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Geologically‑constrained 
GANomaly network for mineral 
prospectivity mapping 
through frequency domain training 
data
Hamid Sabbaghi *, Seyed Hassan Tabatabaei  & Nader Fathianpour 

Generative adversarial networks (GAN) and various deep autoencoders have been frequently executed 
to recognize multi-element geochemical anomalies linked to different ore resources in recent decade. 
Efficient recognition of multi-element geochemical anomaly patterns is a significant issue in mineral 
exploration targeting. Traditional procedures have not sufficient capability to perform efficient pattern 
recognition. While, deep learning algorithms as influential subset of machine learning algorithms 
can present magnificent conclusions in classification and pattern recognition. Because those have 
robust ability in extracting high-level features of complex inputs. Although, many deep learning 
algorithms were used to recognize geochemical anomalies but the GANs have demonstrated specific 
dignity in recognizing multi-element geochemical anomaly patterns. But, these frameworks should be 
constrained to learn geological knowledge and yield reasonable potential maps. In this regard, a novel 
geologically-constrained GANomaly was trained with frequency domain training data to recognize 
multi-element geochemical anomalies. Application of the geologically-constrained GANomaly 
network with considering mineral system parameters of the Au–Cu mineralization in the Feyzabad 
district, NE Iran was eventuated to suitable results. The success-rate curves demonstrated that 
produced map of frequency domain geochemical data has traced 86.68% Au–Cu occurrences via 30% 
corresponded area while produced map of spatial domain geochemical data has traced 80.13% Au–Cu 
occurrences via 30% corresponded area.
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Satisfactory recognition of multi-element geochemical anomalies related to mineralization is an important issue 
for mineral exploration targeting in regional scale1. Because, recognition of multi-element geochemical anoma-
lies in regional scale is generally performed applying stream sediments geochemical data2. Stream sediments 
geochemical data is mostly influenced through complexity of geological features2,3. Therefore, stream sediments 
geochemical data is a complex multivariate input for processing frameworks. Although, shallow learning algo-
rithms have not sufficient ability to process this complex data4,5. But, deep learning (DL) algorithms have repeat-
edly demonstrated their capability in processing complex data2,3,6–8. Among various DL frameworks, generative 
adversarial networks (GAN), deep autoencoders and deep convolutional networks have proved their specific 
dignity in mineral prospectivity mapping (MPM) and geochemical anomaly detection6,7,9–11. Before, GANs were 
mostly being applied to process remote sensing or seismic data. While, these frameworks have been recently 
executed to recognize geochemical anomaly patterns linked to mineralization6,7. A GAN is derived from the 
zero-sum game in game theory, which enables discriminator and generator to improve the performance of the 
model during a mutual game. The Wasserstein, convolutional, conditional, cycle and semi-supervised are known 
variations of the GAN which have been employed for geochemical anomaly detection, style transfer, image rec-
ognition or image generation11. Also, various deep autoencoders and deep convolutional networks were widely 
employed to recognize geochemical anomaly patterns related to different mineralizations due to popularity 
and great ability in feature extraction12. Accordingly, the GANomaly framework as a combination of the deep 
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convolutional autoencoder (DCAE) and GAN is considered as a vigorous procedure for geochemical anomaly 
detection. It is noteworthy, application of the robust DL approaches such GANomaly as purely data-driven way 
can not be eventuated to reliable results6,13. Because, purely data-driven DL frequently ignore expert and domain 
knowledge, leading to difficulty in interpretability from a geological perspective. Hence, importing mineral 
system parameters as geologically constraints within the DL structures is a regardable idea for improving their 
inference power6,14. Constructing geological constraint of ore-controlling feature allows the model designed to 
learn geological knowledge and yields reasonable potential maps which rarely include user bias problem. Also, 
other proposed improvement idea is training DL algorithms with frequency domain (FD) geochemical data. The 
FD geochemical data contains rather exploratory information than spatial domain (SD) geochemical data15. Fil-
tered data (FD geochemical data) is smoother and cleaner than the original data (SD geochemical data). Because, 
corresponding filter is designed according to the frequency of different geochemical data noise, which is applied 
to filter out the noise in the geochemical data. In fact, the FD geochemical data comprises superlative information 
related to mineralization occurrences that is not posed applying the SD geochemical data. Recent novel contribu-
tions have mostly attempted to overcome user bias problem in MPM16. We intend to consider application efficacy 
of the FD training data whether can decrease this problem. This research applies FD geochemical layers to train 
a novel geologically-constrained GANomaly for MPM. The success-rate curves demonstrate that produced FD 
geochemical map has rather consistency to the Au–Cu occurrences in the Feyzabad district, NE Iran. The FD 
geochemical map has predicted more proportion of mineralization occurrences within less proportion of the 
corresponding study area. Because, FD geochemical map rarely includes user bias problem.

Region of interest
A main mineral potential zone from NE Iran is the Feyzabad district. The Feyzabad is known as a high potential 
area of the iron oxide copper–gold (IOCG) and vein-type Au–Cu mineralizations which is restricted between 
58° 30′ 0″ E and 59° 0′ 0″ E longitudes and 35° 0′ 0″ N and 35° 30′ 0″ N latitudes. This area is a segment of the 
boundaries of the internal Iranian microcontinent which places between the Loot Block and the Central Iran 
zones. It is seen, numerous faults and fractures are related to Au–Cu mineralization occurrences in this area. In 
this regard, the darouneh fault as the longest fracture plays a significant role in forming Au–Cu deposits of the 
Feyzabad district. Granodiorite, diorite, pyroxene andesite and diabase gabbroic rock are the most significant 
volcanic structures which are frequently observed there (Fig. 1). Also, alternations of sedimentary and carbonated 
rock units comprising reddish and sandstone conglomerate, gypsiferous marl, dolomitic limestone, silty shale 
and quartz latite which belong to middle- to upper-Cambrian era accompany mentioned volcanic rock units 
(Fig. 1). The vein-type Au–Cu and the IOCG deposits are mainly hosted by diorite and granodiorite intrusions 
of Eocene–Oligocene age in this area17. Appropriate pathfinder elements Au, Cu, Sb, Zn and Pb were chosen to 
trace Au–Cu mineralization occurrences in the study area3,18.

Methods
Insight of constructing constraint
Three subsystems containing pre-mineralization, syn-mineralization and post-mineralization are the most sig-
nificant systems related to different mineralizations. In this issue, considering mineral system parameters such 
(1) source and composition of the forming fluids, (2) crustal structure and tectonic history, (3) fluids pathways, 
(4) mechanism of concentrated fluids flow and (5) necessary mechanisms for depositing Au–Cu such chemical 
and physical barriers can avoid to construct purely data-driven models18. These critical ore-forming processes 
are not mappable but those should be translated to augment DL models applied. Accordingly, a hierarchical 
procedure as converting data to information, information to knowledge and knowledge to insight for translat-
ing critical ore-forming processes should be performed. An example of the converting data to information is 
discovering correlations of the pathfinder elements of mineralization. Also, understanding mineralization type 
based on identified pathfinder elements is considered as an example of converting information to knowledge. 
Eventually, combining geochemical knowledge with geological knowledge is eventuated to insight of construct-
ing constraints and credible mapping.

Transforming data domain and filtering
Transforming domain of geochemical data is performed to access newer information. Frequencies domain of 
geochemical data can reveal more hidden characteristics than spatial geochemical data through implementing 
two-dimensional Fourier transform (2DFT)15,19. The 2DFT can be expressed as follow:

where f (x, y) , Ky and Kx are considered as spatial domain data, wave numbers with respect to the y and x axises. 
Wave numbers are proportionally increased as follow:

Hence, a surface multi-element geochemical map which is considered as a function f(x, y) in the spatial 
domain, can be converted into F(Kx, Ky) which I(Kx, Ky) and R(Kx, Ky) are its imaginary and real parts, respectively. 
Accordingly, its power spectrum can be calculated as:
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Decreasing noise of the transformed data through filtering procedures is a common operation to process 
frequency domain geochemical data. The I(Kx, Ky) and R(Kx, Ky) can be achieved multiplying filter function G(Kx, 
Ky) and removing or boosting several wave number ranges. Filters are generally performed according to wave 
numbers and not power spectrum values15. One of the most popular and applicable filters is Butterworth filter 
which was initially introduced by Stephen Butterworth in 1930. This filter has been discussed as low-pass for 
denoising various transformed data in recent years20–22. Its formula can be expressed as follow:

where wc and n are cutoff frequency and order of filter, respectively. Filtered data via applying Butterworth filter 
are more smooth and cleaner than primitive data.

The GANomaly framework
Fundamental idea of the GAN has originated of the game theory. Indeed, based on a mutual game, its two main 
sections comprising generator and discriminator are trained to improve framework performance. In comparison 
to other DL approaches, GANs can increase quality of samples produced and achieve information of latent space 
in generative procedure without wasting sampling speed. As an augmented GAN, the GANomaly framework was 
initially carried out by23. Then, this framework was developmentally applied to recognize geochemical anomalies 
by11. The GANomaly structure includes a generator section with random noise input and new generated samples 
as output. Discriminator section of the GANomaly as a classifier is adversarially obliged to discriminate fake 
generated samples of the real samples. This adversarially procedure continues until fake generated samples of 
generator section be plausible for discriminator section and be not recognizable than the real samples24. Latent 
vector space and original data space can be trained to the GANomaly through hybridization of a GAN structure 
with the DCAE. In fact, GANomaly can improve recovering ability of decoder applying adversarial procedure 
in comparison to traditional autoencoders11. The GANomaly is contained three sub-sections (Fig. 2). The first 

(3)E
(

Kx , Ky

)

= R2(Kx , Ky)+ I2(Kx , Ky)

(4)
∣

∣fl(w)
∣

∣

2
=

1

1+ ( w
wc
)
2n

Figure 1.   Simplified geological map (1:100,000) of the Feyzabad district.
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part (encoder S1 and its decoder) presents input t to encoder S1 for achieving the latent feature vector d and 
its decoder perfects reconstruction procedure via applying latent feature vector d. The second part presents 
reconstructed information ť to encoder S2 for achieving latent feature vector ď. Consistency of the S1 and S2 
is confirmed via same dimensions of d and ď. The third part as a discriminator is adversarially obliged to dis-
criminate ť from t. When the discriminator has difficulty in discriminating between these, it reveals that the 
generated data are extremely similar to the normal sample data at this time. When abnormal samples are input, 
the encoder S1 encodes the abnormal samples to achieve the latent feature vector d, but the decoder cannot 
reconstruct the abnormal samples correctly. Because the training phase only uses normal samples for modeling, 
and its parameters are not appropriate for abnormal samples. Therefore, the latent feature vector d’ obtained by 
encoder S2 is extremely different from the latent feature vector d, and abnormal samples are recognized detect-
ing the difference between these two vectors. In this research, each three sub-sections have been constructed 
employing the DCAE. Geologically-constrained GANomaly is contained three loss functions for sub-sections 
and a loss function for geologically constraint defined. The first loss function of the GANomaly can enhance 
decoder power in restoring features and stability of trained model. The generator (G) of the GANomaly should 
be updated according to internal representation of discriminator. In fact, t as an input of supposed function f(‧) 
has been collected of the distribution Pt. Also, conclusion of the middle layer feature of the discriminator (D) 
is output of the f(‧). Differences between the fake generated features and real data features can be considered 
following adversarial loss function:

The GANomaly framework regulates generator for optimizing similarity between real samples and fake 
generated samples. This procedure is performed through loss function Ocon for calculating distances between 
the fake generated samples ť and real samples t.

Eventually, distance between the latent feature vector ď and latent feature vector d is minimized defining the 
third loss function of the GANomaly. This loss function obliges generator to learn how to encode characters of 
the fake generated samples based on normal samples.

(5)Oadv = Et∼Pt�f (t)− Et∼Pt f (G(t))�2

(6)Ocon = Et∼Pt�t − G(t)�1

(7)Oenc = Et∼Pt�GE(t)− E(G(t))�2

Figure 2.   A diagram depicting structure and processing layers of the GANomaly.
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When training of the model was completed, the testing sample achieves latent feature vector d applying part 
S1 and then achieves reconstructed latent feature vector ď applying part S2. Distinguishing abnormal samples 
of the testing data can be performed through average absolute error H(t) between reconstructed latent feature 
vector ď and latent feature vector d as follow:

Constructing constraint of ore‑forming features
A geologically constraint as a nonlinear correlation between the Au–Cu mineralization occurrences and control-
ling features such buffered fault layer was employed for this research. This constraint can be expressed as follow:

where C, α, ρ and d are a constant value, multifractal singularity index, density of the Au–Cu mineralization 
occurrences, distance between the Au–Cu mineralization occurrences and geological controlling features, respec-
tively. While α be less than 3, there is an important spatial correlation between geological controlling features 
and locations of the Au–Cu mineralization occurrences14. In fact, this constraint as a knowledge factor according 
to mineral system parameter was applied to improve objective function of the GANomaly framework (Fig. 2). 
Detailed description of constructing geological constraint is accessible in10,14. Accordingly, geological knowledge 
loss function is calculated as follow:

where Lt is predictive layer and ωpro is weights of a geological controlling feature which is computed as follow:

Accordingly, objective function (total loss function) of the geologically-constrained GANomaly framework 
is presented as follow:

where ωenc, ωcon and ωadv are regulable weight parameters of the GANomaly loss functions. Noise interferes with 
the reconstruction error of the sample which can affect the recognition ability. The GANomaly network no longer 
uses the reconstruction error of the sample as the foundation for anomaly recognition during the detection 
phase; instead, reconstruction errors of the deeper latent vector is applied for anomaly recognition. Therefore, 
reconstruction error of the deeper latent vector can be considered assigning regulable weight parameters to loss 
functions. Also, controlling balance between the GANomaly loss functions and loss function of mineral system 
parameter is performed defining ωpro.

Geochemical sample preparation and analysis
The study area has dimensions of 44 × 54 km2 which a dense sampling grid (1.4 × 1.4 km2) has been performed 
there. Stream sediments samples (1033) were collected to check changing rate of concentrations of 27 elements 
across the Feyzabad district. Collected geochemical samples were analyzed using a combined inductively coupled 
plasma-optic emission spectroscopy and mass spectroscopy (ICP-OES/ICP-MS) after a near-total 4-acid diges-
tion (hydrochloric, nitric, perchloric, and hydrofluoric acids)25. Also, analyzing precision (< 10%) was measured 
applying duplicated sub-samples for each 20 measurements.

Results and discussion
Transforming geochemical data and preparing predictive layers
Stream sediments geochemical data includes inherent closure problem26. Hence, the centered log-ratio (clr) 
transformation was performed to eliminate data closure problem using Eq. (13).

where x, xD and g(x) are vector of the composition with D dimensions, Euclidean distances between distinct 
variables and geometric mean of the composition x respectively27. Then, the 2DFT was performed. The FD data 
is comprised power spectrum values and the wave numbers in x and y axises. The power spectrum E(Kx, Ky) 
values calculated for pathfinder elements Au, Cu, Sb, Zn and Pb have been depicted in Fig. 3. The values which 
are closed to the center of these plots have low wave numbers and frequencies. These values are high power 
spectrum values which decrease moving away from the plot center (Fig. 3). The low and high wave numbers 
present low- and high-frequency values of concentrations in geochemical data. Denoising power spectrum 
values was performed through Butterworth filter and then the FD data was inverted to produce the FD layers 
of geochemical elements. The SD and FD geochemical data of the pathfinder elements were applied to produce 
predictive layers via executing inverse distance weighted (IDW) method with a grid of size 200 × 200 m2. As an 
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example, the SD and FD predictive layers of element Au have been presented in Fig. 4a,b. Accordingly, five SD 
predictive layers and five FD predictive layers of the pathfinder elements Au, Cu, Sb, Zn and Pb were employed 
as input to train the GANomaly framework for tracing Au–Cu mineralization occurrences. The fault predic-
tive layer with 4-ring buffered areas (with an interval of 1 km) was constructed as a geological constraint based 
on mineral system parameter to improve loss function of the GANomaly framework (Fig. 4c). This predictive 
layer is guidance and restriction factor for the designed model due to regard mineral system parameter which 
is eventuated to reliable exploration targeting.

Mineral prospectivity mapping and validation
Each five same predictive layers (FD or SD) were combined into a set of input feature vectors at each cell loca-
tion in the set of grids. All cells of the same predictive layers were divided as training data (30%) and testing 
data (70%) and were applied to trace Au–Cu mineralization occurrences in the Feyzabad district. The MATLAB 
R2022a environment was applied to implement the geologically-constrained GANomaly framework. In encoder 
S1, convolutional layers had 64, 128 and 256 kernels respectively. Also, deconvolutional layers had 256, 128 and 
64 kernels in decoder part respectively. Kernel size of decoder and encoder were also fixed as 4 × 4. Optimizing 

Figure 3.   Spectrum values of the pathfinder elements, (a) Au, (b) Cu, (c) Sb, (d) Zn and (e) Pb.
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the output distribution and training efficiency were improved implementing LeakyReLU activation function 
and Batch normalization in intermediate convolution layer. The batch size and initial learning rate were experi-
mentally fixed to 128 and 0.0001 respectively. Also, Adam optimization algorithm was applied to optimize the 
objective function of the framework designed. A schematic diagram of the GANomaly sections with extraction 
process of information has been displayed in Fig. 5. Based on Eq. (8), samples with a high difference values of 
the latent feature are regarded as geochemical abnormal points (Fig. 5). Augmented loss function via geological 
constraint constructed of ore-controlling feature allows the model designed to learn geological knowledge and 
yields reasonable potential maps which rarely include user bias problem. Defining geologically-constrained 
loss function is caused that abnormal areas detected be more consistent with known geological knowledge than 
unconstrained loss function of network and enabled a more accurate delineation of abnormal regions. Indeed, 
the proposed model as a novel DL black-box can appropriately consider the spatial distribution of mineral 
deposits and improve the interpretability and generalization of geochemical pattern recognition. Optimization 
of the objective function values in whole iterations of training geologically-constrained GANomaly framework 
has been presented in Fig. 6. Continuously decreasing of objective function value can demonstrate a well-
trained framework for this research. Objective function has been eventually converged to 0.17 at a steady state 
since iteration 200th. Produced multi-element geochemical map of the SD data can be compared to produced 

Figure 4.   Several predictive layers for training GANomaly framework, (a) SD geochemical layer of Au, (b) FD 
geochemical layer of Au and (c) Fault predictive layer as geological constraint.
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Figure 5.   A diagram exhibiting extraction process of information applying the GANomaly.

Figure 6.   Decreasing compositional loss function value in total iterations.

Figure 7.   Obtained multi-element geochemical anomaly maps applying geologically-constrained GANomaly 
with, (a) the SD training data and (b) the FD training data.
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multi-element geochemical map of the FD data through Fig. 7. Although, both obtained maps have consistency 
to the Au–Cu occurrences in the study area but the SD geochemical map displays lower success-rate for tracing 
the Au–Cu occurrences (Fig. 7a) than the FD geochemical map (Fig. 7b). Because, the FD geochemical data 
is contained more exploratory information. The success-rate curves can consider matching degree between 
detected mineralization occurrences and mineral potential zones. Accordingly, we applied success-rate curves to 
compare ability of both produced geochemical maps in tracing the Au–Cu occurrences (Fig. 8). The success-rate 
curve of the FD geochemical map demonstrates that 86.68% of the Au–Cu occurrences have been delineated 
through 30% corresponding study area. While, success-rate curve of the SD geochemical map has been plotted 
80.13% of the Au–Cu occurrences through 30% corresponding study area. The greater prediction ability of the 
FD geochemical map confirms that filtered data has access to more exploratory information. In fact, training 
GANomaly framework with FD geochemical data has been eventuated to more consistent geochemical map. In 
addition, real differences of the FD geochemical data can be revealed employing augmented DL models.

Conclusion
In this research, a geologically-constrained GANomaly was constructed to detect multi-element geochemical 
anomalies through regarding ore-forming processes. Application of this framework for detecting multi-element 
geochemical anomalies linked to the Au–Cu mineralization in the Feyzabad district from NE Iran, was successful 
with a great consistency to mineralization occurrences. Therefore, following conclusion remarks can be presented:

•	 Purely data-driven deep learning network requires to costraints for eventuating to reliable mineral explora-
tion targeting.

•	 Mineral system parameters as constraints can reinforce deep learning algorithms to produce credible mineral 
potential maps.

•	 Frequency domain geochemical data includes rather exploratory information than spatial domain geochemi-
cal data because filtered data is cleaner and more smooth.

•	 A geologically-constrained deep learning model trained with frequency domain geochemical data can pro-
duce rather consistent potential maps to mineralization occurrences.

•	 Accordingly, a reinforced deep learning algorithm via mineral system parameters with suitable filtering can 
be a reliable procedure for decreasing user bias problem in mineral prospectivity mapping.
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