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Towards a universal mechanism 
for successful deep learning
Yuval Meir 1,3, Yarden Tzach 1,3, Shiri Hodassman 1, Ofek Tevet 1 & Ido Kanter 1,2*

Recently, the underlying mechanism for successful deep learning (DL) was presented based on 
a quantitative method that measures the quality of a single filter in each layer of a DL model, 
particularly VGG-16 trained on CIFAR-10. This method exemplifies that each filter identifies small 
clusters of possible output labels, with additional noise selected as labels outside the clusters. This 
feature is progressively sharpened with each layer, resulting in an enhanced signal-to-noise ratio 
(SNR), which leads to an increase in the accuracy of the DL network. In this study, this mechanism is 
verified for VGG-16 and EfficientNet-B0 trained on the CIFAR-100 and ImageNet datasets, and the 
main results are as follows. First, the accuracy and SNR progressively increase with the layers. Second, 
for a given deep architecture, the maximal error rate increases approximately linearly with the number 
of output labels. Third, similar trends were obtained for dataset labels in the range [3, 1000], thus 
supporting the universality of this mechanism. Understanding the performance of a single filter and its 
dominating features paves the way to highly dilute the deep architecture without affecting its overall 
accuracy, and this can be achieved by applying the filter’s cluster connections (AFCC).

A prototypical supervised learning task involves object classification, which is realized using deep architectures1–3. 
These architectures consist of up to hundreds of convolutional layers (CLs)4–6, each of which consists of tens or 
hundreds of filters, and several additional fully connected (FC) hidden layers. As the classification task becomes 
more complex, a small training dataset and distant objects that belong to the same class, deeper architectures are 
typically required to achieve enhanced accuracies. The training of their enormous number of weights requires 
nonlocal training techniques such as backpropagation (BP)7–9, which are implemented by advanced GPUs, and 
can guarantee convergence to a suboptimal solution only.

The current knowledge of the underlying mechanism of successful deep learning (DL) is vague1,10–13. The 
common assumption is that the first CL reveals a local feature of an input object, where large-scale features and 
features of features, which characterize a class of inputs, are progressively revealed in the subsequent CLs1,14–17. 
The terminologies of the features and features of features and the possible hierarchy among them have not been 
quantitatively well defined. In addition, the existence of the underlying mechanism of successful DL remains 
unclear. Is the realization of a classification task using deep and shallower architectures with different accuracies 
based on the same set of features? Similarly, is the realization of different classification tasks using a given deep 
architecture based on the same type of features?

A quantitative method to explain the underlying mechanism of successful DL18 was recently presented and 
exemplified using a limited deep architecture and dataset, namely VGG-1610 on CIFAR-1014 and advanced vari-
ants thereof10,19. This method enables the quantification of the progressive accuracies with the layers and the 
functionality of each filter in a layer, and consists of the following three main stages.

In the first stage, the entire deep architecture is trained using optimized parameters to minimize the loss 
function. In the second stage, the weights of the first m trained layers remain unchanged and their outputs are FC 
with random initial weights to the output layer, which represent the labels. The output of the first m layers rep-
resents the preprocessing of an input using the partial deep architecture and the FC layer is trained to minimize 
the loss, which is a relatively simple computational task. The results indicate that the test accuracy20 increases 
progressively with the number of layers towards the output.

In the third stage, the trained weights of the FC layer are used to quantify the functionality of each filter 
constituting its input layer. The single-filter performance is calculated with all weights of the FC layer silenced 
except for the specific weights that emerge from a single filter. At this point, the test inputs are presented and 
preprocessed by the first m layers, but influence the output units only through the small aperture of one filter. 
The results demonstrate that each filter essentially identifies a small subset among the ten possible output labels, 
which is a feature that is progressively sharpened with the layers, thereby resulting in enhanced signal-to-noise 
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ratios (SNRs) and accuracies18. These three stages, which constitute the method by which the performance of a 
single filter is calculated, are presented in Fig. 1.

As the method for the underlying mechanism of successful DL was tested for only one deep architecture and 
one dataset composed of small images18, its generality is questionable. In this study, we investigate its univer-
sality by training EfficientNet-B021 and VGG-16 on extended datasets where the number of output labels is in 
the range of [3, 1000], taken from CIFAR-1014, CIFAR-10014 and ImageNet15,22. The results strongly suggest the 
universality of the proposed DL mechanism, which is verified for varying numbers of output labels with three 
orders of magnitudes, small ( 32× 32 ) and large ( 224× 224 ) images, and state-of-the-art deep architectures.

In the following section, the underlying mechanism of DL is explained using the results for VGG-16 on 
CIFAR-100. Thereafter, the results are extended to EfficientNet-B0 on CIFAR-100 and ImageNet. Finally, the 
case of training VGG-16 and EfficientNet-B0 on varying number of labels taken from CIFAR-100 as well as 
VGG-16 on CIFAR-10 is discussed. Subsequently, a summary and several suggested techniques for improving the 
computational complexity and accuracy of deep architectures are briefly presented in the “Discussion” section.

Results
Results of VGG‑16 on CIFAR‑100
The training of VGG-16 on CIFAR-100 (Fig. 2A) with optimized parameters yielded a test accuracy of approxi-
mately 0.75 (Table 1 and Supplementary Information), which was slightly higher than the previously obtained 
accuracy23. Next, the weights of the first m trained layers were held unchanged, and their outputs were FC with 
random initial weights to the output layer. The selected layers were those that terminated with max-pooling, 
m = 2, 4, 7, 10, and 13 . The training of these FC layers indicates that the accuracy increased progressively with 
the number of layers and saturated at m = 10 , (Table 1), which is a result of the small image inputs of 32× 32 . 

Figure 1.   Flowchart of the three stages for calculating the performance of a single filter. The entire deep 
network is trained to minimize the loss function (Stage 1). The m th layer is FC to the output and is then trained 
to minimize the loss with fixed weights of the previous m layers (Stage 2). The properties of a specific filter 
are calculated by silencing all the weights except those emerging from that specific filter. The matrix elements 
representing the average output field on an output unit for a specific input label are calculated using the training 
dataset. The clusters and noise elements of each filter are then calculated using the matrix elements. Finally, 
learning using a diluted deep architecture in accordance with the calculated clusters, namely the AFCC method, 
is performed.

Figure 2.   Image samples of the datasets. (A) Eight image samples with different labels from the CIFAR-100 
dataset. (B) Eight image samples with different labels from the ImageNet dataset.
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The three CLs (3× 3) , layers 8−10, generate a 7× 7 receptive field24 covering a filter size of 4× 4 . Hence, layers 
11−13 are redundant for small images.

The performance of a single filter is represented by a 100× 100 matrix and is exemplified for layer 10 (Fig. 3, 
left). The element (i, j) represents the average of the fields that are generated by the label i test inputs on output j , 
where the matrix elements are normalized by their maximal element. Next, its Boolean clipped matrix following 
a specified threshold is calculated (Fig. 3, middle) as well as its permuted version to form diagonal clusters (Fig. 3, 
right, Supplementary Information). The above-threshold elements out of the diagonal clusters are defined as the 
filter noise n (yellow elements in Fig. 3, right).

The performance of each filter was calculated using test inputs, with all weights of the trained FC layer silenced 
except for those that emerged from the filter. The estimated main averaged properties of the Nf (m) filters belong-
ing to the mth layer are the cluster size Cs(m) , number of clusters per filter Nc(m), and number of noise elements 
out of the clusters n(m) (Table 1). The results clearly indicate that n(m) decreases with m until the accuracy is 
saturated at m = 10 , where the average cluster size is small at 2 out of 100 labels. In addition, the average number 
of cluster elements is very small, Nc · C

2
s = 2.6× 22 = 10.4 out of the 10,000 matrix elements (Table 1).

The estimation of the SNR using the following quantities is required to understand the mechanism underlying 
DL. The average appearance number of each label among the Nl labels in the clusters of the layer is

which represents the signal under the assumption of uniform number of appearances of each diagonal element 
over all clusters. The average expected signal that emerges from the 10th layer is approximately 26.6 (Table 1 and 
Eq. (1)), which fluctuates among the 100 labels (Fig. 4A). The average internal cluster noise, noiseI , is equal to the 
average number of appearances of other labels in the clusters forming the signal of a given label,

which results in an average noiseI of approximately 0.27 for the 10th layer, with relatively small fluctuations among 
the labels (Fig. 4A). Furthermore, SNRI = signalnoiseI

≫ 1 provided that Cs
Nl

≪ 1.
The second type of noise stems from the above-threshold matrix elements out of the clusters, which is the 

external noise n. Using the assumption of uniform noise over the off-diagonal matrix elements, the average value 
of this noise is approximated as follows:

(1)signal = (Cs · Nc · Nf )/Nl ,

(2)noiseI =
(Cs − 1)

Nl − 1
· signal,

Table 1.   Accuracy per layer and statistical features of their filters for VGG-16 trained on CIFAR-100. Nf  
number of filters of layers terminating with max-pooling, Fs filter sizes, FCS size of trained FC layer connected 
to the output units, n average noise per filter, Nc average number of clusters per filter, CS average cluster size.

VGG-16 on CIFAR-100

Layer Nf Fs FCs Accuracy n Nc Cs

13 512 1 × 1 512 0.745 277.1 1.7 7.7

10 512 2 × 2 2048 0.752 16.3 2.6 2.0

7 256 4 × 4 4096 0.577 117.9 2.8 2.7

4 128 8 × 8 8192 0.439 552.4 5.1 2.8

2 64 16 × 16 16,384 0.352 987.8 5.8 3.2

Figure 3.   Single filter performance. Left: the matrix element (i,j) of a filter belonging to layer 10 of VGG-16 
trained on CIFAR-100 represents the averaged fields that were generated by label i test inputs on an output j, 
where the matrix elements were normalized by their maximal element. Middle: the Boolean clipped matrix 
(0/1 is represented by black/white pixels) following a given threshold. Right: permutations of the clipped matrix 
labels resulting in three diagonal clusters: two 2× 2 and one 3× 3 (magnified upper-left corner red box), where 
above-threshold n elements out of the cluster are noise elements, denoted by yellow.
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where the average number of elements that belong to the clusters of each filter is negligible compared to (Nl)
2 

(Fig. 3). As noiseE ∝ n,

which increases with a decrease in n . This is the origin of the DL mechanism, where n decreases progressively 
with the number of layers, thereby enhancing the accuracy (Eq. (4)). For example, noiseE is approximately 0.83 
for the 10th layer, whereas it is approximately 29 for the 4th layer where the signal is only 18 (Table 1 and Eqs. 
(1)–(3)). Note that the above calculations neglect the subthreshold elements; however, they are typically several 
orders of magnitude smaller than the above-threshold elements and are frequently negative18 (Fig. 3).

Although the above estimations of SNRI and SNRE , Eqs. (1–4), were expected to fluctuate among the labels, 
they were found to be much greater than unity per label (Fig. 4A). In addition, these SNRs may be far from reality 
because the matrix (Fig. 3, left) was first normalized by its maximal value, which varied significantly among the 
filters, following which the above-threshold elements were defined to form a Boolean matrix. Nevertheless, the 
summation of the fields of the above-threshold elements, instead of their Boolean summations, indicates that 
SNRI and SNRE for each label were much greater than unity (Fig. 4B), and their averaged values are comparable 
to the estimated values based on the Boolean filters.

The progressive decrease in noiseE with the layers of a given trained deep architecture is the underlying 
mechanism for successful DL (Eq. (4)). Nevertheless, a large estimated SNRE does not necessarily ensure an 
accuracy that approaches unity because it is based only on averaged quantities ((Eqs. (1–4)), where large fluctua-
tions around their average values are expected, particularly for large Nl . In addition, a positive field of a cluster 
element cannot exclude negative fields for a large fraction of the corresponding input label.

Results of EfficientNet‑B0 on CIFAR‑100
The training of the expanded 224× 224 images25 of CIFAR-100 on EfficientNet-B0 was performed using transfer 
learning26,27 (Supplementary Information) and yielded an improved accuracy of 0.867 (Table 2). This architecture 
does not include max-pooling operators, and a decrease of a factor of two in the layer dimensions is achieved 
using stride-2 at specific CLs. Hence, similar to the case of VGG-16, the accuracies and average filter proper-
ties were estimated at the end of the stages with stride-2, 1, 3, 4, 5, 7, and 9 . The outputs of these stages were first 
sampled by 7× 7 average pooling as built-in in stage 9 , followed by a layer that was FC to the 100 output units 
which was trained to minimize the loss (Supplementary Information). The results indicate that the accuracy 
almost always increased with the number of stages and the noise per filter decreased (Table 2), thereby support-
ing the proposed universal mechanism underlying DL. The semi-plateau of the accuracies of stages 4 and 5 was 
common to all examined datasets using EfficientNet-B0, which suggests that this architecture might be simplified 
without affecting its accuracy by removing, for example, some layers around stage 5 (see “Discussion” section).

The progressive decrease in the noise n with the layers or stages of a particular deep architecture is the under-
lying mechanism of DL. However, a comparison of the SNRs of two deep architectures does not necessarily 

(3)noiseE = n ·
Nf

(Nl)
2
,

(4)SNRE =
signal

noiseE
= (Cs · Nc · Nl)/n,

Figure 4.   Comparison of SNRs obtained from above-threshold Boolean filters and their fields. (A) The signal 
per label (blue), noiseI per label (red), and noiseI + noiseE per label (orange) (Eqs. (1–4)) that were obtained 
from the above-threshold clipped Boolean fields of the 512 filters of the 10th layer of VGG-16 trained on CIFAR-
100. The average signal (dashed blue horizontal line), noiseI (red), and noiseI + noiseE (orange) are 26.95, 0.46 
and 1.3 , respectively, which are similar to the estimated values obtained from Eqs. (1–3). (B) Similar to (A), 
using the fields of the above-threshold elements of the filters. The average signal (dashed blue horizontal line), 
noiseI (red), and noiseI + noiseE (orange) values are 301, 4.7 , and 9.7 , respectively.
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correlate with accuracies. For instance, the improved EfficientNet-B0 accuracy of 0.867 , in comparison with 
∼ 0.75 for VGG-16 (Tables 1, 2), could not be simply deduced from their SNRs (Eq. (4)) because noiseE was dou-
bled for EfficientNet-B0, whereas Cs · Nc was reduced from 5.2 in VGG-16 to only approximately 4 . The accuracy 
improvement of EfficientNet-B0 probably stems from the enhanced signal of approximately 64 , whereas it was 
only approximately 27 for VGG-16 (Eq. (1)), as well as the distribution of their output fields for the test inputs.

Results of EfficientNet‑B0 on ImageNet
The presented underlying mechanism of DL was extended to a dataset consisting of 1000 labels and 224× 224 
input images, with the pre-trained EfficientNet-B0 on the ImageNet dataset15,22 (Fig. 2B) constituting the initial 
stage of the following procedure. The output layer of stages 1, 3, 4, 5, 7 , and 9 was FC with random initial weights 
to the 1000 outputs (Table 3). Next, these FC weights were trained to minimize the loss, with all remaining weights 
of the trained EfficientNet-B0 kept fixed. Finally, the accuracy of the different stages and statistical properties of 
their filters were estimated (Table 3).

As training of these FC layers using the large ImageNet dataset ( 1.4M images) was beyond our computational 
capability, we divided the 50,000 images from the validation test into 40,000 images for training and 10,000 for 
testing. This training of the stage 9 FC layer was similar to transfer learning26,27 and yielded an accuracy of 
approximately 0.75 , where the original accuracy of the entire pre-trained EfficientNet-B0 was approximately 
0.78 (Supplementary Information).

The accuracy increases with the stages, whereas the noise n  typically decreases (Table 3), which supports the 
universal underlying mechanism of DL. Interestingly, the average cluster size, Cs , and number of clusters per 
filter, Nc , which were measured at the last stage or layer that saturated the accuracy, increased only slightly while 
Nl increased from 100 to 1000 (Tables 1, 2, 3). The exception of stage 3 in which n was non-monotonic (Table 3) 
may stem from the small Nf = 24 , resulting in Nf · Nc · Cs ∼ 601 < 1000 , whereas it was greater than 1000 for 
other stages. For stage 3 , a large fraction of the labels ( ∼ 500 ) did not appear in any of the clusters and their esti-
mated signal was zero. For all other stages, Nf  was larger and Nf · Nc · Cs > 1000 , resulting in significantly lower 
number of labels with zero signal. Note that this anomaly of stage 3 was indeed absent in CIFAR-100 (Table 1).

Similar trends are expected for VGG-16 on ImageNet with much lower accuracy and higher noise than 
EfficientNet-B0. In this case, the image dimension is greater by a factor of 7; hence, the FC layer sizes become 
significantly larger, and the optimization of those layers is currently beyond our computational capabilities.

Datasets with varying number of labels
CIFAR‑100 with varying number of labels
The proposed universal mechanism for DL was extended by varying the output labels K out of 100 in CIFAR-
100, where K = 10, 20, 40, and 60 . The results for VGG-16 are summarized in Table 4, and indicate similar 
trends to those observed for K = 100 (Table 1). The accuracy increased progressively with the number of lay-
ers until saturation at the 10th layer, and the out-of-cluster noise n decreased progressively with the number 

Table 2.   Accuracy per stage and statistical features of their filters for EfficientNet-B0 trained on CIFAR-100. 
The presented results were obtained at the end of stages consisting of stride-2 only, reducing by factor two the 
size of the output layer, similar to the max-pooling operator in VGG-16 (Table 1).

EfficientNet-B0 on CIFAR-100

Stage Nf Fs FCs Accuracy n Nc Cs

9 1280 1 × 1 1280 0.867 31.6 1.2 3

7 192 1 × 1 192 0.729 232.0 3.5 2.1

5 80 2 × 2 320 0.503 308.7 3.6 1.7

4 40 4 × 4 640 0.502 436.9 5.2 1.7

3 24 8 × 8 1536 0.426 526.2 5.6 1.8

1 32 16 × 16 8192 0.259 1208.1 2.9 5.3

Table 3.   Accuracy per stage and statistical features of their filters for EfficientNet-B0 trained on ImageNet. 
The presented results were obtained at the end of stages consisting of stride-2 only, similar to Table 2.

EfficientNet-B0 on ImageNet

Stage Nf Filter’s outputs FC size Accuracy n Nc Cs

9 1280 1 × 1 1280 0.750 1057.7 3.5 4.4

7 192 1 × 1 192 0.489 5729.6 8.3 3.2

5 80 2 × 2 320 0.187 7168.0 8.9 2.6

4 40 4 × 4 640 0.136 13,416.9 16.5 2.5

3 24 8 × 8 1536 0.065 6471.0 13.2 1.9

1 32 16 × 16 8192 0.022 50,381.9 8.5 7.4
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of layers. Interestingly, Cs and Nc were only slightly affected by K at the 10th layer (Tables 1, 4). The test error, 
ǫ = 1− accuracy , is expected to increase with K since the classification task is more complex; the results indicate 
that this increase is approximately linear with K  (Fig. 5). Nevertheless, the extrapolation of the linear fit to a 
smaller K approaching unity indicates that a limited crossover is expected, as ǫ is expected to vanish for K = 1.

Similar trends were observed for EfficientNet-B0 trained with K = 10, 20, 40, and 60  labels from CIFAR-
100 (Table 5). Again, the accuracy increased progressively with the stages (except for stage 5 at K = 60 ) and n 
decreased progressively with the stages, thereby exemplifying the universality of the mechanism underlying DL. 

Table 4.   Accuracy per layer and statistical features of their filters for VGG-16 trained on K labels from CIFAR-
100. The results are similar to those of Table 1, where VGG-16 was trained on K = 10, 20, 30, and 60 labels out 
of 100, namely CIFAR-K/100 (Supplementary Information).

Layer Nf Fs FCs Accuracy n Nc Cs

VGG-16 on CIFAR-10/100

 13 512 1 × 1 512 0.926 3.26 1.01 2.2

 10 512 2 × 2 2048 0.931 4.86 1.83 1.6

 7 256 4 × 4 4096 0.908 10.11 1.47 1.7

 4 128 8 × 8 8192 0.890 15.83 1.6 1.8

 2 64 16 × 16 16,384 0.829 18.64 1.6 2.0

VGG-16 on CIFAR-20/100

 13 512 1 × 1 512 0.9115 9.92 1.02 3.7

 10 512 2 × 2 2048 0.9115 13.6 2.33 1.9

 7 256 4 × 4 4096 0.9065 33.6 1.64 2.31

 4 128 8 × 8 8192 0.8465 57 2 2.4

 2 64 16 × 16 16,384 0.752 68.23 1.83 2.7

VGG-16 on CIFAR-40/100

 13 512 1 × 1 512 0.8553 51.8 1.11 7.5

 10 512 2 × 2 2048 0.8567 12.3 2.92 2

 7 256 4 × 4 4096 0.7825 38.4 2.44 2.17

 4 128 8 × 8 8192 0.6388 143.8 3.22 2.54

 2 64 16 × 16 16,384 0.5380 203.6 3.5 2.7

VGG-16 on CIFAR-60/100

 13 512 1 × 1 512 0.8277 123.9 1.3 8.13

 10 512 2 × 2 2048 0.8275 18.17 2.78 2.3

 7 256 4 × 4 4096 0.7148 39.52 2.16 2.24

 4 128 8 × 8 8192 0.5392 260.6 4.16 2.6

 2 64 16 × 16 16,384 0.4480 423.92 4.5 3

Figure 5.   Test error for VGG-16 trained on CIFAR-K/100. Test error, ǫ = 1− accuracy , obtained at 10th 
layer of VGG-16 trained on K labels from CIFAR-100, namely CIFAR-K/100, and the linear fit approximation 
(dashed line). The subset of K labels included smaller ( < K ) selected labels (Supplementary Information).
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Table 5.   Accuracy per layer and statistical features of their filters for EfficientNet-B0 trained on K labels 
from CIFAR-100. The results here are similar to those of Table 2, where EfficientNet-B0 was trained on 
K = 10, 20, 30, and 60 labels out of 100, namely CIFAR-K/100 (Supplementary Information).

Stage Nf Fs FCs Accuracy n Nc Cs

EfficientNet-B0 on CIFAR-10/100

 9 1280 1 × 1 1280 0.986 3.8 1.08 1.6

 7 192 1 × 1 192 0.955 8.3 1.80 1.3

 5 80 2 × 2 320 0.851 10.6 1.85 1.2

 4 40 4 × 4 640 0.845 12.8 2.15 1.3

 3 24 8 × 8 1536 0.755 14.5 2.75 1.3

 1 32 16 × 16 8192 0.634 18.1 1.55 1.9

EfficientNet-B0 on CIFAR-20/100

 9 1280 1 × 1 1280 0.973 8.1 1.1 2.0

 7 192 1 × 1 192 0.915 22.9 2.1 1.5

 5 80 2 × 2 320 0.765 29.7 2.0 1.3

 4 40 4 × 4 640 0.764 40.8 2.8 1.4

 3 24 8 × 8 1536 0.645 48.1 3.4 1.4

 1 32 16 × 16 8192 0.482 63.8 1.5 3.1

EfficientNet-B0 on CIFAR-40/100

 9 1280 1 × 1 1280 0.935 16.4 1.1 2.4

 7 192 1 × 1 192 0.849 64.2 2.6 1.7

 5 80 2 × 2 320 0.652 85.2 2.7 1.4

 4 40 4 × 4 640 0.650 111.3 3.3 1.5

 3 24 8 × 8 1536 0.553 129.6 3.9 1.6

 1 32 16   × 16 8192 0.362 223.6 1.9 3.9

EfficientNet-B0 on CIFAR-60/100

 9 1280 1 × 1 1280 0.915 21.4 1.2 2.6

 7 192 1 × 1 192 0.810 121.8 3.2 1.9

 5 80 2 × 2 320 0.593 152.0 3.0 1.6

 4 40 4 × 4 640 0.603 200.0 3.8 1.6

 3 24 8 × 8 1536 0.511 252.3 4.8 1.7

 1 32 16 × 16 8192 0.313 492.6 2.5 4.4

Figure 6.   Test error for EfficientNet-B0 trained on CIFAR-K/100. Average test error, ǫ = 1− accuracy , 
obtained at stage 9 of EfficientNet-B0 trained on K labels from CIFAR-100 (similar to Fig. 5) and the linear fit 
approximation (dashed line).
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Similar to the case of VGG-16, the test error ǫ also increased approximately linearly with K  and almost vanished, 
as expected, at K = 1 (Fig. 6). Note that the slope of the approximated linear fit fluctuated slightly among the 
samples (Supplementary Information). In addition, the average cluster size Cs increased slightly from 1.6 for 
K = 10 to 3 for K = 100 , whereas the number of clusters per filter Nc was approximately 1.1 and independent 
of K (Table 5).

CIFAR‑10 with varying number of labels
The universal mechanism of DL was also verified for VGG-16 trained on CIFAR-10 with varying K = 3, 6, 8, and 
10 (Table 6). The accuracy increased progressively with the number of layers until saturated at the 10th layer, and 
n decreased progressively with the number of layers. Similar to the case of CIFAR-100, the test error increased 
approximately linearly with K (Fig. 7), where the extrapolation for K = 1, ǫ approaches zero, as expected.

Applying filter cluster connections (AFCC)
The new comprehensive understanding of how the filters function in a trained deep architecture can promote 
improved technological implementation methods by applying filter’s cluster connections (AFCC) (Fig. 1). As 
each filter consists of only several small clusters, thereby generating a significant output signal for a small set 
of labels, its output for any other label can be neglected and the same accuracy can be achieved. To test the 
AFCC hypothesis a trained VGG-16 on CIFAR-100 was examined, where the accuracy of approximately 0.752 , 
is saturated at the 10th layer (Table 1). The number of weights of the FC layer is 204, 800 ; 512× 2× 2 input 
units emerging from the 512 filters multiplied by 100 output units. All these weights which did not belong to a 
cluster in a specific filter were set to zero, resulting in approximately 194, 000 zeroed weights out of 204, 800 (a 
95% reduction). The remaining 10, 800 weights is well approximated by 512 · 2 · 2 · Cs · Nc ≈ 10, 600 (Table 1). 
After only a few training epochs, while maintaining the ∼ 194, 000 zeroed weights as zero, the similar accuracy, 
∼ 0.752, was recovered, which indicates that the FC layer can be significantly reduced and yield similar results 
(Supplementary Information). Note that the same filter clusters were detected for both training and test sets18. 
The performance of the same classification tasks with a significantly smaller amount of weights of the FC layer 
can improve the test computational complexity, as well as reduce the memory usage. Thus, the expansion of the 
AFCC method to include several layers can significantly reduce the complexity and deserves further research.

A similar effect was observed for EfficientNet-B0 trained on CIFAR-100, with an accuracy of 0.867 (Table 2). 
The number of weights of the FC layer is 128, 000 ; 1280× 1 input units emerging from the 1280 filters multiplied 
by 100 output units. All of these weights that did not belong to a cluster in a specific filter were set to zero, result-
ing in 4900(∼ 1280 · Cs · Nc ) non-zero weights only (a ∼ 96% reduction). After retraining the entire network 

Table 6.   Accuracy per label and statistical features of their filters for VGG-16 trained on K labels from 
CIFAR-10. The results of VGG-16 trained on K = 3, 6, 8, and 10 labels, namely CIFAR-K/10 (Supplementary 
Information).

Layer Nf Fs FCs Accuracy n Nc Cs

VGG-16 on CIFAR-3/10

 13 512 1 × 1 512 0.988 0.07 1 1.02

 10 512 2 × 2 2048 0.988 0.27 1.5 1.02

 7 256 4 × 4 4096 0.989 0.67 1.2 1.06

 4 128 8 × 8 8192 0.972 1.70 1.1 1.12

 2 64 16 × 16 16,384 0.927 1.78 1.1 1.25

VGG-16 on CIFAR-6/10

 13 512 1 × 1 512 0.968 0.40 1 1.8

 10 512 2 × 2 2048 0.967 1.16 2.4 1.3

 7 256 4 × 4 4096 0.957 2.12 1.3 1.4

 4 128 8 × 8 8192 0.930 6.69 1.2 1.6

 2 64 16 × 16 16,384 0.860 7.59 1.1 1.7

VGG-16 on CIFAR-8/10

 13 512 1 × 1 512 0.961 0.63 1 2.2

 10 512 2 × 2 2048 0.958 2.17 2.8 1.4

 7 256 4 × 4 4096 0.954 4.07 1.2 1.6

 4 128 8 × 8 8192 0.890 12.4 1.4 1.8

 2 64 16 × 16 16,384 0.783 13.0 1.3 1.8

VGG-16 on CIFAR-10/10

 13 512 1 × 1 512 0.94 1.5 1 2.8

 10 512 2 × 2 2048 0.94 3.8 3.2 1.6

 7 256 4 × 4 4096 0.93 6.4 1.3 1.6

 4 128 8 × 8 8192 0.85 18.3 1.4 2.1

 2 64 16 × 16 16,384 0.72 19.6 1.3 2.1
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with the same parameters, while including the 4900 non-zeroed weights only, the accuracy increased to ∼ 0.873 , 
indicating that the FC layer can be significantly reduced and still yield similar or even increased accuracy (Sup-
plementary Information). One cannot exclude a similar increase in accuracy without pruning the FC layer and 
using different training parameters, however, AFCC training is more efficient. This gain in the test computational 
complexity is expected to be enhanced further in datasets with a higher number of labels, such as ImageNet, 
and larger classification tasks.

The training of EfficientNet-B0 on CIFAR-100 indicates almost identical accuracies for stages 4 and 5 (Tables 2, 
5) whereas the noise, n, is non-monotonic between stages 3 and 4 for EfficientNet-B0 trained on ImageNet 
(Table 3). These results hint that stages 3−5 of EfficientNet-B0 might be further optimized. Indeed, reducing the 
number of layers constituting stages 3 and 4 to one and training this modified EfficientNet-B0 on CIFAR-100 
using transfer learning26,27, resulted in an accuracy ∼ 0.864 , which approached the original accuracy (Table 2). 
Similarly, reducing the number of layers in stage 5 from 3 to 2 , resulted in an accuracy of at least 0.862 (Supple-
mentary Information). Hence, following the proposed method, the latency of EfficientNet-B0 can be reduced 
without practically affecting its performance, at least for the CIFAR-100 dataset. Another simplification is the 
removal of stage 9 from the construction of EfficientNet-B0 and connecting stage 8 with only 320 filters to the 
output layer, using the AFCC method. In this case, the obtained accuracy is at least 0.868 , which slightly exceeds 
the accuracy of the entire model terminating with 1280 filters for the classification of CIFAR-100 (Supplementary 
Information).

Discussion
The underlying mechanism of DL was quantitatively examined for two deep architectures, namely VGG-16 and 
EfficientNet-B0, trained on the CIFAR-10, CIFAR-100, and ImageNet datasets. These examinations enabled the 
verification of the suggested underlying mechanism of DL with different architectures consisting of 16 to over 
150 layers as well as with the number of output labels ranging over three orders of magnitude [3, 1, 000].

The first step of the proposed method involves quantifying the accuracy of each CL of a trained deep architec-
ture using the following procedure with relatively low computational complexity: The entire deep architecture is 
trained to minimize the loss. The weights of the first specified number of trained layers are held unchanged and 
their output units are FC to the output layer. These output units of an intermediate hidden layer represent the 
preprocessing of an input using a partial deep architecture, and the FC layer is trained to minimize the loss. The 
test set results indicate that the accuracy increases progressively with the number of layers towards the output 
(Tables 1, 2, 3, 4, 5, 6).

The trained FC layer weights are used to quantify the functionality of each filter that belongs to its input layer. 
The single-filter performance is calculated when all weights of the FC layer are silenced, except for the specific 
weights that emerge from the single filter. At this point, the test inputs are preprocessed by the first given num-
ber of trained layers, but influence the Nl output units, representing the labels, only through the small aperture 
of one filter. This procedure generates an (Nl ,Nl) matrix, where element (i, j) represents the average fields that 
are generated by label i test inputs on output j . This matrix is normalized by its maximal element, following 
which a Boolean clipped matrix is formed following a given threshold. Its permuted version forms diagonal 
clusters (Fig. 3), the sizes of which increase only slightly when a deep architecture is trained on a dataset with 
an increasing number of labels (Tables 2, 3). The diagonal elements of the clusters represent the signal, whereas 
their off-diagonal elements represent the internal noise, resulting in uncertainty regarding the input label given 
an above-threshold output. The second type of noise, namely the external noise, stems from the above-threshold 
elements out of the diagonal clusters. This noise progressively decreases with the number of layers and forms 
the underlying mechanism of DL.

Figure 7.   Test error for VGG-16 trained on CIFAR-K/10. Test error, ǫ = 1− accuracy , obtained at the 10th 
layer of VGG-16 trained on K labels from CIFAR-10 and the linear fit approximation (dashed line).
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The proposed method suggests quantitative measures and building blocks to describe the underlying mecha-
nism of DL. The vocabulary is the preferred subset of labels of each filter clusters, which compete with the filter’s 
noise. In addition to the contribution of this method to the understanding of how DL works, it provides insight 
into several practical aspects, including the following two. The first one is the possibility of improving the com-
putational complexity and accuracy of deep architectures, and the second one is identifying weak stages in the 
construction of pre-existing deep architectures.

Using the single filter performance can lead to an efficient way to dilute the system without affecting its per-
formance, as demonstrated by the AFCC method. Its expansion to include several layers can significantly reduce 
the complexity and deserves further research. This insightful dilution technique should be explored further on 
other datasets and deep architectures. In addition, its efficiency should be compared with that of other methods 
that primarily rely on random dilution processes28–31 and assess their effectiveness in reducing complexity.

The presented universal underlying mechanism of DL may suggest an estimation method for the necessary 
number of filters in each layer. Each label must appear at least once in the clusters of the layer, hence, 1280 fil-
ters in stage 9 of EfficientNet-B0 appear to be insufficient to classify, for example, 100,000 labels. Nevertheless, 
the results indicate that the number of diagonal elements, Cs · Nc , increases from 3.6 for CIFAR-100 to 15.4 for 
ImageNet (Tables 2, 3). Therefore, one cannot exclude the reality in which the filters constitute many relatively 
small clusters when the number of labels increases further. In addition, the information that is embedded in a 
single filter, namely clusters and noise, suggests procedures for pruning or retraining inefficient filters, such as 
highly noisy or low output-field filters. These procedures may improve the accuracy with reduced computational 
complexity and latency in the test phase, however, the investigation thereof requires further research.

Data availability
Source data are provided in this study, including all data supporting the plots, along with other findings of this 
study.
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