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Prognostic mutation signature 
would serve as a potential 
prognostic predictor in patients 
with diffuse large B‑cell lymphoma
Shih‑Feng Cho 1,2,3,4, Tsung‑Jang Yeh 1,3,5, Hui‑Ching Wang 1, Jeng‑Shiun Du 1, Yuh‑Ching Gau 1, 
Yu‑Yin Lin 6, Tzer‑Ming Chuang 1, Yi‑Chang Liu 1, Hui‑Hua Hsiao 1 & Sin‑Hua Moi 5,7,8*

The present study aimed to elucidate the prognostic mutation signature (PMS) associated with long-
term survival in a diffuse large B-cell lymphoma (DLBCL) cohort. All data including derivation and 
validation cohorts were retrospectively retrieved from The Cancer Genome Atlas (TCGA) database and 
whole-exome sequencing (WES) data. The Lasso Cox regression analysis was used to construct the 
PMS based on WES data, and the PMS was determined using the area under the receiver operating 
curve (AUC). The predictive performance of eligible PMS was analyzed by time-dependent receiver 
operating curve (ROC) analyses. After the initial evaluation, a PMS composed of 94 PFS-related genes 
was constructed. Notably, this constructed PMS accurately predicted the 12-, 36-, and 60-month 
PFS, with AUC values of 0.982, 0.983, and 0.987, respectively. A higher level of PMS was closely 
linked to a significantly worse PFS, regardless of the molecular subtype. Further evaluation by forest 
plot revealed incorporation of international prognostic index or tumor mutational burden into PMS 
increased the prediction capability for PFS. The drug-gene interaction and pathway exploration 
revealed the PFS-related genes were associated with DNA damage, TP53, apoptosis, and immune cell 
functions. In conclusion, this study utilizing a high throughput genetic approach demonstrated that 
the PMS could serve as a prognostic predictor in DLBCL patients. Furthermore, the identification of 
the key signaling pathways for disease progression also provides information for further investigation 
to gain more insight into novel drug-resistant mechanisms.
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Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive non-Hodgkin lymphoma (NHL) world-
wide, accounting for approximately 30–40% of annual newly diagnosed lymphoma cases1,2. The incorporation of 
the anti-CD20 monoclonal antibody, rituximab (R), into conventional anthracycline-based chemotherapy results 
in a high response rate and prolonged overall survival of patients with DLBCL3–5. For patients with newly diag-
nosed DLBCL, the standard R-CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) regimen 
achieves a high complete remission rate (approximately 75%), and 60–70% of these patients remain relapse-free 
after 5 years of follow-up6,7. However, a proportion of DLBCL patients experience primary refractory disease 
or relapse after prior successful treatment. The prognosis of this subgroup is dismal, making the exploration of 
resistance mechanisms or new therapies an urgent medical need.

Accumulating evidence suggests that highly heterogeneous genetic alterations and the tumor microenviron-
ment play crucial roles in treatment failure8. The gene expression profiling divides DLBCL into two distinct 
groups, namely, germinal center B-cell-like (GCB) and activated B-cell-like (ABC). Patients with ABC-DLBCL 
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tend to have a poorer prognosis and a higher risk of treatment resistance9–11. In addition, a small subset of patients 
with MYC, BCL2, and/or BCL6 arrangement has been classified as double-hit lymphoma (DHL) or triple-hit 
lymphoma (THL), these patients with DHL/THL tend to respond poorly to R-CHOP regimen12–14. Advances 
in next-generation sequencing (NGS) technology and bioinformatics allow integrative genomic analyses in 
a large cohort of patients, enabling the identification of novel genetic subsets and modeling of novel genetic 
classifications15–17. Several genetic alterations related to relapsed or refractory DLBCL after R-CHOP treat-
ment were identified, including epigenetic regulation, cell cycle regulation, signaling pathway activation, and 
oncogenes18–21. Moreover, the germinal center-related microenvironmental signature stratified DLBCL patients 
into different risk groups after R-CHOP treatment22.

Several models or genetic soring systems incorporating integrative gene expression analyses are under devel-
opment, aiming to provide better prognostic information23. A four-gene signature-based score involving immune 
infiltration separated patients into high- and low-risk groups. Notably, the combination of the gene expression-
based score with the international prognostic index (IPI) further improved the risk prediction24. Another study 
investigating NGS data has shown that MYC/BCL2, microenvironment biomarkers, and genetic subtyping are 
closely linked to the clinical outcome of DLBCL patients25. Despite these findings, investigation of gene mutation 
patterns and the degree of gene expression in the TME to explore new prognostic markers and novel therapeutic 
targets are still very critical.

In the present study, whole-exome sequencing (WES) data from a cohort of DLBCL patients was investigated 
and further validated by the TCGA database. In addition to the estimated tumor mutational burden, a panel 
composed of several prespecified gene expression signatures was incorporated as a panel of functional genes. 
These genes were then harnessed to formulate somatic mutation profiles that hold relevance to the prognosis of 
the disease, henceforth referred to as the prognostic mutation signature (PMS). Overall, this study aims to assess 
the utilization of both mutational signatures and common clinicopathological characteristics on prognostic 
outcomes for DLBCL patients.

Methods
Data source
The DFCI dataset of DLBCL patients (DFCI, Nat Med 2018)16 encompassing clinicopathological characteristics 
and genomic data was collected for the derivation dataset, which was accessed through cBioPortal (http://​www.​
cbiop​ortal.​org). The DFCI derivation cohort consisted of 135 patients with DLBCL including 120 patients who 
underwent standard R-CHOP therapy. The clinicopathological characteristics, somatic mutation profiles, and 
survival outcomes of the study cohort were also acquired. Furthermore, the data of DLBCL patients from TCGA 
database was also collected as the validation cohort. The TCGA validation cohort consisted of 48 patients with 
DLBCL including 25 patients who ever treated with CHOP-based therapy. The study flowchart is presented in 
Fig. 1.

The clinicopathological characteristics included age at diagnosis, sex, molecular subtype, and IPI (interna-
tional prognostic index) score. Progression-free survival (PFS) was defined as the time from first treatment until 
disease progression or death. Because most of the relapses of DLBCL were observed within the first 2 years of 
diagnosis and the progression rate at five years was low, we observed the five-year survival outcome of the study 
cohort26,27. Patients who experienced relapse/progression of the disease or died within the study observed period 
(5 years) were considered the “Cases” group, and patients who achieved durable progression-free status were 
considered the “Controls” group.

Somatic mutation profiles
The somatic mutation profiles were obtained from the WES of tumor-normal matching sample pairs, and the 
details of the samples and WES procedure have been well described in a previous publication16. The number of 
genetic mutations in the cancer cells was computed and is presented as tumor mutational burden (TMB, mut/
MB). The somatically mutated status of each gene in candidate functional gene sets was selected and used to 
derive a PMS for the study cohort according to their PFS status.

Functional gene sets
To investigate the complex genetic event and tumor microenvironment, a panel containing 11 gene functional 
signatures was utilized28, including DLBCL common genes, proliferation, stroma/EMT/TGF-β, RAS, MYC, 
WNT, hypoxia, glycolysis, angiogenesis, gMDSC (granulocytic myeloid-derived suppressor cells), and mMDSC 
(monocytic myeloid-derived suppressor cells) gene sets. The frequent mutated genes in DLBCL, including BCL2, 
TP53, MYC, MCM5, TSHZ3, KLHL6, MYD88, CD79B, and CREBBP, were defined as DLBCL common gene 
set (Supplementary Table S1).

Prognostic mutational signature (PMS)
The Lasso Cox model is particularly suitable for high-dimensional somatic mutation data due to its ability to 
handle sparsity, prevent overfitting, and provide a more interpretable and relevant subset of genomic features for 
predicting survival outcomes in the context of cancer genomics. Lasso Cox regression analysis was performed to 
select the optimal gene combination for prognostic risk prediction. The optimal gene combination of candidate 
functional genes was selected using the Lasso Cox model. The somatic mutation rate of the selected genes in 
study cohorts was summarized using oncoprints. Afterward, the estimated coefficients ( β ) of eligible genes in 
optimal gene combination were computed using Cox regression. The β and mutation status (mut) of each gene 
(g) were used to generate the candidate prognostic mutational signature (PMS) according to Eq. (1) as follows:

http://www.cbioportal.org
http://www.cbioportal.org
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The time-dependent prognostic predictive performance at 12-, 36-, and 60-months of derived PMS, TMB, and 
IPI were evaluated using ROC analysis, and the area under the ROC curve (AUC) was reported. The threshold 
values in the AUC for ROC analysis represent the spectrum of sensitivity and specificity trade-offs. The AUC 
represents the overall discriminatory power of the corresponding feature, while AUC thresholds of 0.7, 0.8, and 
0.9 indicate acceptable, good, and excellent dichotomous predictive performance. In addition, the PMS was 
dichotomized into corresponding low- and high-PMS subgroups according to the optimal cutoff point estimated 
by ROC. The survival difference between the low- and high-PMS subgroups was further evaluated using the 
Kaplan‒Meier estimator and tested using the log-rank test.

Statistical analyses
The clinicopathological characteristics, somatic mutation profiles, and survival outcomes were summarized and 
the difference between Cases and Controls groups was estimated using chi-squared, Fisher’s exact test, or Wil-
coxon rank-sum test. Univariate and multivariate Cox proportional hazard regression analyses were performed 
to evaluate the association between PFS and PMS, while TMB and IPI were considered as covariates for model 
adjustment. The estimated Cox models were further summarized and illustrated using the forest plot. All p values 
were two-sided, and p < 0.05 was considered statistically significant. All analyses were conducted using R 4.1.229.

Results
Baseline characteristics of the study cohort
The clinicopathological characteristics, TMB, somatic mutation, and all-cause mortality status of the DFCI 
derivation cohort according to PFS status are summarized in Supplementary Table S2. There were 52 patients 
with disease progression (Cases group) and 68 progression-free patients (Controls group). The case group was 
older and had a higher proportion of females. Both groups had a similar percentage in the molecular subtype. 
The Cases group also showed a higher proportion of high IPI scores than the Controls group. Notably, 42 (80.8%) 
patients in the Cases group died during the follow-up period. The basic characteristics of the TCGA validation 
cohort were also summarized (Supplementary Table S3). The distribution of clinicopathological characteristics, 

(1)PMS =

n
∑

g=1

βg×mutg ,mutg =

{

0 = wild
1 = mutated

.

Figure 1.   The study flowchart. (a) The genes in the eleven gene sets were screened by utilizing the data from 
whole exome sequencing in the DFCI cohort. (b) A total of 299 genes were identified for the mutation signature 
evaluation. Then sixty-one genes without mutations were excluded, resulting in 238 candidate genes. (c) Using 
Lasso regression, a total of 94 genes related to long-term survival were identified. (d) For validation, another 
cohort (TCGA) was utilized, and thirty genes were mapped. (e) Finally, the prognostic mutational signature 
(PMS) was constructed for further investigation.
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TMB, and survival status between Cases and Controls from the TCGA validation cohort did not show a signifi-
cant difference.

Somatic mutation profiles
The somatic mutation of the derivation cohort (n = 120) was first investigated. The most common somatic muta-
tions were BCL2, TP53, and CREBBP (Supplementary Table S1). Among the patients with the ABC subtype, 
the most frequent mutations are in MYD88, CD79B, and TP53. In the GCB group, the most frequent mutations 
included BCL2, TP53, and CREBBP. Besides, BCL2, CREBBP, and TP53 are the most mutated genes in the 
unclassified group (Supplementary Table S1).

Next, to investigate survival-related somatic mutations, the genes in the 11 gene sets were first selected, and 
then the selected genes without any mutation variants in this study cohort were excluded. After the initial evalu-
ation, the candidate genes were selected for further analysis, including DLBCL common (9 genes), proliferation 
(75 genes), stroma/EMT/TGF-β (34 genes), RAS (2 genes), MYC (8 genes), WNT (9 genes), hypoxia (4 genes), 
glycolysis (8 genes), angiogenesis (3 genes), gMDSC (15 genes), and mMDSC (80 genes).

Significant prognostic mutational signature
The results of the Lasso Cox regression analysis are shown in Fig. 2. The optimal gene combination for prog-
nostic risk prediction was selected based on the log lambda (λ) validation obtained from the Lasso Cox model 
(Fig. 2a,b). We demonstrated that the estimated C-index from 94 genes combination exhibited optimal prediction 
performance (Fig. 2b). Figure 2c summarizes the mutation rate of 94 selected genes for PMS estimation in both 
relapse-free (blue bar) and relapse (red bar) patients, employing stacked bar plots. In the DFCI derivation cohort, 
BCL2, TP53, CREBBP2, MYD88, and CD79B were the five most common mutated genes (Fig. 2c). The β-value 
(standardized regression coefficients) of each gene in the optimal gene combination was presented in Fig. 2d, 
and the details were summarized in Supplementary Table S4. There were 51 genes related to an elevated risk of 
progression, whereas 43 genes showed a lower risk of progression (Fig. 2d). The somatic mutation profiles of 
the 94 PMS genes in both DFCI derivation and TCGA validation cohorts were also illustrated using oncoprints 
(Fig. 3). The common mutated genes in DFCI and TCGA cohorts include BCL2 (DFCI: 24%, TCGA: 11%), 
TP53 (DFCI: 22%, TCGA: 16%), CREBBP2 (DFCI: 21%, TCGA: 21%), MYD88 (DFCI: 18%, TCGA: 11%), and 
CD79B (DFCI:16%, TCGA:5%).

Predictive performance of the prognostic model
The results of the time-dependent ROC analysis for the prognostic prediction of PMS, TMB, and IPI at 12-, 
36-, and 60-months PFS are shown in Fig. 4a. Notably, the time-dependent AUC values of PMS (AUCs: 0.982 
to 0.987) increased over time, while the time-dependent AUC values of TMB (AUCs: 0.677 to 0.501) and IPI 
(AUCs: 0.740 to 0.674) decreased slightly. Moreover, PMS also obtained better predictive ability for both short-
term and long-term PFS prediction compared to TMB and IPI. Based on AUC evaluation, the optimal cutoff 
points of PMS, TMB, and IPI were 0.33, 2.23, and 3, respectively. The survival analysis revealed that the high 
PMS subgroups were associated with a significantly worse PFS (p < 0.001) as shown in Fig. 4b. Notably, these 
findings were consistently found in the validation cohort (Fig. 4c, p = 0.034). The 60-month PFS rate of the high 
PMS subgroup in the DFCI derivation cohort (18.7%, 95% CI 10.4–33.8) and TCGA validation cohort (53.3%, 
95% CI 21.4–100) were significantly worse compared to low PMS subgroups (DFCI: 95.8%, 95% CI 91.2–100; 
TCGA 82.6%, 95% CI 66.3–100). The progression-free Controls group had significantly lower PMS than the 
Cases group regardless of molecular subtypes (Supplementary Fig. S1a). Moreover, high PMS subgroups were 
also related to a significantly poorer PFS regardless of the molecular subtypes (Supplementary Fig. S1b–d). 
Specifically, the 60-month PFS rate of high PMS subgroups had a worse PFS compared to low PMS subgroups 
in ABC (high PMS vs low PMS: 22.2%vs 92.6%), GCB (high PMS vs low PMS: 16.7% vs 100%), and unclassified 
subtype (high PMS vs low PMS: 16.7%, vs 96.0%) in DFCI derivation cohort. These results indicate the potential 
for the proposed PMS to predict long-term prognosis across different subtypes.

Furthermore, the association between PFS and PMS, TMB, and IPI in DFCI derivation and TCGA validation 
cohorts was illustrated in Fig. 5 using the forest plot. The findings suggested that high PMS could be linked to a 
higher risk of progression in the DFCI derivation cohort (HR = 1.02, 95% CI 1.02–1.03). Similar findings were 
also found in the TCGA validation cohort (HR = 1.01, 95% CI 0.98–1.02), although not statistically significant. 
However, when TMB and IPI were added to the evaluation, the risk prediction of PMS in both cohorts was 
enhanced. Specifically, when TMB was involved as the covariate, PMS could obtain more significant results in 
PFS in both DFCI derivation (HR = 2.72, 95% CI 1.99–3.71) and TCGA validation (HR = 1.01, 95% CI 1.00–1.03) 
cohorts. Concordant findings were also observed for the addition of IPI in DFCI derivation (HR = 2.72, 95% CI 
1.99–3.72) cohorts.

To further explore the functional role of PMS-involved genes, we first annotated the 94 selected PMS genes to 
the drug-gene interaction database (DGIdb). The drug-gene interaction was visualized using a chord diagram as 
shown in Supplementary Fig. S2. Doxorubicin was more likely associated with TP53, followed by BCL2, BRCA1, 
EZH2, and FCGR3A. Cyclophosphamide was more likely associated with TP53, followed by BRCA1, ITGAL, and 
ITGB2. In addition, prednisolone was found related to FCGR3A and ITGB1. Based on these findings, the agents 
in the CHOP regimen showed interaction with genes related to DNA damage, TP53, apoptosis, and immune cell 
functions. Further pathway analysis showed the most relevant pathways of these 94 genes were associated with 
DNA damage, cell cycle, inflammation, and immune cell functions (Supplementary Table S5).
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Figure 2.   Lasso Cox regression analysis results. (a) Coefficients profiles of 238 candidate functional genes. (b) 
C-index profiles of estimated gene combinations. (c) The mutation rate of 94 selected genes according to relapse 
status, the blue bar indicates mutated relapse-free patients, and the red bar indicates mutated relapsed patients. 
(d) Estimated coefficients of 94 selected genes for PMS estimation (See details information in Table S4).
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Discussion
DLBCL is characterized by heterogeneous genetic events and complicated interactions between lymphoma cells 
and tumor microenvironment. Through a combined approach utilizing next-generation sequencing and clinical 
data, we uncovered the somatic mutation profile of DLBCL with clinical significance. The most notable finding 
of the present study was the identification of PMS for the prediction of long-term survival. Importantly, some 
molecular pathways related to the constructed PMS may play an important role in the cellular functions of cancer 
cells including the cell cycle, DNA damage, inflammation, and immune function, were identified from the PMS.

The application of polygenic risk estimation in cancer patients has increased in popularity recently, which 
was driven by notable advancements in polygenic risk analysis. This approach enables the comprehensive assess-
ment of the collective impact of multiple genetic variants associated with a specific condition30,31. When it comes 
to cancer, PMS can provide valuable insights into a patient’s genetic susceptibility to disease development and 
progression32. According to the AUC evaluation, this study demonstrated that the constructed PMS involving 
94 somatic mutation genes may exhibit better prediction capability than the conventional IPI score, a predic-
tive model incorporating clinical parameters established around 30 years ago33. One possible explanation could 
be attributed to the complex genetic or epigenetic abnormalities in tumorigenesis, which can be meticulously 
analyzed through contemporary high-throughput sequencing technology and bioinformatics studies. Besides, 
previous studies suggested the accumulation of somatic mutations was related to the development of diseases, 
including cancer34–36. Hence, this analytical approach may hold the potential to provide comprehensive and 
invaluable prognostic information. For example, a study investigating NGS data for mutational status and its 
clinical relevance in patients with acute myeloid leukemia revealed a higher number of somatic mutations were 
associated with a worse outcome37. Another study utilizing NGS data to explore somatic mutation also identi-
fied certain gene mutations closely linked to overall survival in patients with anaplastic thyroid carcinoma38. 
Importantly, this study revealed the combination of genetic and clinical data can further augment the predictive 

Figure 3.   Oncoprint of 94 PMS genes in DFCI derivation cohort and TCGA validation cohort.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6161  | https://doi.org/10.1038/s41598-024-56583-4

www.nature.com/scientificreports/

capacity for long-term survival. Based on the above statement, with the advance of genetic and bioinformatic 
analysis, more prognostic prediction models would be developed and investigated in clinical studies39–41.

In the present study, we also explored the drug-gene interaction between the CHOP regimen and 94 genes 
in constructed PMS, the results revealed some genes like TP53, BCL2, BRCA1, EZH2, FCGR3A, ITGAL, and 
ITGB1 had significant interaction with therapeutic agents, which was concordant with the previous studies. For 
example, the existence of TP53 mutation was found to be negatively related to survival in patients with DLBCL 

Figure 4.   The predictive performance of PMS. (a) Time-dependent ROC curve using the PMS (blue), TMB 
(grey), and IPI (black) to predict 12-month, (B) 36-month, and (C) 60-month PFS. Kaplan‒Meier plot of low-
and high-PMS in (b) DFCI derivation cohort and (c) TCGA validation cohort.
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who received R-CHOP treatment42. Another study indicated the expression of DNA damage response pathway 
and BCL-2 was linked to poorer outcome24,43. Moreover, the genetic and functional profile of immune cells also 
showed significant potential for outcome prediction24,44. Collectively, the constructed PMS would contain com-
prehensive parameters related to tumorigenesis and may provide more prognostic information.

The present study still had some limitations. First, the gene numbers in certain candidate gene sets were lim-
ited, causing potentially meaningful genes and PMS to be missed, which may have been due to a low incidence 
of mutation in these excluded genes. Second, the validation cohort had a comparably limited patient number 
and lacked consistent demographic data. In addition, approximately 30% of patients belonged to the unclassified 
molecular group, which might affect the result of survival analysis. Despite these issues, the identified PMS still 
showed satisfactory prediction performance in PFS.

Based on the above, the combination of polygenic risk estimation and clinical parameters would provide 
prognostic information for long-term survival in cancer patients. Regarding the perspectives, several new analytic 
models are also developed and investigated for mechanistic exploration and potential therapeutic therapeutic 
target identification. For example, a study utilizing ordinary differential equations-based modeling revealed the 
proteins in dynamic assembling/de-assembling of TNF signaling complexes and determination of cell death 
outcome45. Another study developed a novel mathematical model to investigate the establishment of molecular 
compositions within mRNA-driven protein droplets. The findings revealed that in a mixed system of two mRNAs 
sharing a common binding protein, the droplets preferentially assemble separately rather than colocalize, with 
competition occurring between them for protein recruitment46. Furthermore, the advances in computational 
biology like machine learning models can help us gain more insight into the complex crosstalk between genetic 
markers and related diseases47–51, as well as the development of genetic risk models52,53. Recently, the explora-
tion of the interaction between long non-coding RNA and microRNA also provided valuable information49,54. 
Collectively, the substantial output of data produced by high-throughput sequencing represents an important 
breakthrough in biological research. Utilizing sophisticated bioinformatics investigative tools, the results can 
unveil novel mechanisms and guide subsequent functional studies.

In summary, the major contribution of this study was that we combined gene expression signatures with NGS 
data to identify novel molecular prognostic markers. We first identified frequent somatic mutations and then 
constructed the PMS, which may serve as predictors for long-term survival in DLBCL patients. The exploration 
of the relevant signaling pathways and genetic alterations may provide new information for further investigation 
to gain more insight into disease mechanisms.

Data availability
The data presented in this study are available downloaded from cBioPortal. 1. DFCI derivation cohort: https://​
cbiop​ortal-​datah​ub.​s3.​amazo​naws.​com/​dlbcl_​dfci_​2018.​tar.​gz. 2. Validation cohort: https://​cbiop​ortal-​datah​ub.​
s3.​amazo​naws.​com/​dlbc_​tcga_​pan_​can_​atlas_​2018.​tar.​gz.
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