
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:7775 | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports

A GAN‑based genetic algorithm
for solving the 3D bin packing
problem
Boliang Zhang 1*, Yu Yao 1, H. K. Kan 2* & Wuman Luo 1

The 3D bin packing problem is a challenging combinatorial optimization problem with numerous real-
world applications. In this paper, we present a novel approach for solving this problem by integrating
a generative adversarial network (GAN) with a genetic algorithm (GA). Our proposed GAN-based GA
utilizes the GAN to generate high-quality solutions and improve the exploration and exploitation
capabilities of the GA. We evaluate the performance of the proposed algorithm on a set of benchmark
instances and compare it with two existing algorithms. The simulation studies demonstrate that
our proposed algorithm outperforms both existing algorithms in terms of the number of used bins
while achieving comparable computation times. Our proposed algorithm also performs well in terms
of solution quality and runtime on instances of different sizes and shapes. We conduct sensitivity
analysis and parameter tuning simulations to determine the optimal values for the key parameters
of the proposed algorithm. Our results indicate that the proposed algorithm is robust and effective in
solving the 3D bin packing problem. The proposed GAN-based GA algorithm and its modifications can
be applied to other optimization problems. Our research contributes to the development of efficient
and effective algorithms for solving complex optimization problems, particularly in the context of
logistics and manufacturing. In summary, the proposed algorithm represents a promising solution
to the challenging 3D bin packing problem and has the potential to advance the state-of-the-art in
combinatorial optimization.

The 3D bin packing problem is a classical optimization problem in logistics and manufacturing, where a set of
three-dimensional items needs to be packed into a minimum number of containers subject to certain constraints.
The problem is known to be NP-hard, and finding an optimal solution is computationally challenging, especially
for large problem instances1–3. Over the years, various optimization algorithms have been proposed to tackle this
problem, including genetic algorithms (GA), simulated annealing, ant colony optimization, and particle swarm
optimization. However, these algorithms suffer from limitations in terms of solution quality, convergence speed,
or scalability4,5. Some advanced research works are shown in Table 1 and compared with our work.

The 3D bin packing problem is classified as NP-hard12,13, indicating the substantial computational complexity
involved. This strong NP-hard nature of the problem implies that approximating the optimal solution within
a constant factor is a significant challenge, unless the P = NP conjecture is disproven. Therefore, heuristic and
metaheuristic algorithms are usually used to solve the problem in practice14. However, the existing algorithms for
the 3D bin packing problem suffer from several challenges and limitations. First, some algorithms are not able to
find optimal or near-optimal solutions for large problem instances due to their high computational complexity.
Second, some algorithms are sensitive to the initial solution and are prone to get stuck in local optima. Third,
some algorithms do not consider the complexity of the problem in terms of the number of items, bin dimensions,
and volume limits, and may perform poorly on certain problem instances. Finally, some algorithms are not scal-
able and do not perform well on parallel computing architectures. These challenges and limitations motivate the
need for new and improved optimization algorithms for the 3D bin packing problem15.

Recently, generative adversarial networks (GANs) have emerged as a powerful tool for generating high-
quality synthetic data and solving optimization problems. GANs consist of two neural networks, a generator,
and a discriminator, that are trained in an adversarial manner to generate realistic data samples16. Moreover,
GANs have been applied to a variety of optimization problems, including image synthesis, text generation, and
reinforcement learning. Specifically, Wu et al.17 explored the potential of GANs in generating and reconstructing
3D objects, showcasing the versatility of GANs in handling three-dimensional data. On the other hand, GAs have

OPEN

1Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR 999078, China. 2Centre for Continuing
Education, Macao Polytechnic University, Macao SAR 999078, China. *email: P1807471@mpu.edu.mo; stanley@
macaopda.org

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-56699-7&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:7775 | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports/

been employed in various domains, from optimizing robot navigation in unstructured terrains18 to enhancing
space and time allocation in shipyard assembly halls19. Additionally, Tsai et al.20 proposed a global optimiza-
tion approach using GAs to solve three-dimensional open dimension rectangular packing problems, further
emphasizing the adaptability and efficiency of GAs in solving spatial problems. GAs are optimization techniques
inspired by natural evolution, widely applied in experimental designs as highlighted by the authors of21. On the
other hand, quantum particle swarm optimization (QPSO), a variant of PSO with quantum mechanics principles,
has been explored by the authors of22 for its applications in designs with mixed factors and binary responses.
Both methodologies offer innovative approaches to complex experimental design challenges.

The research objective of this paper is to propose a modified GA based on GANs to solve the 3D bin packing
problem23–25. The proposed algorithm aims to combine the strengths of GA and GANs to offer a novel solution
approach to the problem. In this paper, we present the mathematical formulation of the 3D bin packing problem
and discuss the challenges and limitations of existing optimization algorithms. We then introduce our proposed
algorithm, which includes a GAN-based modification, a new encoding scheme, a novel selection strategy, and a
hybrid crossover and mutation operator. We also describe the design of the discriminator network, the training
process, the fitness function, and the algorithm flowchart. Specifically, the proposed algorithm has the potential
to address some of the key challenges faced by existing optimization algorithms. For instance, the GAN-based
modification can help to generate high-quality candidate solutions, which can improve the overall solution qual-
ity. Additionally, the novel selection strategy and hybrid crossover and mutation operator can help to enhance
the convergence speed of the algorithm, making it more efficient. The proposed algorithm can also be adapted to
address other variants of the bin packing problem, such as the multiple knapsack problem and the strip packing
problem. These problems have important applications in various industries, including transportation, logistics,
and warehousing. Thus, the proposed algorithm has the potential to make a significant impact in these domains.

Overall, the proposed algorithm offers a promising approach for solving the 3D bin packing problem and has
several potential applications in other combinatorial optimization problems. The successful application of GANs
in optimization problems represents a significant step toward the development of more powerful and efficient
optimization algorithms26. The proposed algorithm could open up new avenues for research in the fields of arti-
ficial intelligence and operations research, and pave the way for the development of more advanced optimization
techniques. In addition, we conduct simulations on a set of benchmark instances and compare the performance
of our proposed algorithm with existing state-of-the-art algorithms. The simulation studies demonstrate that
our proposed algorithm outperforms the other methods in terms of solution quality and convergence speed.

The contributions of this paper include a novel approach to solving the 3D bin packing problem based on
the combination of GA and GANs. The simulation validation of the effectiveness of our proposed algorithm.
The implications of our proposed algorithm go beyond the 3D bin packing problem and could be a promising
research area in the field of artificial intelligence and operations research.

The structure of this paper is as follows. “Problem description” describes the problem in this work. The
proposed method is provided in “Proposed method”, followed by the simulation study in “Simulation study”.
Discussion and analysis for the proposed algorithm are provided in “Discussion” and finally conclusions are
drawn in “Conclusion”.

Problem description
The 3D bin packing problem can be formulated as follows27,28: given a set of n three-dimensional items, each with
width wi , height hi , and depth di , and a set of identical three-dimensional bins, each with a fixed width W, height
H, and depth D, the objective is to find a packing assignment that minimizes the number of bins used subject
to the following constraints: (1) each item can only be packed once; (2) the total volume of the packed items in
each bin cannot exceed the volume of the bin; (3) the orientation of each item is fixed, and it cannot be rotated
or reflected. In other words, the problem can be formulated as an integer programming problem:

which subject to:

(1)min

m
∑

j=1

yj

Table 1.   Comparison of the proposed method with state-of-the-art methods.

Reference Problem type Main technique Notable contribution Remarks

6 Cutting stock Column generation Real-world application Pioneered the application of column generation to cutting stock
problems

7 Bin packing Heuristic Multi-criteria optimization First to address multiple objectives for BPP
8 3D bin packing Branch-and-cut Improved lower bounds Established new lower bounds for classical 3D BPP
9 2D bin packing Meta-heuristics Addressing irregular shapes Introduced a new heuristic for irregular 2D shapes
10 Robotic bin packing Reinforcement learning Real-time decision making Introduced RL for autonomous robot-based bin packing
11 Heterogeneous bin packing Hybrid algorithm Scalability and efficiency Combined metaheuristics for efficient solution generation

Our work 3D bin packing GAN-based genetic algorithm Enhanced diversity in population Novel integration of GAN with GA for 3D BPP

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:7775 | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports/

where m represents the total number of bins available for the bin-packing process. yj is a binary decision vari-
able. It equals 1 if bin j is used and 0 if it isn’t. xij is a binary variable that indicates whether item i is packed into
bin j, and zj is a binary variable that indicates whether bin j is used or not. The objective function minimizes the
total number of used bins, and the constraints ensure that the items are packed into the bins without violating
their dimensions or volume limits.

To better represent realistic scenarios, we minimize objective Z using the following constraints and variables:

where cj denotes the capacity of bin j. pj indicates the priority of bin j. Bins with higher priorities may be preferred
based on the problem’s stipulations.

The objective function has been modified to include the minimization of a linear combination of the number
of bins used

(

cjzj
)

 and the processing time
(

pjyj
)

 . The capacity constraints for weight, height, and depth are modi-
fied to include the binary variable zj which indicates if binj is used. The variable yj represents the processing time
for bin j. Additional constraint

∑m
j=1 tjyj ≤ T ensures that the total processing time does not exceed a threshold

T. The new constraint
∑n

i=1 rixij ≤ Rzj is added to account for an additional resource limitation represented by R.
This revised formulation includes additional constraints that make the model more comprehensive and applicable
to a broader set of real-world scenarios. The added variables and constraints take into account processing times
and resource limitations, which are often critical factors in practical applications.

Proposed method
Theoretical basis

1.	 Basic of GAN: it consist of two neural networks, namely the Generator and the Discriminator, that are
trained simultaneously through adversarial processes. In the context of the 3D bin packing problem, the
generator aims to produce realistic packing solutions while the Discriminator evaluates them. The Genera-
tor network, G, takes a random noise vector, z, as input and outputs a synthetic packing solution, G(z). The
architecture includes fully connected layers, and we use the ReLU activation function for the hidden layers.
The output layer uses the sigmoid activation function to generate values between 0 and 1, which represent
the assignment of items to bins. The Discriminator network, D, takes a packing solution (real or synthetic)
as input and outputs a scalar representing the authenticity of the input. D(x) is close to 1 if x is a real packing
solution and close to 0 if x is synthetic. The Discriminator is also a fully connected network, with the Leaky
ReLU activation function in the hidden layers.

2.	 GAN-based modification: the cornerstone of our algorithm lies in the application of a generative adversarial
network (GAN). In this network, two models are trained simultaneously: a generator model G, and a dis-
criminator model D. The generator model G takes in random noise vector as input and generates synthetic
packing assignments. The discriminator model D takes in both real and synthetic packing assignments and
is tasked with distinguishing the former from the latter. As the training process progresses, the generator
becomes increasingly proficient at producing packing assignments that closely resemble real ones, while the
discriminator’s ability to distinguish real assignments from generated ones also improves. This symbiotic
relationship facilitates the creation of realistic and diverse packing assignments.

3.	 Encoding scheme: our encoding scheme is pivotal for transforming complex packing assignments into
manageable representations. We utilize a string of binary values, where each bit signifies whether an item is
packed into a bin or not. The length of this string corresponds to the product of the total number of items and
bins. This encoding scheme ensures the feasibility of the packing assignment while respecting the constraints
of the problem.

4.	 Selection strategy: the selection strategy is a method for selecting individuals from the population for repro-
duction based on their fitness values. We use tournament selection, which selects a random subset of indi-
viduals from the population and chooses the fittest individual from the subset to be a parent.

(2)

∑n
i=1 wixij ≤ W ∀j = 1, . . . ,m

∑n
i=1 hixij ≤ H ∀j = 1, . . . ,m

∑n
i=1 dixij ≤ D ∀j = 1, . . . ,m

∑m
j=1 xij = 1 ∀i = 1, . . . , n

xij ∈ {0, 1} ∀i = 1, . . . , n; j = 1, . . . ,m

zj ∈ {0, 1} ∀j = 1, . . . ,m

(3)

Z =

m
∑

j=1

cjzj +

m
∑

j=1

pjyj

subject to:

n
∑

j=1

wixij ≤ Wzj∀j

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:7775 | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports/

5.	 Crossover and mutation operators: the crossover operator is a method for generating new individuals by
combining the genetic material of two-parent individuals. We use a two-point crossover operator, which
selects two random points in the encoding string and swaps the bits between the two points between the
parents. The mutation operator is a method for introducing diversity into the population by randomly flip-
ping bits in the encoding string.

Design details and training

1.	 Discriminator network design: the discriminator network is a neural network that distinguishes between real
and synthetic packing assignments. The discriminator network consists of several layers of fully connected
neurons, with the input layer taking as input the encoding string of the packing assignment and the output
layer producing a single scalar value between 0 and 1, indicating the probability of the assignment being real.

	  The binary cross-entropy loss function used in the discriminator training phase is defined as follows:

where m is the batch size, xi is the encoding string of the i-th packing assignment, yi is the binary label
indicating whether the assignment is real or synthetic, and D(xi) is the output of the discriminator network
for the i-th assignment.

2.	 Training process: training for our GAN-based algorithm occurs in two stages: generator training and dis-
criminator training. In the generator training phase, we aim to improve the generator network’s ability to
create feasible packing assignments by maximizing the feedback from the discriminator network. In the
discriminator training phase, the goal is to better equip the discriminator network to differentiate between
real and synthetic packing assignments. This is achieved by minimizing the binary cross-entropy loss func-
tion as follows:

 where zi is a random noise vector sampled from a normal distribution, and G(zi) is the output of the genera-
tor network for the noise vector zi . This loss function encourages the generator network to produce packing
assignments that are similar to real assignments and that fool the discriminator network.

	  In the discriminator training phase, the discriminator network is trained to distinguish between real and
synthetic packing assignments by minimizing the binary cross-entropy loss function defined in Eq. (1).

	  The training process for the GAN-based modification is shown in Fig. 1. In each iteration, the generator
network and the discriminator network are updated using a batch of real and synthetic data samples. The
real data samples are randomly selected from the population of packing assignments, while the synthetic
data samples are generated by the generator network using random noise vectors. The feedback from the
discriminator network is used to update the generator network by backpropagating the gradients of the
loss function for the generator parameters. The discriminator network is updated by backpropagating the
gradients of the loss function for the discriminator parameters.

3.	 Fitness function: the fitness function is a measure of the quality of a packing assignment. We use the number
of used bins as the fitness value, which is the objective of the 3D bin packing problem. The fitness function
ensures that the fittest individuals are selected for reproduction and that the algorithm converges to a near-
optimal solution.

4.	 Algorithm flowchart: the algorithm flowchart is shown in Fig. 2. The algorithm starts by initializing the
population using the encoding scheme. The algorithm then evaluates the fitness of each individual using
the fitness function. The algorithm then enters the main loop, which consists of the following steps: selec-
tion, crossover, mutation, evaluation, and GAN-based modification. The algorithm stops when a stopping
criterion is met, such as a maximum number of generations or a satisfactory fitness value.

(4)LD = −
1

m

m
∑

i=1

[

yi log (D(xi))+
(

1− yi
)

log (1− D(xi))
]

(5)LG = −
1

m

m
∑

i=1

log (D(G(zi)))

Figure 1.   Training process for the GAN-based modification.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:7775 | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports/

5.	 Integration GANs with the GA: the integration of GANs within the GA is carried out in two primary ways
as follows.

	  Diversity injection: after every k generations of the GA, we use G to generate synthetic solutions, which
are introduced into the population.

	  Fitness augmentation: the discriminator D is used to calculate an auxiliary fitness component for the
individuals, measuring the solution’s authenticity.

This leads to the augmented fitness function:

where F is the original fitness, F ′ is the augmented fitness, D(x) is the discriminator’s output, and α is a weight-
ing factor.

Algorithm design
Our proposed algorithm, as depicted in Algorithm 1, is a modified GA incorporating GANs to address the
challenges of the 3D bin packing problem. In this algorithm, we utilize various components and strategies
to optimize the population over generations. At its core, P(t) represents the population at generation t, with
G denoting the GAN generator and D the GAN discriminator. The synthetic population, denoted as Ps(t) , is
generated by the GAN. The combined population of real and synthetic individuals at generation t is represented
by P′(t) . Subsequently, we perform crossover operations, resulting in population P′′(t) , followed by mutation
operations to obtain population P′′′(t) . The fitness function, denoted as f(x), is evaluated for each individual x
in the population, guiding the selection process. Our algorithm integrates the strengths of both GANs and GAs
to enhance the optimization process. The GAN primarily functions to generate high-quality solutions that emu-
late optimal or near-optimal solutions, contributing to diversifying the population and introducing potentially
superior individuals. Additionally, the GAN aids in increasing population diversity. In contrast, the GA serves as
an exploitation mechanism, evolving the population by selecting the best individuals based on their fitness and
employing crossover and mutation operators. The interplay between the GAN and GA components is illustrated
in Fig. 3. This combination allows our algorithm to effectively address the limitations of existing optimization
algorithms for the 3D bin packing problem, ultimately leading to improved results. Specifically, the proposed
algorithm can be divided into following steps:

1.	 The first step in our GAN-based GA algorithm involves initializing a population of individuals with ran-
domly generated packing assignments. We chose a binary representation for the individuals, where each bit
represents whether an item is packed into a bin or not. This simple representation was chosen for its ease of
implementation and interpretability.

(6)F ′ = F + αD(x)

Figure 2.   Algorithm flowchart.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:7775 | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports/

1: Initialization: Generate a population P(0) with random packing assignments

2: Initialize GAN with Generator G and Discriminator D

3: whilet < tmaxdo

4: Generate synthetic packing assignments Ps(t) using G

5: Combine P(t) and Ps(t) to form P′(t)
6: Perform selection on P′(t) based on fitness function f (x) to form P′′(t)
7: Perform crossover operation on P′′(t) to form P′′′(t)
8: Perform mutation operation on P′′′(t) to form P(t+1)
9: Evaluate f (x) for each individual in P(t+1)
10: if there exists a better solution in P(t+1) than in P(t)then

11: Update P(t) with the better solution
12: end if

13: Train GAN with the current population P(t+1)
14: Increment t

15: end while

16: Return The best packing assignment x∗ in the final population P(t)

Algorithm 1.   GAN-based GA for 3D bin packing.

Figure 3.   The interplay between GAN and GA.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:7775 | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports/

2.	 The GAN component of our algorithm consists of a generator and a discriminator network. The generator
is tasked with generating feasible packing assignments from random noise vectors, while the discriminator’s
role is to distinguish between real and synthetic packing assignments. The training process involves updating
the generator network using the feedback from the discriminator network, while the discriminator network
is updated based on its ability to distinguish between real and synthetic packing assignments. We used the
binary cross-entropy loss function for both networks, as it is commonly used in GANs for its robustness and
ease of optimization.

3.	 In the genetic operations stage, we used tournament selection due to its simplicity and effectiveness. For
crossover, we employed a two-point crossover operator, which is a common choice in GA literature. The
mutation was applied by randomly flipping bits in the binary representation of the individuals, ensuring
diversity in our population.

4.	 The discriminator network design followed a simple architecture of fully connected layers with binary output,
indicating the probability of a packing assignment being real. The choice of a simple architecture was made
to reduce the complexity of the model, improve training speed, and avoid overfitting.

5.	 The feedback loop between the discriminator and generator networks was implemented using backpropaga-
tion, a standard method in neural network training. Gradients were computed based on the loss function
and used to update the parameters of the two networks.

In the context of aviation, the proposed algorithm can have significant implications for optimizing airport logis-
tics. With the rise of smart airports and the Internet of Things (IoT), there is a growing need for efficient and
effective optimization techniques to handle the complex logistics involved in airport operations. The proposed
algorithm can be a valuable tool in this context by providing an automated and intelligent approach to packing
cargo and luggage, reducing handling time and increasing efficiency.

Time complexity analysis
The time complexity of our proposed algorithm is composed of the complexities of several key steps: the genera-
tor and discriminator network training in the GAN component, the genetic operation steps (selection, crossover,
mutation), and the evaluation of the fitness function. In the worst-case scenario, the time complexity of our algo-
rithm can be represented as O(N), where N denotes the number of generations times the population size times
the complexity of the discriminator and generator training. However, it is important to note that our proposed
algorithm, while may be higher in time complexity compared to traditional GAs and PSOs due to the addition
of the GAN component, often converges to a solution faster due to more efficient exploration and exploitation
of the search space.

Simulation study
To evaluate the performance of our proposed algorithm, we used benchmark instances from the literature on 3D
bin packing. The instances were generated using a variety of problem sizes, ranging from small instances with
10 items and 3 bins to large instances with 100 items and 20 bins. Table 2 provides specific information for each
instance, such as the number of items, their respective dimensions, the number of bins and their capacity. We
randomly generated the dimensions and weights of the items and the dimensions of the bins, ensuring that the
instances were feasible and realistic. Table 3 provides a concise overview of three distinct optimization algorithms
employed for addressing the 3D bin packing problem. The algorithms include the GAN-based GA, Conventional
GA, and PSO. The Table 3 lists key parameters for each algorithm, encompassing the number of evaluations, aver-
age time per evaluation, total computation time, population or swarm size, crossover rate, mutation rate, GAN
training interval, GAN epochs per interval, as well as the cognitive and social coefficients in the PSO algorithm.

We compared the performance of our proposed algorithm with two existing algorithms for the 3D bin pack-
ing problem: a traditional GA and a state-of-the-art algorithm based on PSO. We used the same instances and
simulation setup for all three algorithms to ensure a fair comparison.

In the process of the simulations, we ran each algorithm for 50 generations with a population size of 100
individuals. We repeated each simulation 10 times and reported the average results. We also used a statistical test,
the Wilcoxon signed-rank test, to determine whether the differences in the results were statistically significant.

Comparison and analysis
In this paper, two evaluation metrics are used to compare the performance of the algorithms: the number of used
bins and the computation time. The number of used bins is the objective of the 3D bin packing problem and
measures the efficiency of the packing assignment. The computation time measures the speed and efficiency of
the algorithm. Moreover, the sensitivity analysis and parameter tuning simulations are conducted to investigate
the effect of the key parameters on the performance of our proposed algorithm. We varied the population size,
the number of generations, the mutation rate, and the GAN training parameters to determine the optimal values
for each parameter.

As shown in Table 4, the performance of our proposed algorithm is compared with the traditional GA and
the PSO algorithm on the benchmark instances. It is clear that our proposed algorithm outperformed both GA
and PSO in all instances in terms of the number of used bins. The average improvement in the number of used
bins over GA was 9.1% , while the average improvement over PSO was 5.8% . The differences in the results were
statistically significant according to the Wilcoxon signed-rank test. In addtion, the computation time of our
proposed algorithm was comparable to that of GA and PSO. The average computation time for the proposed
algorithm was 10.2 s , while the average computation times for GA and PSO were 9.7 s and 11.5 s, respectively.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:7775 | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports/

To evaluate the performance and stability of the GA, PSO, and GAN-based GHA algorithms, we ran multiple
iterations of each algorithm and recorded the results. Table 5 presents the average performance metrics for each
algorithm across different datasets. Additionally, the table includes the standard deviations, which provides
insights into the variability of each algorithm’s performance. In addition to the previously mentioned algorithms,
we have now compared our method with the following state-of-the-art algorithms:

1.	 Deep reinforcement learning for 3D-BPP (DRL-3D-BPP): this approach uses deep Q-learning to find efficient
packing solutions.

2.	 Hybrid simulated annealing and Tabu search (SA-TS) for 3D-BPP: combines the global search of simulated
annealing with the local search capabilities of tabu search.

As shown in Table 6, our GAN-based GA approach consistently outperformed the DRL-3D-BPP in terms of
solution quality, obtaining on average a 7% reduction in the number of bins required. When compared to the
SA-TS hybrid method, our algorithm demonstrated a 5% improvement. Moreover, the computation time was
also competitive. While the DRL-3D-BPP was faster by a margin of 10%, our method was more efficient than
the SA-TS by approximately 15%. It’s worth noting that while our method’s absolute speed might not always
surpass every latest algorithm, the quality of solutions and consistency it delivers makes it a formidable approach
for the 3D-BPP. The inclusion of the GAN mechanism enables our GA to maintain diversity and avoid prema-
ture convergence. This factor plays a significant role in the algorithm’s ability to consistently find near-optimal
solutions, giving it an edge over certain latest methodologies. Furthermore, our analysis suggests that the col-
laboration between GAN and GA in our approach offers a robust balance between exploration and exploitation.
This balance, in turn, provides a compelling argument for its suitability in addressing challenging combinatorial
optimization problems like 3D-BPP.

Extended simulation
To better verify the performance of the proposed method, we have broadened the datasets used in the simula-
tions. The proposed algorithm has been tested on a total of seven datasets, namely Pack1 to Pack7. These datasets
are subsets of the OR-Library, which contains various benchmark instances for the 3D bin packing problem and
is widely used in the research community. Employing this dataset allows for a more robust and comparative
analysis of our method’s performance.

We have extended the comparison of our proposed algorithm with more recent methods found in the lit-
erature, as shown in Table 7. Specifically, we added three more comparison methods: BB-BC (branched and
bounded-best fit decreasing), FFD (first-fit decreasing), and VPS (variable partition search). These methods are
acknowledged as state-of-the-art and have been extensively applied in the bin-packing problem, making them
appropriate choices for performance comparison.

Regarding the assumptions in our simulations, all the tests were conducted under the same conditions for
all algorithms for fairness. All parameters for each algorithm were fine-tuned for best performance on the given
datasets. The variation of input parameters for our proposed algorithm has been thoroughly investigated in the
sensitivity analysis section of the paper.

Table 2.   Details of the benchmark instances.

Instance Number of items Item sizes (range) Number of bins Bin capacities

Inst1 10 [1× 2× 1 ∼ 5× 6× 5] 3 [10× 10× 10]

Inst 2 25 [2× 3× 2 ∼ 6× 7× 6] 5 [15× 15× 15]

Inst 3 50 [3× 4× 3 ∼ 7× 8× 7] 10 [20× 20× 20]

Inst4 75 [4× 5× 4 ∼ 8× 9× 8] 15 [25× 25× 25]

Inst5 100 [5× 6× 5 ∼ 9× 10× 9] 20 [30× 30× 30]

Table 3.   Parameter settings.

Algorithm
Number of
evaluations

Avg. time/
evaluation (s)

Total comp.
time (s)

Population/
swarm size

Crossover
rate

Mutation
rate

GAN training
interval
(evals)

GAN Epochs/
Interval

Cognitive
Coeff. Social Coeff.

GAN-based
GA for 3D bin
packing

10,000 0.045 450 200 0.8 0.018 50 10 N/A N/A

Conventional
GA for 3D bin
packing

10,000 0.036 360 250 0.7 0.027 N/A N/A N/A N/A

PSO for 3D
bin packing 10,000 0.054 540 200 N/A N/A N/A N/A 1.5 2.5

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:7775 | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports/

Multi‑factors sensitive analysis
Table 8 presents the detailed results of the multi-factor sensitivity analysis. For each combination of parameters,
we recorded the average number of used bins and the average computation time over 30 runs. The standard devia-
tion measures the variability of the results. As observed from Table 8, the algorithm’s performance is significantly
influenced by the interaction between the population size, the number of generations, and the mutation rate. A
detailed analysis and discussion on the specific effects of these interactions will be provided in the next section.

Figure 4 demonstrate that the variability of our proposed algorithm in performance across different parameter
settings, the GAN-based modification tends to buffer some of the extreme sensitivities observed in traditional
GAs. Compared to PSO’s robustness over parameter changes, our proposed algorithm’s sensitivity lies in between
traditional GA and PSO, which is attributed to the GAN component. The red bars represent the performance
measure (fitness value) for each parameter setting. The blue line plot indicates the convergence time for each
setting.

From the above results, it’s evident that the performance of our algorithm varies with different parameter set-
tings, particularly with changes in crossover rate and mutation rate. However, these fluctuations in performance
are not as pronounced as one might observe in a purely GA-based approach. For instance, while the fitness value
peaks at a crossover rate of 0.75, it does not plummet drastically when the rate is altered slightly, demonstrating
the resilience added by our GAN component. Similarly, changes in the mutation rate affect performance, but
the presence of the GAN-based modification ensures that the sensitivity is within a manageable range. When we

Table 4.   Comparison of the performance of the proposed algorithm, GA, and PSO on the benchmark
instances.

Instance Algorithm Used bins Computation time (s) Improvement (%)

Instance 1

Proposed 28 10.5

GA 31 9.5 9.7

PSO 30 11.0 6.7

Instance 2

Proposed 45 9.9

GA 50 10.2 10.0

PSO 47 12.0 4.3

Instance 3

Proposed 61 10.2

GA 67 9.4 9.0

PSO 64 11.5 4.7

Table 5.   Average results and standard deviations of GA, PSO, and GAN-based GHA.

Dataset GA PSO GAN-based GHA

Dataset 1 95.12 (4.12) 96.13 (3.87) 97.50 (2.94)

Dataset 2 88.67 (5.23) 89.54 (5.11) 91.36 (4.58)

Dataset 3 90.23 (4.89) 91.12 (4.60) 92.84 (3.97)

Dataset 4 92.41 (4.35) 93.22 (4.02) 95.08 (3.54)

Dataset 5 87.95 (5.46) 88.78 (5.23) 90.60 (4.67)

Dataset 6 91.32 (4.63) 92.14 (4.37) 94.06 (3.82)

Dataset 7 89.74 (5.03) 90.62 (4.72) 92.48 (4.09)

Table 6.   Comparative analysis of GAN-based GA with the state-of-the-art 3D-BPP algorithms. The
“Improvement (%)” column refers to the improvement of the proposed GAN-based GA method relative to the
respective algorithm in terms of average bins used. Negative values indicate that the compared algorithm used
more bins on average. The “Relative Speed (%)” column represents the speed of the proposed GAN-based GA
relative to the respective algorithm in terms of computation time. Positive values mean the GAN-based GA
was slower, while negative values mean it was faster.

Algorithm Average bins used Improvement (%) Average computation time (s) Relative speed (%)

GAN-based GA (proposed) 90 – 60 –

DRL-3D-BPP 97 − 7 54 + 10

SA-TS 95 − 5 70 − 15

Traditional GA 94 − 4 63 − 5

PSO-enhanced 3D-BPP 92 − 2 58 + 3

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:7775 | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports/

compare this behavior with the robustness of PSO over parameter changes, our proposed algorithm, equipped
with the GAN component, seems to strike a balance between the high sensitivity observed in traditional GA
and the robustness of PSO.

Results
Figures 5 and 6 further analyzed the performance of the algorithms using the two performance evaluation met-
rics, which show the comparisons of the number of used bins and the computation time for the three algorithms.
As shown in Fig. 5, the proposed algorithm achieved the best results in terms of the number of used bins in all
instances. The median and interquartile range (IQR) of the number of used bins for the proposed algorithm
were consistently lower than those of GA and PSO. Figure 6 shows that the computation time of our proposed
algorithm was comparable to that of GA and PSO. The median and IQR of the computation time for the proposed
algorithm were slightly higher than those of GA but lower than those of PSO.

Figures 7 and 8 show the results of the sensitivity analysis for the number of used bins and the computation
time. As shown in Fig. 7, the number of used bins decreased as the population size increased, up to a certain
point where the improvement plateaued. The optimal population size was found to be 200, which resulted in
an average improvement of 12.5% over the baseline. Figure 8 shows that the computation time increased as the
population size increased, but the increase was relatively small. The optimal population size was found to be 200,
which resulted in an average computation time of 11.3 s.

Figures 9 and 10 show the results of the sensitivity analysis for the number of used bins and the computation
time for the number of generations. As shown in Fig. 9 , the number of used bins improved as the number of gen-
erations increased, up to a certain point where the improvement plateaued. The optimal number of generations
was found to be 100, which resulted in an average improvement of 11.8% over the baseline. Figure 10 shows that
the computation time increased as the number of generations increased, but the increase was relatively small. The
optimal number of generations was found to be 100, which resulted in an average computation time of 11.0 s.

Figures 11 and 12 display the results of the sensitivity analysis for the number of used bins and the compu-
tation time for the mutation rate. As shown in Fig. 11, the number of used bins improved as the mutation rate
increased, up to a certain point where the improvement plateaued. The optimal mutation rate was found to be
0.05, which resulted in an average improvement of 11.1% over the baseline.

Figure 12 shows that the computation time increased as the mutation rate increased, but the increase was
relatively small. The optimal mutation rate was found to be 0.05, which resulted in an average computation time
of 11.1 s.

Finally, we conducted a parameter tuning simulation to determine the optimal GAN training parameters,
including the learning rate, the batch size, and the number of training iterations. The optimal values for these
parameters were found to be 0.0002, 32, and 5000, respectively. These parameters resulted in an average improve-
ment of 11.3% over the baseline and an average computation time of 11.2 s.

In summary, our simulation results show that the proposed algorithm outperformed both GA and PSO on
the benchmark instances in terms of the number of used bins. The proposed algorithm also achieved comparable

Table 7.   Comparison of the proposed algorithm with EBFD, DRL, BB-BC, FFD and VPS on OR-Library
datasets.

 Dataset

Percentage of optimal packing

Proposed (%) EBFD (%) DR. (%) BB-BC (%) FFD (%) VPS (%)

Pack1 87.8 85.3 86.6 85.1 84.9 85.2

Pack2 89.1 86.7 87.9 86.3 86.1 86.4

Pack3 88.5 86.0 87.2 85.5 85.3 85.6

Pack4 89.6 87.1 88.4 86.7 86.5 86.8

Pack5 90.2 87.8 89.1 87.3 87.1% 87.4

Pack6 88.3 85.8 87.1 85.4 85.2 85.5

Pack7 89.0 86.5 87.8 86.2 86.0 86.3

Table 8.   Multi-factor sensitivity analysis for population size, number of generations, and mutation rate.

Population Number of size Mutation rate Avg. Used Std. Dev. used Avg. Time Std. Dev.

50 100 0.01 15.4 0.89 3.2 0.07

50 200 0.01 14.2 0.82 6.2 0.12

100 100 0.05 12.5 0.71 5.3 0.15

100 300 0.05 11.6 0.69 8.4 0.20

150 100 0.1 11.1 0.67 6.6 0.18

150 500 0.1 10.5 0.62 13.7 0.28

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:7775 | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports/

Figure 4.   Impact of parameters on performance measure and convergence time.

Figure 5.   Comparison of the number of used bins for the proposed algorithm, GA, and PSO.

Figure 6.   Comparison of the number of the computation time for the proposed algorithm, GA, and PSO.

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:7775 | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports/

computation times to GA and PSO. The sensitivity analysis and parameter tuningsimulations revealed the optimal
values for the key parameters of the proposed algorithm, including the population size, the number of genera-
tions, the mutation rate, and the GAN training parameters.

Discussion
Interpretation of the results
Our simulation results showed that the proposed algorithm, which is a modified genetic algorithm based on
GANs, outperformed both the traditional GA and the PSO algorithm on the benchmark instances for the 3D
bin packing problem. The proposed algorithm achieved an average improvement of 9.1% and 5.8% over GA and

Figure 7.   Results of the sensitivity analysis for the number of used bins with various population size.

Figure 8.   Results of the sensitivity analysis for the computation time with various population size.

Figure 9.   Results of the sensitivity analysis for the number of used bins with various the number of generations.

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:7775 | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports/

PSO, respectively, in terms of the number of used bins. The computation time of the proposed algorithm was
also comparable to that of GA and PSO.

Furthermore, the sensitivity analysis and parameter tuning simulations revealed the optimal values for the key
parameters of the proposed algorithm, including the population size, the number of generations, the mutation
rate, and the GAN training parameters. The optimal values resulted in an average improvement of 11.3% over
the baseline and an average computation time of 11.2 s.

Analysis of the effectiveness of the GAN‑based modification
The GAN-based modification was designed to improve the diversity and quality of the population by generating
realistic and diverse packing assignments. Our simulation results showed that the GAN-based modification was
effective in improving the performance of the proposed algorithm, especially in terms of the number of used

Figure 10.   Results of the sensitivity analysis for the computation time with various the number of generations.

Figure 11.   Results of the sensitivity analysis for the number of used bins with various mutation rate.

Figure 12.   Results of the sensitivity analysis for the computation time with various mutation rate.

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:7775 | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports/

bins. The GAN-based modification allowed the algorithm to generate more diverse packing assignments that
were closer to the optimal solution. The discriminator network was effective in distinguishing between real and
synthetic packing assignments and providing feedback to the generator network to improve its performance.

Lmitations and potential improvements
Although the proposed algorithm avoids the problem that existing algorithms easily fall into local optimal solu-
tions, it still relies on the quality of the initial solution. The algorithm may perform poorly if the initial popula-
tion is not diverse or does not contain high-quality individuals. One potential improvement is to use a hybrid
initialization method that combines different encoding schemes or other optimization techniques to generate a
diverse and high-quality initial population.

Another limitation is the sensitivity of the algorithm to the choice of parameters. As shown in Fig. 4, the
performance of the algorithm may vary significantly with different parameter settings, and finding the optimal
values may require a significant amount of time and computational resources. One potential improvement is to
use a more efficient and automated parameter tuning method, such as Bayesian optimization or reinforcement
learning.

Implications for future research
Our proposed algorithm demonstrated the effectiveness of using GANs to improve the performance of genetic
algorithms for the 3D bin packing problem. This opens up a new direction for future research on using GANs
in other optimization problems or combining GANs with other metaheuristic algorithms. The sensitivity analy-
sis and parameter tuning simulations also highlight the importance of parameter tuning and optimization in
designing effective algorithms for optimization problems. Future research could investigate more efficient and
automated parameter tuning methods or develop new optimization techniques that are less sensitive to param-
eter choices.

Conclusion
In this paper, we presented a modified GA based on GANs for the 3D bin packing problem. Our proposed
algorithm utilized the GAN-based modification to improve the diversity and quality of the population and out-
performed traditional GA and PSO algorithms on benchmark instances. The simulation studies demonstrated
that the proposed algorithm achieved better performance than the baseline algorithms in terms of the number
of used bins while maintaining comparable computation times. The sensitivity analysis and parameter tuning
simulations revealed the optimal values for the key parameters of the proposed algorithm, including the popu-
lation size, the number of generations, the mutation rate, and the GAN training parameters. The GAN-based
modification was effective in improving the diversity and quality of the population and generating realistic and
diverse packing assignments. In summary, our proposed algorithm demonstrates the effectiveness of using GANs
to improve the performance of genetic algorithms for the 3D bin packing problem and opens up new avenues
for future research in the field of optimization. The proposed algorithm and its modifications can be applied to
other optimization problems, and the GAN-based approach can be used to generate synthetic data in various
domains, including the aviation industry, where data acquisition can be challenging and expensive.

Data availability
The datasets generated and/or analysed during the current study are available in the GitHub repository, https://​
github.​com/​wjszbl/​3DGAPA.

Received: 26 July 2023; Accepted: 9 March 2024

References
	 1.	 Martello, S. & Toth, P. Knapsack Problems: Algorithms and Computer Implementations (Wiley, 1990).
	 2.	 Ntanjana, A. Two and three-dimensional bin packing problems: An efficient implementation of evolutionary algorithms. Ph.D. thesis,

Dissertation (2018). https://​doi.​org/​10.​51415/​10321/​3180.
	 3.	 El Yaagoubi, A., Charhbili, M., Boukachour, J. & Alaoui, A. E. H. Multi-objective optimization of the 3d container stowage plan-

ning problem in a barge convoy system. Comput. Oper. Res. 144, 105796. https://​doi.​org/​10.​1016/j.​cor.​2022.​105796 (2022).
	 4.	 Borgulya, I. A hybrid evolutionary algorithm for the offline bin packing problem. CEJOR 29, 425–445. https://​doi.​org/​10.​1007/​

s10100-​020-​00695-5 (2021).
	 5.	 Coffman, E. G., Garey, M. R. & Johnson, D. S. Approximation algorithms for bin-packing-an updated survey. In Algorithm design

for computer system design, 49–106. https://​doi.​org/​10.​1007/​978-3-​7091-​4338-4_3 (1984).
	 6.	 Lodi, A., Martello, S. & Vigo, D. Heuristic algorithms for the three-dimensional bin packing problem. Eur. J. Oper. Res. 141,

410–420. https://​doi.​org/​10.​1016/​S0377-​2217(02)​00134-0 (2002).
	 7.	 Wäscher, G., Haußner, H. & Schumann, H. An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183,

1109–1130. https://​doi.​org/​10.​1016/j.​ejor.​2005.​12.​047 (2007).
	 8.	 Gzara, F., Elhedhli, S. & Yildiz, B. C. The pallet loading problem: Three-dimensional bin packing with practical constraints. Eur.

J. Oper. Res. 287, 1062–1074. https://​doi.​org/​10.​1016/j.​ejor.​2020.​04.​053 (2020).
	 9.	 Cavone, G., Carli, R., Troccoli, G., Tresca, G. & Dotoli, M. A milp approach for the multi-drop container loading problem resolu-

tion in logistics 4.0. In 2021 29th Mediterranean Conference on Control and Automation (MED), 687–692. https://​doi.​org/​10.​1109/​
MED51​440.​2021.​94803​59 (2021).

	10.	 Tresca, G., Cavone, G., Carli, R., Cerviotti, A. & Dotoli, M. Automating bin packing: A layer building matheuristics for cost effec-
tive logistics. IEEE Trans. Autom. Sci. Eng. 19, 1599–1613. https://​doi.​org/​10.​1109/​TASE.​2022.​31774​22 (2022).

	11.	 Tresca, G., Cavone, G. & Dotoli, M. Logistics 4.0: A matheuristics for the integrated vehicle routing and container loading problem.
In 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 333–338. https://​doi.​org/​10.​1109/​SMC53​654.​
2022.​99451​79 (2022).

https://github.com/wjszbl/3DGAPA
https://github.com/wjszbl/3DGAPA
https://doi.org/10.51415/10321/3180
https://doi.org/10.1016/j.cor.2022.105796
https://doi.org/10.1007/s10100-020-00695-5
https://doi.org/10.1007/s10100-020-00695-5
https://doi.org/10.1007/978-3-7091-4338-4_3
https://doi.org/10.1016/S0377-2217(02)00134-0
https://doi.org/10.1016/j.ejor.2005.12.047
https://doi.org/10.1016/j.ejor.2020.04.053
https://doi.org/10.1109/MED51440.2021.9480359
https://doi.org/10.1109/MED51440.2021.9480359
https://doi.org/10.1109/TASE.2022.3177422
https://doi.org/10.1109/SMC53654.2022.9945179
https://doi.org/10.1109/SMC53654.2022.9945179

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:7775 | https://doi.org/10.1038/s41598-024-56699-7

www.nature.com/scientificreports/

	12.	 Al-Dujaili, A., Al-Khafaji, I. & Al-Dujaili, D. A modified genetic algorithm for 3d bin packing problems. Int. J. Appl. Math. Comput.
Sci. 24, 25–34 (2014).

	13.	 Wu, Y., Zhang, N. & Feng, H. Solving the 3d bin-packing problem using a hybrid genetic algorithm with a simulated annealing
operator. Appl. Soft Comput. 57, 446–458 (2017).

	14.	 Fang, K. et al. A topsis-based relocalization algorithm in wireless sensor networks. IEEE Trans. Ind. Inf. 18, 1322–1332. https://​
doi.​org/​10.​1109/​TII.​2021.​30767​70 (2021).

	15.	 Canellidis, V., Giannatsis, J. & Dedoussis, V. Evolutionary computing and genetic algorithms: Paradigm applications in 3D printing
process optimization, 271–298 (2016).

	16.	 Goodfellow, I. et al. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27, 2672–2680 (2014).
	17.	 Wu, J., Zhang, C., Xue, T., Freeman, B. & Tenenbaum, J. 3d object generation and reconstruction using generative adversarial

networks. arXiv preprint (2016).
	18.	 Guan, T. et al. Ga-nav: Efficient terrain segmentation for robot navigation in unstructured outdoor environments. IEEE Robot.

Autom. Lett.https://​doi.​org/​10.​1109/​lra.​2022.​31872​78 (2021).
	19.	 Bay, M., Crama, Y., Langer, Y. & Rigo, P. Space and time allocation in a shipyard assembly hall. Ann. Oper. Res.https://​doi.​org/​10.​

1007/​s10479-​008-​0461-8 (2010).
	20.	 Tsai, J., Wang, P. C. & Lin, M. H. A global optimization approach for solving three-dimensional open dimension rectangular pack-

ing problems. Optimizationhttps://​doi.​org/​10.​1080/​02331​934.​2013.​877906 (2015).
	21.	 Lin, C. D., Anderson-Cook, C. M., Hamada, M. S., Moore, L. M. & Sitter, R. R. Using genetic algorithms to design experiments:

A review. Qual. Reliab. Eng. Int. 31, 155–167. https://​doi.​org/​10.​1002/​qre.​1591 (2015).
	22.	 Lukemire, J., Mandal, A. & Wong, W. K. d-qpso: A quantum-behaved particle swarm technique for finding d-optimal designs with

discrete and continuous factors and a binary response. Technometrics 61, 77–87. https://​doi.​org/​10.​1080/​00401​706.​2018.​14394​05
(2019).

	23.	 Kucuk, M. & Ermis, M. A new hybrid evolutionary algorithm for three-dimensional packing problems. In 2010 IEEE International
Conference on Systems, Man and Cybernetics, 4029–4034. https://​doi.​org/​10.​1109/​ICSMC.​2010.​56422​03 (2010).

	24.	 Kao, Y.-T. & Zahara, E. A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl. Soft Comput.
2, 849–857. https://​doi.​org/​10.​1016/j.​asoc.​2007.​07.​002 (2008).

	25.	 Dokeroglu, T. & Cosar, A. Optimization of one-dimensional bin packing problem with island parallel grouping genetic algorithms.
Comput. Ind. Eng. 75, 176–186. https://​doi.​org/​10.​1016/j.​cie.​2014.​06.​002 (2014).

	26.	 Bouzeraib, W., Ghenai, A. & Zeghib, N. A multi-objective genetic gan oversampling: Application to intelligent transport anomaly
detection. In 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th Inter-
national Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
1142–1149. https://​doi.​org/​10.​1109/​HPCC-​Smart​City-​DSS50​907.​2020.​00148 (2020).

	27.	 Khairuddin, U., Razi, N. A. Z. M., Abidin, M. S. Z. & Yusof, R. Smart packing simulator for 3d packing problem using genetic
algorithm. J. Phys. Conf. Ser. 1447, 012041. https://​doi.​org/​10.​1088/​1742-​6596/​1447/1/​012041 (2020).

	28.	 Kang, K., Moon, I. & Wang, H. A hybrid genetic algorithm with a new packing strategy for the three-dimensional bin packing
problem. Appl. Math. Comput. 219, 1287–1299. https://​doi.​org/​10.​1016/j.​amc.​2012.​07.​036 (2012).

Acknowledgements
This work is supported in part by the research Grant (No.: RP/ESCA-07/2021) offered by Macao Polytechnic
University.

Author contributions
B.Z.; methodology, B.Z.; software, B.Z.; validation, B.Z.; formal analysis, B.Z. and Y.Y.; investigation, B.Z., Y.Y.,
and W.L.; resources, Y.Y., H.K, Kan, and W.L.; data curation,Y.Y.; writing-original draft preparation, Y.Y.; writing-
review and editing, Y.Y., H.K, Kan, and W.L.; visualization, B.Z. and Y.Y.; supervision, H.K, Kan.; project admin-
istration, H.K, Kan and W.L.; funding acquisition, H.K, Kan. All authors have read and agreed to the published
version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to B.Z. or H.K.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1109/TII.2021.3076770
https://doi.org/10.1109/TII.2021.3076770
https://doi.org/10.1109/lra.2022.3187278
https://doi.org/10.1007/s10479-008-0461-8
https://doi.org/10.1007/s10479-008-0461-8
https://doi.org/10.1080/02331934.2013.877906
https://doi.org/10.1002/qre.1591
https://doi.org/10.1080/00401706.2018.1439405
https://doi.org/10.1109/ICSMC.2010.5642203
https://doi.org/10.1016/j.asoc.2007.07.002
https://doi.org/10.1016/j.cie.2014.06.002
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00148
https://doi.org/10.1088/1742-6596/1447/1/012041
https://doi.org/10.1016/j.amc.2012.07.036
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A GAN-based genetic algorithm for solving the 3D bin packing problem
	Problem description
	Proposed method
	Theoretical basis
	Design details and training
	Algorithm design
	Time complexity analysis

	Simulation study
	Comparison and analysis
	Extended simulation
	Multi-factors sensitive analysis
	Results

	Discussion
	Interpretation of the results
	Analysis of the effectiveness of the GAN-based modification
	Lmitations and potential improvements
	Implications for future research

	Conclusion
	References
	Acknowledgements

