can apply to 
many word pairs (e.g. “there is no similarity” responses), will be used for training data by combining these items 
to each word pair (e.g. “bird – airplane” to “there is no similarity” is scored 0 pts). Thus, preprocessing can be 
easily applied. Further, it is more challenging. For example, how can we define the model to correctly distinguish 
the response that did not include incomplete similarity but had a partial similarity (1 pt) from the response that 
included complete similarity but also had a partial similarity (2 pts)? One promising way to improve the model 
is to create NA categories other than 0/1/2 pt(s). For example, in current dataset, we assigned 2 pts for “where 
it is a tool to attack people” on “sword—pistol” even though the responses included two different criteria whose 
assigned scores are different (i.e. “attack” is 1 pt and “tool to attack people” is 2 pts). If we reannotated the dataset 
and assign NA to this kind of responses and again trains the model, the classification accuracy of the model 
would be improved because the confusing items are categorized into NA. These challenging tasks are future tasks 
for natural language processing.

Second, applying a GPT-based model (e.g.  ChatGPT29) using zero-shot learning (e.g. by prompting) to the 
Japanese version of the SST will be important to compare whether the performances are comparable or over-
whelming in this study. With the release of ChatGPT, researchers realized that the API could solve many types 
of semantic tasks. This was also true for similarity tasks. A recent study that compared ChatGPT performance 
and fine-tuned BERT model performance  showed30 that the fine-tuned BERT model outperformed ChatGPT in 
a similarity task (e.g. STS-B31). Thus, we believe that the fine-tuned model trained on the Japanese version of the 
SST might show comparable (or outperform) performance to ChatGPT. Future studies should directly compare 
the performance of the model provided in this study and ChatGPT on the Japanese version of the SST. It would 
also be interesting to determine the best ChatGPT prompt for the similarity task.

Third, future studies should apply the BERT model to other WAIS tasks. WAIS tasks cover all three facets 
of crystallized intelligence (i.e. vocabulary, information, and similarity), and some tasks have a similar pattern 
to similarity: participants were asked to respond correctly based on oral responses. Thus, the transcripts of the 
response and item are easily collected and used for fine-tuning large language models (e.g. BERT). Can the 
model correctly score participants’ responses by collecting data from participants based on the WAIS or similar 
measurements? This question should be addressed in future studies.

In conclusion, this study broadens the scope of machine-learning-based automated scoring systems for 
similarity tasks using the fine-tuned BERT. Our results showed that the model scored with approximately 80% 
accuracy, which was almost the same as that of human inter-rater reliability. Future studies should apply this 
model to a more general crystallized intelligence test (e.g. the WAIS).

Data availability
The datasets generated and/or analysed during the current study are available from https:// github. com/ okaexp/ 
Autom ated_ scori ng_ of_ SST.
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