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A GAN‑based genetic algorithm 
for solving the 3D bin packing 
problem
Boliang Zhang 1*, Yu Yao 1, H. K. Kan 2* & Wuman Luo 1

The 3D bin packing problem is a challenging combinatorial optimization problem with numerous real-
world applications. In this paper, we present a novel approach for solving this problem by integrating 
a generative adversarial network (GAN) with a genetic algorithm (GA). Our proposed GAN-based GA 
utilizes the GAN to generate high-quality solutions and improve the exploration and exploitation 
capabilities of the GA. We evaluate the performance of the proposed algorithm on a set of benchmark 
instances and compare it with two existing algorithms. The simulation studies demonstrate that 
our proposed algorithm outperforms both existing algorithms in terms of the number of used bins 
while achieving comparable computation times. Our proposed algorithm also performs well in terms 
of solution quality and runtime on instances of different sizes and shapes. We conduct sensitivity 
analysis and parameter tuning simulations to determine the optimal values for the key parameters 
of the proposed algorithm. Our results indicate that the proposed algorithm is robust and effective in 
solving the 3D bin packing problem. The proposed GAN-based GA algorithm and its modifications can 
be applied to other optimization problems. Our research contributes to the development of efficient 
and effective algorithms for solving complex optimization problems, particularly in the context of 
logistics and manufacturing. In summary, the proposed algorithm represents a promising solution 
to the challenging 3D bin packing problem and has the potential to advance the state-of-the-art in 
combinatorial optimization.

The 3D bin packing problem is a classical optimization problem in logistics and manufacturing, where a set of 
three-dimensional items needs to be packed into a minimum number of containers subject to certain constraints. 
The problem is known to be NP-hard, and finding an optimal solution is computationally challenging, especially 
for large problem instances1–3. Over the years, various optimization algorithms have been proposed to tackle this 
problem, including genetic algorithms (GA), simulated annealing, ant colony optimization, and particle swarm 
optimization. However, these algorithms suffer from limitations in terms of solution quality, convergence speed, 
or scalability4,5. Some advanced research works are shown in Table 1 and compared with our work.

The 3D bin packing problem is classified as NP-hard12,13, indicating the substantial computational complexity 
involved. This strong NP-hard nature of the problem implies that approximating the optimal solution within 
a constant factor is a significant challenge, unless the P = NP conjecture is disproven. Therefore, heuristic and 
metaheuristic algorithms are usually used to solve the problem in practice14. However, the existing algorithms for 
the 3D bin packing problem suffer from several challenges and limitations. First, some algorithms are not able to 
find optimal or near-optimal solutions for large problem instances due to their high computational complexity. 
Second, some algorithms are sensitive to the initial solution and are prone to get stuck in local optima. Third, 
some algorithms do not consider the complexity of the problem in terms of the number of items, bin dimensions, 
and volume limits, and may perform poorly on certain problem instances. Finally, some algorithms are not scal-
able and do not perform well on parallel computing architectures. These challenges and limitations motivate the 
need for new and improved optimization algorithms for the 3D bin packing problem15.

Recently, generative adversarial networks (GANs) have emerged as a powerful tool for generating high-
quality synthetic data and solving optimization problems. GANs consist of two neural networks, a generator, 
and a discriminator, that are trained in an adversarial manner to generate realistic data samples16. Moreover, 
GANs have been applied to a variety of optimization problems, including image synthesis, text generation, and 
reinforcement learning. Specifically, Wu et al.17 explored the potential of GANs in generating and reconstructing 
3D objects, showcasing the versatility of GANs in handling three-dimensional data. On the other hand, GAs have 

OPEN

1Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR  999078, China. 2Centre for Continuing 
Education, Macao Polytechnic University, Macao SAR 999078, China. *email: P1807471@mpu.edu.mo; stanley@
macaopda.org

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-56699-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7775  | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports/

been employed in various domains, from optimizing robot navigation in unstructured terrains18 to enhancing 
space and time allocation in shipyard assembly halls19. Additionally, Tsai et al.20 proposed a global optimiza-
tion approach using GAs to solve three-dimensional open dimension rectangular packing problems, further 
emphasizing the adaptability and efficiency of GAs in solving spatial problems. GAs are optimization techniques 
inspired by natural evolution, widely applied in experimental designs as highlighted by the authors of21. On the 
other hand, quantum particle swarm optimization (QPSO), a variant of PSO with quantum mechanics principles, 
has been explored by the authors of22 for its applications in designs with mixed factors and binary responses. 
Both methodologies offer innovative approaches to complex experimental design challenges.

The research objective of this paper is to propose a modified GA based on GANs to solve the 3D bin packing 
problem23–25. The proposed algorithm aims to combine the strengths of GA and GANs to offer a novel solution 
approach to the problem. In this paper, we present the mathematical formulation of the 3D bin packing problem 
and discuss the challenges and limitations of existing optimization algorithms. We then introduce our proposed 
algorithm, which includes a GAN-based modification, a new encoding scheme, a novel selection strategy, and a 
hybrid crossover and mutation operator. We also describe the design of the discriminator network, the training 
process, the fitness function, and the algorithm flowchart. Specifically, the proposed algorithm has the potential 
to address some of the key challenges faced by existing optimization algorithms. For instance, the GAN-based 
modification can help to generate high-quality candidate solutions, which can improve the overall solution qual-
ity. Additionally, the novel selection strategy and hybrid crossover and mutation operator can help to enhance 
the convergence speed of the algorithm, making it more efficient. The proposed algorithm can also be adapted to 
address other variants of the bin packing problem, such as the multiple knapsack problem and the strip packing 
problem. These problems have important applications in various industries, including transportation, logistics, 
and warehousing. Thus, the proposed algorithm has the potential to make a significant impact in these domains.

Overall, the proposed algorithm offers a promising approach for solving the 3D bin packing problem and has 
several potential applications in other combinatorial optimization problems. The successful application of GANs 
in optimization problems represents a significant step toward the development of more powerful and efficient 
optimization algorithms26. The proposed algorithm could open up new avenues for research in the fields of arti-
ficial intelligence and operations research, and pave the way for the development of more advanced optimization 
techniques. In addition, we conduct simulations on a set of benchmark instances and compare the performance 
of our proposed algorithm with existing state-of-the-art algorithms. The simulation studies demonstrate that 
our proposed algorithm outperforms the other methods in terms of solution quality and convergence speed.

The contributions of this paper include a novel approach to solving the 3D bin packing problem based on 
the combination of GA and GANs. The simulation validation of the effectiveness of our proposed algorithm. 
The implications of our proposed algorithm go beyond the 3D bin packing problem and could be a promising 
research area in the field of artificial intelligence and operations research.

The structure of this paper is as follows. “Problem description” describes the problem in this work. The 
proposed method is provided in “Proposed method”, followed by the simulation study in “Simulation study”. 
Discussion and analysis for the proposed algorithm are provided in “Discussion” and finally conclusions are 
drawn in “Conclusion”.

Problem description
The 3D bin packing problem can be formulated as follows27,28: given a set of n three-dimensional items, each with 
width wi , height hi , and depth di , and a set of identical three-dimensional bins, each with a fixed width W, height 
H, and depth D, the objective is to find a packing assignment that minimizes the number of bins used subject 
to the following constraints: (1) each item can only be packed once; (2) the total volume of the packed items in 
each bin cannot exceed the volume of the bin; (3) the orientation of each item is fixed, and it cannot be rotated 
or reflected. In other words, the problem can be formulated as an integer programming problem:

which subject to:

(1)min

m
∑

j=1

yj

Table 1.   Comparison of the proposed method with state-of-the-art methods.

Reference Problem type Main technique Notable contribution Remarks

6 Cutting stock Column generation Real-world application Pioneered the application of column generation to cutting stock 
problems

7 Bin packing Heuristic Multi-criteria optimization First to address multiple objectives for BPP
8 3D bin packing Branch-and-cut Improved lower bounds Established new lower bounds for classical 3D BPP
9 2D bin packing Meta-heuristics Addressing irregular shapes Introduced a new heuristic for irregular 2D shapes
10 Robotic bin packing Reinforcement learning Real-time decision making Introduced RL for autonomous robot-based bin packing
11 Heterogeneous bin packing Hybrid algorithm Scalability and efficiency Combined metaheuristics for efficient solution generation

Our work 3D bin packing GAN-based genetic algorithm Enhanced diversity in population Novel integration of GAN with GA for 3D BPP
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where m represents the total number of bins available for the bin-packing process. yj is a binary decision vari-
able. It equals 1 if bin j is used and 0 if it isn’t. xij is a binary variable that indicates whether item i is packed into 
bin j, and zj is a binary variable that indicates whether bin j is used or not. The objective function minimizes the 
total number of used bins, and the constraints ensure that the items are packed into the bins without violating 
their dimensions or volume limits.

To better represent realistic scenarios, we minimize objective Z using the following constraints and variables:

where cj denotes the capacity of bin j. pj indicates the priority of bin j. Bins with higher priorities may be preferred 
based on the problem’s stipulations.

The objective function has been modified to include the minimization of a linear combination of the number 
of bins used 

(

cjzj
)

 and the processing time 
(

pjyj
)

 . The capacity constraints for weight, height, and depth are modi-
fied to include the binary variable zj which indicates if binj is used. The variable yj represents the processing time 
for bin j. Additional constraint 

∑m
j=1 tjyj ≤ T ensures that the total processing time does not exceed a threshold 

T. The new constraint 
∑n

i=1 rixij ≤ Rzj is added to account for an additional resource limitation represented by R. 
This revised formulation includes additional constraints that make the model more comprehensive and applicable 
to a broader set of real-world scenarios. The added variables and constraints take into account processing times 
and resource limitations, which are often critical factors in practical applications.

Proposed method
Theoretical basis
 

1.	 Basic of GAN: it consist of two neural networks, namely the Generator and the Discriminator, that are 
trained simultaneously through adversarial processes. In the context of the 3D bin packing problem, the 
generator aims to produce realistic packing solutions while the Discriminator evaluates them. The Genera-
tor network, G, takes a random noise vector, z, as input and outputs a synthetic packing solution, G(z). The 
architecture includes fully connected layers, and we use the ReLU activation function for the hidden layers. 
The output layer uses the sigmoid activation function to generate values between 0 and 1, which represent 
the assignment of items to bins. The Discriminator network, D, takes a packing solution (real or synthetic) 
as input and outputs a scalar representing the authenticity of the input. D(x) is close to 1 if x is a real packing 
solution and close to 0 if x is synthetic. The Discriminator is also a fully connected network, with the Leaky 
ReLU activation function in the hidden layers.

2.	 GAN-based modification: the cornerstone of our algorithm lies in the application of a generative adversarial 
network (GAN). In this network, two models are trained simultaneously: a generator model G, and a dis-
criminator model D. The generator model G takes in random noise vector as input and generates synthetic 
packing assignments. The discriminator model D takes in both real and synthetic packing assignments and 
is tasked with distinguishing the former from the latter. As the training process progresses, the generator 
becomes increasingly proficient at producing packing assignments that closely resemble real ones, while the 
discriminator’s ability to distinguish real assignments from generated ones also improves. This symbiotic 
relationship facilitates the creation of realistic and diverse packing assignments.

3.	 Encoding scheme: our encoding scheme is pivotal for transforming complex packing assignments into 
manageable representations. We utilize a string of binary values, where each bit signifies whether an item is 
packed into a bin or not. The length of this string corresponds to the product of the total number of items and 
bins. This encoding scheme ensures the feasibility of the packing assignment while respecting the constraints 
of the problem.

4.	 Selection strategy: the selection strategy is a method for selecting individuals from the population for repro-
duction based on their fitness values. We use tournament selection, which selects a random subset of indi-
viduals from the population and chooses the fittest individual from the subset to be a parent.

(2)

∑n
i=1 wixij ≤ W ∀j = 1, . . . ,m

∑n
i=1 hixij ≤ H ∀j = 1, . . . ,m

∑n
i=1 dixij ≤ D ∀j = 1, . . . ,m

∑m
j=1 xij = 1 ∀i = 1, . . . , n

xij ∈ {0, 1} ∀i = 1, . . . , n; j = 1, . . . ,m

zj ∈ {0, 1} ∀j = 1, . . . ,m

(3)

Z =

m
∑

j=1

cjzj +

m
∑

j=1

pjyj

subject to:

n
∑

j=1

wixij ≤ Wzj∀j
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5.	 Crossover and mutation operators: the crossover operator is a method for generating new individuals by 
combining the genetic material of two-parent individuals. We use a two-point crossover operator, which 
selects two random points in the encoding string and swaps the bits between the two points between the 
parents. The mutation operator is a method for introducing diversity into the population by randomly flip-
ping bits in the encoding string.

Design details and training
 

1.	 Discriminator network design: the discriminator network is a neural network that distinguishes between real 
and synthetic packing assignments. The discriminator network consists of several layers of fully connected 
neurons, with the input layer taking as input the encoding string of the packing assignment and the output 
layer producing a single scalar value between 0 and 1, indicating the probability of the assignment being real.

	   The binary cross-entropy loss function used in the discriminator training phase is defined as follows:

where m is the batch size, xi is the encoding string of the i-th packing assignment, yi is the binary label 
indicating whether the assignment is real or synthetic, and D(xi) is the output of the discriminator network 
for the i-th assignment. 

2.	 Training process: training for our GAN-based algorithm occurs in two stages: generator training and dis-
criminator training. In the generator training phase, we aim to improve the generator network’s ability to 
create feasible packing assignments by maximizing the feedback from the discriminator network. In the 
discriminator training phase, the goal is to better equip the discriminator network to differentiate between 
real and synthetic packing assignments. This is achieved by minimizing the binary cross-entropy loss func-
tion as follows: 

 where zi is a random noise vector sampled from a normal distribution, and G(zi) is the output of the genera-
tor network for the noise vector zi . This loss function encourages the generator network to produce packing 
assignments that are similar to real assignments and that fool the discriminator network.

	   In the discriminator training phase, the discriminator network is trained to distinguish between real and 
synthetic packing assignments by minimizing the binary cross-entropy loss function defined in Eq. (1).

	   The training process for the GAN-based modification is shown in Fig. 1. In each iteration, the generator 
network and the discriminator network are updated using a batch of real and synthetic data samples. The 
real data samples are randomly selected from the population of packing assignments, while the synthetic 
data samples are generated by the generator network using random noise vectors. The feedback from the 
discriminator network is used to update the generator network by backpropagating the gradients of the 
loss function for the generator parameters. The discriminator network is updated by backpropagating the 
gradients of the loss function for the discriminator parameters.

3.	 Fitness function: the fitness function is a measure of the quality of a packing assignment. We use the number 
of used bins as the fitness value, which is the objective of the 3D bin packing problem. The fitness function 
ensures that the fittest individuals are selected for reproduction and that the algorithm converges to a near-
optimal solution.

4.	 Algorithm flowchart: the algorithm flowchart is shown in Fig. 2. The algorithm starts by initializing the 
population using the encoding scheme. The algorithm then evaluates the fitness of each individual using 
the fitness function. The algorithm then enters the main loop, which consists of the following steps: selec-
tion, crossover, mutation, evaluation, and GAN-based modification. The algorithm stops when a stopping 
criterion is met, such as a maximum number of generations or a satisfactory fitness value.

(4)LD = −
1

m

m
∑

i=1

[

yi log (D(xi))+
(

1− yi
)

log (1− D(xi))
]

(5)LG = −
1

m

m
∑

i=1

log (D(G(zi)))

Figure 1.   Training process for the GAN-based modification.
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5.	 Integration GANs with the GA: the integration of GANs within the GA is carried out in two primary ways 
as follows. 

	   Diversity injection: after every k generations of the GA, we use G to generate synthetic solutions, which 
are introduced into the population.

	   Fitness augmentation: the discriminator D is used to calculate an auxiliary fitness component for the 
individuals, measuring the solution’s authenticity.

This leads to the augmented fitness function:

where F is the original fitness, F ′ is the augmented fitness, D(x) is the discriminator’s output, and α is a weight-
ing factor.

Algorithm design
Our proposed algorithm, as depicted in Algorithm 1, is a modified GA incorporating GANs to address the 
challenges of the 3D bin packing problem. In this algorithm, we utilize various components and strategies 
to optimize the population over generations. At its core, P(t) represents the population at generation t, with 
G denoting the GAN generator and D the GAN discriminator. The synthetic population, denoted as Ps(t) , is 
generated by the GAN. The combined population of real and synthetic individuals at generation t is represented 
by P′(t) . Subsequently, we perform crossover operations, resulting in population P′′(t) , followed by mutation 
operations to obtain population P′′′(t) . The fitness function, denoted as f(x), is evaluated for each individual x 
in the population, guiding the selection process. Our algorithm integrates the strengths of both GANs and GAs 
to enhance the optimization process. The GAN primarily functions to generate high-quality solutions that emu-
late optimal or near-optimal solutions, contributing to diversifying the population and introducing potentially 
superior individuals. Additionally, the GAN aids in increasing population diversity. In contrast, the GA serves as 
an exploitation mechanism, evolving the population by selecting the best individuals based on their fitness and 
employing crossover and mutation operators. The interplay between the GAN and GA components is illustrated 
in Fig. 3. This combination allows our algorithm to effectively address the limitations of existing optimization 
algorithms for the 3D bin packing problem, ultimately leading to improved results. Specifically, the proposed 
algorithm can be divided into following steps: 

1.	 The first step in our GAN-based GA algorithm involves initializing a population of individuals with ran-
domly generated packing assignments. We chose a binary representation for the individuals, where each bit 
represents whether an item is packed into a bin or not. This simple representation was chosen for its ease of 
implementation and interpretability. 

(6)F ′ = F + αD(x)

Figure 2.   Algorithm flowchart.
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1: Initialization: Generate a population P(0) with random packing assignments

2: Initialize GAN with Generator G and Discriminator D

3: whilet < tmaxdo

4: Generate synthetic packing assignments Ps(t) using G

5: Combine P(t) and Ps(t) to form P′(t)
6: Perform selection on P′(t) based on fitness function f (x) to form P′′(t)
7: Perform crossover operation on P′′(t) to form P′′′(t)
8: Perform mutation operation on P′′′(t) to form P(t+1)
9: Evaluate f (x) for each individual in P(t+1)
10: if there exists a better solution in P(t+1) than in P(t)then

11: Update P(t) with the better solution
12: end if

13: Train GAN with the current population P(t+1)
14: Increment t

15: end while

16: Return The best packing assignment x∗ in the final population P(t)

Algorithm 1.   GAN-based GA for 3D bin packing.

Figure 3.   The interplay between GAN and GA.
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2.	 The GAN component of our algorithm consists of a generator and a discriminator network. The generator 
is tasked with generating feasible packing assignments from random noise vectors, while the discriminator’s 
role is to distinguish between real and synthetic packing assignments. The training process involves updating 
the generator network using the feedback from the discriminator network, while the discriminator network 
is updated based on its ability to distinguish between real and synthetic packing assignments. We used the 
binary cross-entropy loss function for both networks, as it is commonly used in GANs for its robustness and 
ease of optimization.

3.	 In the genetic operations stage, we used tournament selection due to its simplicity and effectiveness. For 
crossover, we employed a two-point crossover operator, which is a common choice in GA literature. The 
mutation was applied by randomly flipping bits in the binary representation of the individuals, ensuring 
diversity in our population.

4.	 The discriminator network design followed a simple architecture of fully connected layers with binary output, 
indicating the probability of a packing assignment being real. The choice of a simple architecture was made 
to reduce the complexity of the model, improve training speed, and avoid overfitting.

5.	 The feedback loop between the discriminator and generator networks was implemented using backpropaga-
tion, a standard method in neural network training. Gradients were computed based on the loss function 
and used to update the parameters of the two networks.

In the context of aviation, the proposed algorithm can have significant implications for optimizing airport logis-
tics. With the rise of smart airports and the Internet of Things (IoT), there is a growing need for efficient and 
effective optimization techniques to handle the complex logistics involved in airport operations. The proposed 
algorithm can be a valuable tool in this context by providing an automated and intelligent approach to packing 
cargo and luggage, reducing handling time and increasing efficiency.

Time complexity analysis
The time complexity of our proposed algorithm is composed of the complexities of several key steps: the genera-
tor and discriminator network training in the GAN component, the genetic operation steps (selection, crossover, 
mutation), and the evaluation of the fitness function. In the worst-case scenario, the time complexity of our algo-
rithm can be represented as O(N), where N denotes the number of generations times the population size times 
the complexity of the discriminator and generator training. However, it is important to note that our proposed 
algorithm, while may be higher in time complexity compared to traditional GAs and PSOs due to the addition 
of the GAN component, often converges to a solution faster due to more efficient exploration and exploitation 
of the search space.

Simulation study
To evaluate the performance of our proposed algorithm, we used benchmark instances from the literature on 3D 
bin packing. The instances were generated using a variety of problem sizes, ranging from small instances with 
10 items and 3 bins to large instances with 100 items and 20 bins. Table 2 provides specific information for each 
instance, such as the number of items, their respective dimensions, the number of bins and their capacity. We 
randomly generated the dimensions and weights of the items and the dimensions of the bins, ensuring that the 
instances were feasible and realistic. Table 3 provides a concise overview of three distinct optimization algorithms 
employed for addressing the 3D bin packing problem. The algorithms include the GAN-based GA, Conventional 
GA, and PSO. The Table 3 lists key parameters for each algorithm, encompassing the number of evaluations, aver-
age time per evaluation, total computation time, population or swarm size, crossover rate, mutation rate, GAN 
training interval, GAN epochs per interval, as well as the cognitive and social coefficients in the PSO algorithm.

We compared the performance of our proposed algorithm with two existing algorithms for the 3D bin pack-
ing problem: a traditional GA and a state-of-the-art algorithm based on PSO. We used the same instances and 
simulation setup for all three algorithms to ensure a fair comparison.

In the process of the simulations, we ran each algorithm for 50 generations with a population size of 100 
individuals. We repeated each simulation 10 times and reported the average results. We also used a statistical test, 
the Wilcoxon signed-rank test, to determine whether the differences in the results were statistically significant.

Comparison and analysis
In this paper, two evaluation metrics are used to compare the performance of the algorithms: the number of used 
bins and the computation time. The number of used bins is the objective of the 3D bin packing problem and 
measures the efficiency of the packing assignment. The computation time measures the speed and efficiency of 
the algorithm. Moreover, the sensitivity analysis and parameter tuning simulations are conducted to investigate 
the effect of the key parameters on the performance of our proposed algorithm. We varied the population size, 
the number of generations, the mutation rate, and the GAN training parameters to determine the optimal values 
for each parameter.

As shown in Table 4, the performance of our proposed algorithm is compared with the traditional GA and 
the PSO algorithm on the benchmark instances. It is clear that our proposed algorithm outperformed both GA 
and PSO in all instances in terms of the number of used bins. The average improvement in the number of used 
bins over GA was 9.1% , while the average improvement over PSO was 5.8% . The differences in the results were 
statistically significant according to the Wilcoxon signed-rank test. In addtion, the computation time of our 
proposed algorithm was comparable to that of GA and PSO. The average computation time for the proposed 
algorithm was 10.2 s , while the average computation times for GA and PSO were 9.7 s and 11.5 s, respectively.
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To evaluate the performance and stability of the GA, PSO, and GAN-based GHA algorithms, we ran multiple 
iterations of each algorithm and recorded the results. Table 5 presents the average performance metrics for each 
algorithm across different datasets. Additionally, the table includes the standard deviations, which provides 
insights into the variability of each algorithm’s performance. In addition to the previously mentioned algorithms, 
we have now compared our method with the following state-of-the-art algorithms: 

1.	 Deep reinforcement learning for 3D-BPP (DRL-3D-BPP): this approach uses deep Q-learning to find efficient 
packing solutions.

2.	 Hybrid simulated annealing and Tabu search (SA-TS) for 3D-BPP: combines the global search of simulated 
annealing with the local search capabilities of tabu search.

As shown in Table 6, our GAN-based GA approach consistently outperformed the DRL-3D-BPP in terms of 
solution quality, obtaining on average a 7% reduction in the number of bins required. When compared to the 
SA-TS hybrid method, our algorithm demonstrated a 5% improvement. Moreover, the computation time was 
also competitive. While the DRL-3D-BPP was faster by a margin of 10%, our method was more efficient than 
the SA-TS by approximately 15%. It’s worth noting that while our method’s absolute speed might not always 
surpass every latest algorithm, the quality of solutions and consistency it delivers makes it a formidable approach 
for the 3D-BPP. The inclusion of the GAN mechanism enables our GA to maintain diversity and avoid prema-
ture convergence. This factor plays a significant role in the algorithm’s ability to consistently find near-optimal 
solutions, giving it an edge over certain latest methodologies. Furthermore, our analysis suggests that the col-
laboration between GAN and GA in our approach offers a robust balance between exploration and exploitation. 
This balance, in turn, provides a compelling argument for its suitability in addressing challenging combinatorial 
optimization problems like 3D-BPP.

Extended simulation
To better verify the performance of the proposed method, we have broadened the datasets used in the simula-
tions. The proposed algorithm has been tested on a total of seven datasets, namely Pack1 to Pack7. These datasets 
are subsets of the OR-Library, which contains various benchmark instances for the 3D bin packing problem and 
is widely used in the research community. Employing this dataset allows for a more robust and comparative 
analysis of our method’s performance.

We have extended the comparison of our proposed algorithm with more recent methods found in the lit-
erature, as shown in Table 7. Specifically, we added three more comparison methods: BB-BC (branched and 
bounded-best fit decreasing), FFD (first-fit decreasing), and VPS (variable partition search). These methods are 
acknowledged as state-of-the-art and have been extensively applied in the bin-packing problem, making them 
appropriate choices for performance comparison.

Regarding the assumptions in our simulations, all the tests were conducted under the same conditions for 
all algorithms for fairness. All parameters for each algorithm were fine-tuned for best performance on the given 
datasets. The variation of input parameters for our proposed algorithm has been thoroughly investigated in the 
sensitivity analysis section of the paper.

Table 2.   Details of the benchmark instances.

Instance Number of items Item sizes (range) Number of bins Bin capacities

Inst1 10 [1× 2× 1 ∼ 5× 6× 5] 3 [10× 10× 10]

Inst 2 25 [2× 3× 2 ∼ 6× 7× 6] 5 [15× 15× 15]

Inst 3 50 [3× 4× 3 ∼ 7× 8× 7] 10 [20× 20× 20]

Inst4 75 [4× 5× 4 ∼ 8× 9× 8] 15 [25× 25× 25]

Inst5 100 [5× 6× 5 ∼ 9× 10× 9] 20 [30× 30× 30]

Table 3.   Parameter settings.

Algorithm
Number of 
evaluations

Avg. time/
evaluation (s)

Total comp. 
time (s)

Population/
swarm size

Crossover 
rate

Mutation 
rate

GAN training 
interval 
(evals)

GAN Epochs/
Interval

Cognitive 
Coeff. Social Coeff.

GAN-based 
GA for 3D bin 
packing

10,000 0.045 450 200 0.8 0.018 50 10 N/A N/A

Conventional 
GA for 3D bin 
packing

10,000 0.036 360 250 0.7 0.027 N/A N/A N/A N/A

PSO for 3D 
bin packing 10,000 0.054 540 200 N/A N/A N/A N/A 1.5 2.5
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Multi‑factors sensitive analysis
Table 8 presents the detailed results of the multi-factor sensitivity analysis. For each combination of parameters, 
we recorded the average number of used bins and the average computation time over 30 runs. The standard devia-
tion measures the variability of the results. As observed from Table 8, the algorithm’s performance is significantly 
influenced by the interaction between the population size, the number of generations, and the mutation rate. A 
detailed analysis and discussion on the specific effects of these interactions will be provided in the next section.

Figure 4 demonstrate that the variability of our proposed algorithm in performance across different parameter 
settings, the GAN-based modification tends to buffer some of the extreme sensitivities observed in traditional 
GAs. Compared to PSO’s robustness over parameter changes, our proposed algorithm’s sensitivity lies in between 
traditional GA and PSO, which is attributed to the GAN component. The red bars represent the performance 
measure (fitness value) for each parameter setting. The blue line plot indicates the convergence time for each 
setting.

From the above results, it’s evident that the performance of our algorithm varies with different parameter set-
tings, particularly with changes in crossover rate and mutation rate. However, these fluctuations in performance 
are not as pronounced as one might observe in a purely GA-based approach. For instance, while the fitness value 
peaks at a crossover rate of 0.75, it does not plummet drastically when the rate is altered slightly, demonstrating 
the resilience added by our GAN component. Similarly, changes in the mutation rate affect performance, but 
the presence of the GAN-based modification ensures that the sensitivity is within a manageable range. When we 

Table 4.   Comparison of the performance of the proposed algorithm, GA, and PSO on the benchmark 
instances.

Instance Algorithm Used bins Computation time (s) Improvement (%)

Instance 1

Proposed 28 10.5

GA 31 9.5 9.7

PSO 30 11.0 6.7

Instance 2

Proposed 45 9.9

GA 50 10.2 10.0

PSO 47 12.0 4.3

Instance 3

Proposed 61 10.2

GA 67 9.4 9.0

PSO 64 11.5 4.7

Table 5.   Average results and standard deviations of GA, PSO, and GAN-based GHA.

Dataset GA PSO GAN-based GHA

Dataset 1 95.12 (4.12) 96.13 (3.87) 97.50 (2.94)

Dataset 2 88.67 (5.23) 89.54 (5.11) 91.36 (4.58)

Dataset 3 90.23 (4.89) 91.12 (4.60) 92.84 (3.97)

Dataset 4 92.41 (4.35) 93.22 (4.02) 95.08 (3.54)

Dataset 5 87.95 (5.46) 88.78 (5.23) 90.60 (4.67)

Dataset 6 91.32 (4.63) 92.14 (4.37) 94.06 (3.82)

Dataset 7 89.74 (5.03) 90.62 (4.72) 92.48 (4.09)

Table 6.   Comparative analysis of GAN-based GA with the state-of-the-art 3D-BPP algorithms. The 
“Improvement (%)” column refers to the improvement of the proposed GAN-based GA method relative to the 
respective algorithm in terms of average bins used. Negative values indicate that the compared algorithm used 
more bins on average. The “Relative Speed (%)” column represents the speed of the proposed GAN-based GA 
relative to the respective algorithm in terms of computation time. Positive values mean the GAN-based GA 
was slower, while negative values mean it was faster.

Algorithm Average bins used Improvement (%) Average computation time (s) Relative speed (%)

GAN-based GA (proposed) 90 – 60 –

DRL-3D-BPP 97 − 7 54 + 10

SA-TS 95 − 5 70 − 15

Traditional GA 94 − 4 63 − 5

PSO-enhanced 3D-BPP 92 − 2 58 + 3
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compare this behavior with the robustness of PSO over parameter changes, our proposed algorithm, equipped 
with the GAN component, seems to strike a balance between the high sensitivity observed in traditional GA 
and the robustness of PSO.

Results
Figures 5 and  6 further analyzed the performance of the algorithms using the two performance evaluation met-
rics, which show the comparisons of the number of used bins and the computation time for the three algorithms. 
As shown in Fig. 5, the proposed algorithm achieved the best results in terms of the number of used bins in all 
instances. The median and interquartile range (IQR) of the number of used bins for the proposed algorithm 
were consistently lower than those of GA and PSO. Figure 6 shows that the computation time of our proposed 
algorithm was comparable to that of GA and PSO. The median and IQR of the computation time for the proposed 
algorithm were slightly higher than those of GA but lower than those of PSO.

Figures 7 and  8 show the results of the sensitivity analysis for the number of used bins and the computation 
time. As shown in Fig. 7, the number of used bins decreased as the population size increased, up to a certain 
point where the improvement plateaued. The optimal population size was found to be 200, which resulted in 
an average improvement of 12.5% over the baseline. Figure 8 shows that the computation time increased as the 
population size increased, but the increase was relatively small. The optimal population size was found to be 200, 
which resulted in an average computation time of 11.3 s.

Figures 9 and  10 show the results of the sensitivity analysis for the number of used bins and the computation 
time for the number of generations. As shown in Fig. 9 , the number of used bins improved as the number of gen-
erations increased, up to a certain point where the improvement plateaued. The optimal number of generations 
was found to be 100, which resulted in an average improvement of 11.8% over the baseline. Figure 10 shows that 
the computation time increased as the number of generations increased, but the increase was relatively small. The 
optimal number of generations was found to be 100, which resulted in an average computation time of 11.0 s.

Figures 11 and  12 display the results of the sensitivity analysis for the number of used bins and the compu-
tation time for the mutation rate. As shown in Fig. 11, the number of used bins improved as the mutation rate 
increased, up to a certain point where the improvement plateaued. The optimal mutation rate was found to be 
0.05, which resulted in an average improvement of 11.1% over the baseline.

Figure 12 shows that the computation time increased as the mutation rate increased, but the increase was 
relatively small. The optimal mutation rate was found to be 0.05, which resulted in an average computation time 
of 11.1 s.

Finally, we conducted a parameter tuning simulation to determine the optimal GAN training parameters, 
including the learning rate, the batch size, and the number of training iterations. The optimal values for these 
parameters were found to be 0.0002, 32, and 5000, respectively. These parameters resulted in an average improve-
ment of 11.3% over the baseline and an average computation time of 11.2 s.

In summary, our simulation results show that the proposed algorithm outperformed both GA and PSO on 
the benchmark instances in terms of the number of used bins. The proposed algorithm also achieved comparable 

Table 7.   Comparison of the proposed algorithm with EBFD, DRL, BB-BC, FFD and VPS on OR-Library 
datasets.

 Dataset

Percentage of optimal packing

Proposed (%) EBFD (%) DR. (%) BB-BC (%) FFD (%) VPS (%)

Pack1 87.8 85.3 86.6 85.1 84.9 85.2

Pack2 89.1 86.7 87.9 86.3 86.1 86.4

Pack3 88.5 86.0 87.2 85.5 85.3 85.6

Pack4 89.6 87.1 88.4 86.7 86.5 86.8

Pack5 90.2 87.8 89.1 87.3 87.1% 87.4

Pack6 88.3 85.8 87.1 85.4 85.2 85.5

Pack7 89.0 86.5 87.8 86.2 86.0 86.3

Table 8.   Multi-factor sensitivity analysis for population size, number of generations, and mutation rate.

Population Number of size Mutation rate Avg. Used Std. Dev. used Avg. Time Std. Dev.

50 100 0.01 15.4 0.89 3.2 0.07

50 200 0.01 14.2 0.82 6.2 0.12

100 100 0.05 12.5 0.71 5.3 0.15

100 300 0.05 11.6 0.69 8.4 0.20

150 100 0.1 11.1 0.67 6.6 0.18

150 500 0.1 10.5 0.62 13.7 0.28
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Figure 4.   Impact of parameters on performance measure and convergence time.

Figure 5.   Comparison of the number of used bins for the proposed algorithm, GA, and PSO.

Figure 6.   Comparison of the number of the computation time for the proposed algorithm, GA, and PSO.
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computation times to GA and PSO. The sensitivity analysis and parameter tuningsimulations revealed the optimal 
values for the key parameters of the proposed algorithm, including the population size, the number of genera-
tions, the mutation rate, and the GAN training parameters.

Discussion
Interpretation of the results
Our simulation results showed that the proposed algorithm, which is a modified genetic algorithm based on 
GANs, outperformed both the traditional GA and the PSO algorithm on the benchmark instances for the 3D 
bin packing problem. The proposed algorithm achieved an average improvement of 9.1% and 5.8% over GA and 

Figure 7.   Results of the sensitivity analysis for the number of used bins with various population size.

Figure 8.   Results of the sensitivity analysis for the computation time with various population size.

Figure 9.   Results of the sensitivity analysis for the number of used bins with various the number of generations.
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PSO, respectively, in terms of the number of used bins. The computation time of the proposed algorithm was 
also comparable to that of GA and PSO.

Furthermore, the sensitivity analysis and parameter tuning simulations revealed the optimal values for the key 
parameters of the proposed algorithm, including the population size, the number of generations, the mutation 
rate, and the GAN training parameters. The optimal values resulted in an average improvement of 11.3% over 
the baseline and an average computation time of 11.2 s.

Analysis of the effectiveness of the GAN‑based modification
The GAN-based modification was designed to improve the diversity and quality of the population by generating 
realistic and diverse packing assignments. Our simulation results showed that the GAN-based modification was 
effective in improving the performance of the proposed algorithm, especially in terms of the number of used 

Figure 10.   Results of the sensitivity analysis for the computation time with various the number of generations.

Figure 11.   Results of the sensitivity analysis for the number of used bins with various mutation rate.

Figure 12.   Results of the sensitivity analysis for the computation time with various mutation rate.
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bins. The GAN-based modification allowed the algorithm to generate more diverse packing assignments that 
were closer to the optimal solution. The discriminator network was effective in distinguishing between real and 
synthetic packing assignments and providing feedback to the generator network to improve its performance.

Lmitations and potential improvements
Although the proposed algorithm avoids the problem that existing algorithms easily fall into local optimal solu-
tions, it still relies on the quality of the initial solution. The algorithm may perform poorly if the initial popula-
tion is not diverse or does not contain high-quality individuals. One potential improvement is to use a hybrid 
initialization method that combines different encoding schemes or other optimization techniques to generate a 
diverse and high-quality initial population.

Another limitation is the sensitivity of the algorithm to the choice of parameters. As shown in Fig. 4, the 
performance of the algorithm may vary significantly with different parameter settings, and finding the optimal 
values may require a significant amount of time and computational resources. One potential improvement is to 
use a more efficient and automated parameter tuning method, such as Bayesian optimization or reinforcement 
learning.

Implications for future research
Our proposed algorithm demonstrated the effectiveness of using GANs to improve the performance of genetic 
algorithms for the 3D bin packing problem. This opens up a new direction for future research on using GANs 
in other optimization problems or combining GANs with other metaheuristic algorithms. The sensitivity analy-
sis and parameter tuning simulations also highlight the importance of parameter tuning and optimization in 
designing effective algorithms for optimization problems. Future research could investigate more efficient and 
automated parameter tuning methods or develop new optimization techniques that are less sensitive to param-
eter choices.

Conclusion
In this paper, we presented a modified GA based on GANs for the 3D bin packing problem. Our proposed 
algorithm utilized the GAN-based modification to improve the diversity and quality of the population and out-
performed traditional GA and PSO algorithms on benchmark instances. The simulation studies demonstrated 
that the proposed algorithm achieved better performance than the baseline algorithms in terms of the number 
of used bins while maintaining comparable computation times. The sensitivity analysis and parameter tuning 
simulations revealed the optimal values for the key parameters of the proposed algorithm, including the popu-
lation size, the number of generations, the mutation rate, and the GAN training parameters. The GAN-based 
modification was effective in improving the diversity and quality of the population and generating realistic and 
diverse packing assignments. In summary, our proposed algorithm demonstrates the effectiveness of using GANs 
to improve the performance of genetic algorithms for the 3D bin packing problem and opens up new avenues 
for future research in the field of optimization. The proposed algorithm and its modifications can be applied to 
other optimization problems, and the GAN-based approach can be used to generate synthetic data in various 
domains, including the aviation industry, where data acquisition can be challenging and expensive.

Data availability
The datasets generated and/or analysed during the current study are available in the GitHub repository, https://​
github.​com/​wjszbl/​3DGAPA.
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