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Prioritized experience replay based 
on dynamics priority
Hu Li *, Xuezhong Qian  & Wei Song 

Experience replay has been instrumental in achieving significant advancements in reinforcement 
learning by increasing the utilization of data. To further improve the sampling efficiency, prioritized 
experience replay (PER) was proposed. This algorithm prioritizes experiences based on the temporal 
difference error (TD error), enabling the agent to learn from more valuable experiences stored in the 
experience pool. While various prioritized algorithms have been proposed, they ignored the dynamic 
changes of experience value during the training process, merely combining different priority criteria 
in a fixed or linear manner. In this paper, we present a novel prioritized experience replay algorithm 
called PERDP, which employs a dynamic priority adjustment framework. PERDP adaptively adjusts 
the weights of each criterion based on average priority level of the experience pool and evaluates 
experiences’ value according to current network. We apply this algorithm to the SAC model and 
conduct experiments in the OpenAI Gym experimental environment. The experiment results 
demonstrate that the PERDP exhibits superior convergence speed when compared to the PER.
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Reinforcement learning is an approach to sequential decision making aimed at optimizing an agent’s learning 
strategy during its interactions with the environment to achieve maximum expected cumulative reward1. In 
recent years, reinforcement learning has gained significant popularity across various domains. Different scenarios 
require the careful design of state spaces, action spaces, and rewards to effectively simulate the sequential decision 
making process inherent in reinforcement learning. Despite the remarkable successes achieved by reinforcement 
learning, challenges such as low data utilization efficiency and limited generalizability persist2.

There is a notable issue with the continuous experimental samples get from the environment, as they tend 
to exhibit strong correlations, which contradicts the requirement of deep neural networks for independent and 
identically distributed data. To address this problem, Lin proposed the concept of experience replay, which has 
proven to be a reasonable solution34.The experience replay mechanism stores experiences in an experience pool 
and reuses them. This approach effectively mitigates the issues of correlated distribution among samples, while 
also avoiding sample wastage. However, the sampling strategy of this method is uniform sampling, meaning that 
it assigns the same probability to each sample without considering their relative importance. In practice, agents 
often benefit more from learning important experiences.

Since then, many prioritized sampling strategies have been proposed. One of the most well-known strategies 
is the prioritized experience replay (PER) introduced by Schaul5, which improved by experience replay. Schaul5 
used the time difference error (TD error) as a priority criterion to determine the importance of experiences. 
Subsequent experimental results combining various models have shown that PER significantly improves the 
sampling efficiency compared to traditional experience replay6. Subsequently, more modifications and improve-
ments have been made to the PER algorithm. Ramicic et al, for instance, employed state entropy as a prioritization 
criterion, reasoning that experiences containing more unknown information have greater learning potential7. Li 
et alproposed three value measures for experiences and prioritied them, with experimental results validating that 
the TD error serves as an upper bound for these three metrics8. Shivakanth et al proposed a sampling strategy 
based on the learnability of samples, effectively avoiding repetition of training experience and reducing noise 
to improve learning efficiency9.

All of the above-mentioned algorithms have only single priority criterion, which can lead to some limitations 
and drawbacks. Firstly, it is highly sensitive to environmental changes, which performing unstable in different 
environments10. Secondly, evaluating all experiences accurately becomes challenging due to the large capacity 
of the experience pool11. In response to these challenges, Xi et al proposed a strategy called High Value Prior-
itized Experience Replay (HVPER), which combines the state value function and TD error as priority criteria. 
HVPER mitigates the negative impact of experience with high TD errors near the edge of state space, thereby 
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enhancing learning efficiency and accelerating algorithm convergence12. Gao et al considers the immediate 
reward of experiences and incorporates it as a criterion by linearly combining it with the TD error13. To prevent 
valuable old experiences in the experience pool from being under-sampled for an extended period, Liu et al 
introduced a dynamic experience replay strategy known as PERMAB14. This method aims to dynamically evaluate 
the contribution of each priority during the training process to prevent the model from achieving a suboptimal 
performance. However, PERMAB still calculates priority scores in a linear manner and only applies non-linear 
weighting during the calculation of priority weights.

In this paper, we present a novel approach that improves the efficiency for experience replay. Our method 
incorporates dynamic adjustment of priority criterion weights during the training process, taking into account 
recent feedback information. The agent estimates average priority level of the experience pool based on the 
interaction between sampled experiences and current network. During next training iteration, the sampled 
experience priority weight are re-evaluated according to the average priority level. We dynamically consider the 
significance of different criteria and update the priorities based on the adjusted weights.

Methods
Preliminary knowledge
Knowledge
In online reinforcement learning, updating the network after each interaction with the environment can result 
in catastrophic forgetting of past experiences. Additionally, the correlation between successive exploration data 
also brings a challenge to network update. To address these issues, Lin introduced an experience replay mecha-
nism, which storing observed experiences in an experience pool and sampling batches from it during training. 
This approach has been widely successful when combined with various reinforcement learning algorithms15.

Lin’s experience replay method2 employs a uniform sampling strategy that treats all experiences equally, 
which can be considered unreasonable. To address this limitation, Schaul5 introduced the Prioritized Experi-
ence Replay (PER) algorithm, which assigns individual priorities to each experience stored in the experience 
buffer. In PER, Schaul utilizes TD error to quantify the amount of information contained in an experience and 
promotes prioritized training for experiences with higher unknown information. The TD error is defined by 
the following equation:

where R(s,a, s’) represents the immediate rewards, s and s’ denote the current state and next states, v(s) is the 
estimated state value function for state s, and γ is the discount factor.

To ensure that every experience is sampled, PER implements a stochastic prioritization approach rather than 
a greedy strategy. This is important as a greedy strategy might neglect experiences with low TD error, causing 
them to be undersampled or even forgotten. The sampling probability Pi of an experience is calculated using 
the following equation:

where, pi = |δ| + ǫ represents the priority of experience i. α is used to adjust the degree of priority and ε is used 
to prevent the probability from being zero.

This priority-based sampling method may changes the probability distribution of experiences, introducing 
a bias in estimating the action value function Q(s, a). To address this bias, PER uses importance sampling and 
the importance-sampling weight ωi for experience i is demonstrated by the following equation:

where, β is another hyperparameter that controls the degree of correcting bias.

Problem statement
The priority of samples in the experience pool is dynamically changing. With the implementation of stochastic 
prioritization strategy, all batches will eventually converge, as demonstrated in the Figs. 1 and 2. Nevertheless, 
different criteria will converge at different stages of training process. It can be observed that the TD-error tends 
to stabilize after 30 episodes, while the reward converges much earlier.

Efficient sampling experiences from the experience replay buffer is a key challenge in experience replay. To 
address this issue, we propose an experience replay algorithm evaluating comprehensively the value of experi-
ence. By doing so, the agent can sample more valuable experiences from the experience replay buffer, thereby 
accelerating the learning speed.

Improved method
In this section, we introduce the PERDP algorithm, which assesses the value of experiences by considering two 
prioritization criteria: TD-error and reward. This algorithm adjusts the weights of each criterion with respect 
to the current network.

PERDP uses TD error as a priority because it reflects the uncertainty of an experience. Experiences with 
higher TD errors indicate a larger discrepancy between the predicted Q-values by the current network, indicat-
ing their higher value. The calculation of TD error priority in PERDP is as follows:

(1)δ = R(s, a, s′)+ γ · v(s′)− v(s)

(2)Pi =
pi

α

∑

pkα

(3)ωi =
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where, Rt represents the immediate reward at time step t, γ is the discount factor, Q(St , a’) denotes the Q-value 
for state-action pair ( St , a’), and Q(St−1 , At−1 ) represents the Q-value predicted for the previous state-action 
pair ( St−1 , At−1).

Despite the advantages of PER algorithm over uniform sampling, it still suffers from some drawbacks. One 
limitation is that the priorities of experiences in the replay buffer often become outdated because updating the 
priority of every experience is impractical16,17. Additionally, continually sampling high priority experiences can 
lead to overfitting18. Relying solely on a single perspective when evaluating experiences may restrict the model 
to local optimum19. Furthermore, high TD-error experiences are often appear near the edge of state space, as the 
agent rarely explore in these areas. However, this does not necessarily mean that these experiences can provide 
significant useful information.

(4)pt = |Rt + γ ·max
a′

Q(St , a
′)− Q(St−1,At−1)|

Figure 1.   The reward over samples batch with eposidos.

Figure 2.   The td-error over samples batch with eposidos.
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To address this issue, we use another widely used priority criterion called immediate reward pr , mitigating 
bias through multiple criteria. Immediate Rewards are the most direct reflection of the interaction between agent 
and environment, especially in sparse reward environments. By considering pr , the agent can account for the 
historical value of an experience. The calculation of pr is as follows:

where, R(s, a, s’) represents the immediate reward, and ǫ is a small positive constant that ensures all experiences 
have non-zero probabilities of being selected.

During different stages of training, the influence of pR and pt on the current network constantly changes. 
However, specifying fixed or linear priority weights artificially would ignore interaction between agent and 
environment. To accurately evaluate the value of experiences at different stages, we propose a mechanism for 
updating dynamically priority weights. This method adjusts the weights based on the importance of each crite-
rion to the experience pool.

We sample a batch of size M from the experience pool t times and the total number of experiences available 
is N. To determine the priority of each sampled experience, we first calculate pr and pt based on the current 
network. Then, we get the actual score µj for each recent priority, which represents the average priority level of 
the experience pool. The calculation of µj is as follows:

where, δij is the priority of the i-th experience under the j-th criterion. For the newly sampled batch, the impor-
tance Sj for each priority criterion is calculated based on the average priority level of the experience pool µj with 
the following formula:

where, Sj is the estimation of the advantage probability of each priority criterion relative to average priority 
level. If the probability of a criterion in the batch is higher than the feedback information µj , it indicates that the 
criterion is currently more important compared to others.

Based on Sj , we further calculate the influence factor Fj for each priority criterion as follows:

We calculate the weight Wj for each criterion according to Fj . The calculation formula is as follows:

By using this formula, we can get the weight Wj for each criterion, which reflects the relative importance of each 
criterion in the learning process. This allows the agent to prioritize and focus on more meaningful experience, 
enabling effective learning.

After the new priority weights have been calculated, the experience is re-prioritized and saved to the experi-
ence pool. The new priority calculation formula is as follows:

In summary, we propose an experience replay algorithm that combines TD-error and immediate reward with 
dynamically updated weights. When a batch is sampled from the experience pool, the agent updates the network 
parameters and evaluates the relative importance of each priority criterion in the context of the current network 
and the average level of the experience pool. After calculating the priority weights, the experience priority is 
updated. The detailed algorithm is shown in Algorithm 1.

Ethics approval

This article does not involve any studies conducted by the authors with human participants or animals.

(5)pr = R(s, a, s′)+ ε

(6)µj =

∑T
i=1 δij

N

(7)Sj = P ( δij >= µj)

(8)Fj = edSj − 1

(9)Wj =
Fj

∑N
k=1 Fk

(10)P =
∑

j

pj ·Wj
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Algorithm 1.   PERDP 

Experience
We apply the proposed algorithm, PERDP , to the SAC model and conduct experiments in video games environ-
ment. The objective is to validate that PERDP can converge rapidly and achieve optimal performance with fewer 
training steps. For comparison, we select two improved algorithms for DQN as baselines: PER5 and RT (Reward 
and td error parameter) experience replay13. In total, three algorithms are appear in the experiment, as follows: 

(1)	 PER-prop: This algorithm prioritizes experiences based on TD-error, which is a modified version of the 
DQN algorithm with uniform sampling. The TD-error serves as an indicator of the importance of an 
experience.

(2)	 RT: This method is a prioritized experience replay algorithm that combines TD-error and reward. The 
weight between these priorities is fixed.

(3)	 PERDP: This approach is an improved algorithm of RT, which adjusts dynamically the weights .

Experience detail
To ensure the fairness of the experiments, we conducted all algorithms in the same environment with identical 
hyperparameters. Our algorithm is implemented on the basis of SAC-Discrete using PyTorch. The following 
hyperparameters were used:learning rate is 0.0003, gamma is 0.99, hidden layer of policy network is a fully con-
nected neural network with 512 neurons, number of input neurons is state space, number of output neurons 
is action space.In contrast, the batch size was set to 32, the experience pool capacity to 50,000, and the target 
network update interval to 1000 time steps. Additionally, each algorithm use a soft update strategy. SAC-Discrete 
using PyTorch code is vailable from https://github.com/ku2482/sac-discrete.pytorch.

Atari experience
Experimental results
In the evaluation of the PERDP algorithm, we chose three Atari environments to test its performance. These 
environments were carefully selected to provide a diverse range of challenges for our algorithm (More experi-
mental results can be found in the Supplementary Figs. S1–S4). The cumulative reward evaluation results of the 
three algorithms were presented in Figs. 3, 4 and 5, which clearly demonstrated the superior performance of the 
PERDP algorithm. However, it is worth noting that our algorithm did not immediately outperform the other 
two methods. In fact, at the very beginning of the training process, its performance was similar to that of the 
other two algorithms. This can be attributed to the fact that the agent received sparse rewards with a lot of noise, 
making it difficult for the PERDP algorithm to accurately measure the overall value of the experience pool. How-
ever, PERDP has a more rapid boost at the early stage of training process, proving its capacity to more precisely 
evaluate the information contained in experiences, allowing agent to quickly learn the optimal policy. This is a 
key advantage of the PERDP algorithm over the other two methods, which showed the same trend but lacked 
the same level of performance in the later stages of training.To further support our findings, we also included 
Table 1, which highlights the good performance of PERDP with fewer steps.Furthermore, we found that our 
proposed algorithm tends to has better performance in later stages. This is because the agent can capture more 
suitable priority criterion in complex environments, leading to optimal decision making.

As for PER algorithm, it can be found from the experimental results that it initially outperformed the other 
two algorithms, but its learning speed gradually slowed down, and in the end, it performed worse than the 
PERDP algorithm. In the very beginning of training, the PER algorithm excels at obtaining rewards quickly. By 
prioritizing experiences with high TD-errors, the algorithm can quickly sample advantageous experiences and 
update its policy accordingly. However, as the training progresses and the policy gradually approaches the optimal 
network, the learning speed of the PER algorithm tends to slow down. This is because the PER algorithm tends 
to focus on experiences with high TD-errors, while ignoring other samples that may have potential value. As a 
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result, the model may overfit to these experiences, potentially leading to it performing poorly in later stages and 
even getting stuck in local optima. On the other hand, the RT algorithm, which shares similarities with PERDP, 
also exhibits fast learning capabilities. However, RT algorithm performs even worse in the later stages of training. 
RT algorithm fails to notice the changing trend in the importance of priority criteria. It just assigns a fixed weight 
to each priority criterion regardless of its relevance to the environment, without adjusting strategy according to 

Table 1.   Comparison of time steps required for model convergence.

Condition PERDP PER RT

MsPacman 55.75k 69.96k 73.36k

Alien 42.24k 59.63k 70.55k

UpNDone 16.87k 27.27k 46.18k

Figure 3.   Evaluation results of the MsPacman environment.

Figure 4.   Evaluation results of the Alien environment.
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environmental changes. So RT algorithm likely leads to the algorithm struggling to adapt to new requirements 
in dynamic environments, resulting in lower performance. This limitation can hinder the algorithm’s ability to 
learn and perform optimally in dynamic environments.

Result analysis
In order to better understand the PERDP algorithm, we analyzed the average reward and state entropy. Figure 6 
illustrates the average reward obtained by the agent. It can be seen that the PER achieves higher average rewards 
in the early stages due to its focus on exploring the positional information of the environment. Despite the fact 
that the agent traversed many high-value trajectories, PER did not pay attention to these rewarding experiences 
and instead focused on TD-error. As training going on, TD error becomes less important for policy networks 
that have predictive ability, instead performing similar to uniform sampling. So they often perform poorly in the 
later stages. On the other hand, PERDP evaluates the priority of experiences from multiple perspectives in the 
later stages and train the most valuable experiences from the experience pool. This enables the model to maintain 
an advantage over the other two methods. In different environments, each standard priority tends to stabilize 

Figure 5.   Evaluation results of the UpnDown environment.

Figure 6.   This is a comparison of the average rewards among three methods.
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finally, similar to uniform sampling. However, PERDP can assess the contribution value of priority standards 
during the training process, enabling the agent to learn more.

The curve depicting the change of state entropy over the training steps is shown in Fig. 7. It can be observed 
that the state entropy of PERDP is higher than the other two methods in the initial stages, while PER and RT 
exhibit similar trends. This indicates that our approach ensures that the agent encourages exploration. Subse-
quently, the state entropies of the methods gradually decrease and approach each other as the networks begin 
to have some predictive ability.

Discussion and conclusion
In this study, we introduce a novel method , PERDP, to improve sampling efficiency. PERDP combines TD-error 
and immediate reward to select more important experiences from the experience pool. Besides, we introduce 
a dynamic priority adjustment framework. When calculating the total priority of experience, weight of priority 
are calculated based on the current experience pool by analyzing the importance of both priority criterion. Then 
we calculate the overall priority of the experience based on the weight. This approach prevents the issue of the 
agent inaccurately estimating the value of experience in dynamic or complex environments. So the agent can 
learn more from more valuable experiences. The experimental results obtained from discrete action control tasks 
demonstrate that PERDP has faster convergence speed and better performance. In the future, we plan to explore 
other efficient priority criteria and integrate it into the framework to accurately assess the value of experience. 
Meanwhile, we found that PERDP still faces challenges in sparse reward environments. So, we would like to 
extend our work to solve sparse reward tasks.
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