
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5953  | https://doi.org/10.1038/s41598-024-56502-7

www.nature.com/scientificreports

Data‑driven autonomous operation 
of VOCs removal system
Myeonginn Kang 1, Jongmin Han 1, Yangjoon Kim 1,2, Seongcheon Kim 1,2 & Seokho Kang 1*

Removal of volatile organic compounds (VOCs) from the air has been an important issue in many 
industrial fields. Traditionally, the operation of VOCs removal systems has relied on fixed operating 
conditions determined by domain experts based on their expertise and intuition. In practice, this 
manual operation cannot respond immediately to changes in the system environment. To facilitate 
the autonomous operation of the system, the operating conditions should be optimized properly in 
real time to adapt to the changes in the system environment. Recently, optimization frameworks 
have been widely applied to real‑world industrial systems across various domains using different 
approaches. The primary motivation for this study is the effective implementation of an optimization 
framework targeting a VOCs removal system. In this paper, we present a data‑driven autonomous 
operation method for optimizing the operating conditions of a VOCs removal system to enhance the 
overall performance. An optimization problem is formulated with the decision variables denoting 
the parameters associated with the operating condition, the environmental variables representing 
the measurements for the system environment, the constraints specifying the control ranges of the 
parameters, and the objective function representing the system performance as determined by the 
operating conditions and environment. Using the previous operation data from the system, a neural 
network is trained to model the system performance as a function of the decision and environmental 
variables to approximate the objective function. For the current state of the system environment, the 
optimal operating condition is derived by solving the optimization problem. A case study of a targeted 
VOCs removal system demonstrates that the proposed method effectively optimizes the operating 
conditions for improved system performance without intervention from domain experts.

Volatile organic compounds (VOCs) are a group of chemicals that easily evaporate into the air at room tempera-
ture and pressure. They are the major air pollutants in many industrial fields, such as furniture manufacturing, 
vehicle manufacturing, printing, and equipment  coating1. VOCs participate in atmospheric photochemical oxida-
tion, which is harmful to the  environment2. Owing to the well-known hazards associated with  VOCs3 the effective 
treatment of VOCs in the air has been an important industrial issue with ongoing technological  challenges4.

To control the emission of VOCs, a VOCs removal system uses chemical techniques, which can be mainly 
categorized into recovery and destruction  approaches5–7. The recovery approach changes the temperature and 
pressure to separate VOCs using techniques such as  absorption8,  adsorption9,10, membrane  separation11, and 
 condensation12. The destruction approach decomposes VOCs into carbon dioxide, water, and non-toxic or less 
toxic compounds using techniques such as  thermal13,  biological14,15, and catalytic  oxidation16–19.

Traditionally, VOCs removal systems have been manually operated using fixed operating conditions deter-
mined by domain experts, as shown in Fig. 1a. This manual operation requires an in-depth understanding of 
the mechanism of the system, which may be difficult because of the complex relationship between the operating 
conditions, system environment, and system performance. Thus, the system performance depends significantly 
on the expertise and intuition of domain experts. Moreover, in practice, the system environment changes gradu-
ally over time. Thus, the operating conditions should be dynamically adjusted to adapt to the changes, which is 
difficult to perform manually.

In many industrial fields, extensive research efforts have been directed to introduce optimization frameworks 
for automating system operations. The aim is to automatically optimize the operating conditions to improve the 
system performance. An optimization problem is formulated by defining the decision variables to be optimized, 
identifying the constraints imposed on the decision variables, defining the environmental variables representing 
the system environment, and designing the objective function to be minimized. The general formulation can be 
mathematically described as follows:
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The decision variables x are set as the parameters associated with the operating conditions of the system. The 
environmental variables z are externally measured or determined from the system environment. The constraints 
gi(x) ≤ 0 and hj(x) = 0 indicate the control ranges of the parameters. The objective function J reflects the objec-
tives of the system operation, which relies on the decision and environmental variables. The optimal operating 
condition is derived by solving the optimization problem to find the values of the decision variables that minimize 
the objective function while satisfying the constraints.

Optimization frameworks have been widely applied in the design and operation of real-world systems in vari-
ous domains, including recovery  processes20,21, machining  processes22, photovoltaic  systems23, HVAC  systems24,25, 
material  designs26,27, and circuit  designs28–30. These studies formulated their optimization problems in different 
ways to optimize the operating conditions of the target system. They can be categorized based on how the objec-
tive function is designed and how the optimization problem is solved. Regarding the design of the objective func-
tion, three approaches have mainly been presented to approximate the outcome of the operation of a real system:

• Hand-crafted function: The objective function is manually designed as a linear or quadratic function based on 
the knowledge and intuition of domain  experts31,32. This approach is applicable if the target system exhibits a 
simple and well-understood mechanism. However, hand-crafting the objective function is difficult in practice 
if the target system is complex and the domain experts lack sufficient knowledge.

• Simulation: This approach uses a simulation model that imitates the operation of the target 
 system20,21,23,24,26,28–30,33. The objective function is evaluated by virtually running the target system through 
simulation. Despite its effectiveness, simulation models may not be available for use in many real-world 
systems. In addition, this approach is generally computationally expensive and time-consuming compared 
with other approaches.

• Machine learning: A data-driven prediction model is built by learning from the previous operational data col-
lected from the target  system22,25,27. Various learning algorithms are readily usable, such as linear regression, 
random forests, support vector machines, and neural networks. The effectiveness of this approach depends 
significantly on the quantity and quality of the data.

Depends on the type of the objective function, four approaches have been mainly used to solve the optimization 
problems:

• Linear/quadratic programming: They are traditional approaches for solving specific types of optimization 
problems, wherein a linear or quadratic objective function is minimized subject to linear constraints on the 
decision  variables31,32.

• Meta-heuristics: This approach uses stochastic components to efficiently explore the search space to find near-
optimal solutions for optimization problems that are difficult to solve using traditional  approaches20–25,33. 
Representative algorithms include particle swarm optimization, simulated annealing, and evolutionary and 
genetic algorithms. They make relatively few assumptions regarding the optimization problem and are appli-
cable to any type of objective function.

• Bayesian optimization: This approach attempts to efficiently optimize an expensive-to-evaluate objective 
function using a small number of function  evaluations26,29,30. A surrogate model is fit to previous function 
evaluations. The stochastic predictions by the surrogate model are used to decide where to evaluate next in 
updating the surrogate model. No assumptions are made about the objective function.

• Gradient-based optimization: This approach iteratively searches for the directions defined by the gradient 
of the objective function to solve the  problem27. This approach is applicable when the objective function is 

(1)

minimize
x

J(x, z)

subject to gi(x) ≤ 0, i = 1, . . . ,m;

hj(x) = 0, j = 1, . . . , n.

Figure 1.  Approaches to operating VOCs removal system.
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differentiable with respect to the decision variables. Examples include gradient descent and quasi-Newton 
methods.

This study aims to implement a data-driven autonomous operation method for a VOCs removal system, as 
schematically illustrated in Fig. 1b. The VOCs removal system targeted in this study, CV-Master, is developed 
by Shinsung E&G and employs adsorption and catalytic oxidation techniques for the VOCs removal process. 
We formulate an optimization problem by identifying the decision, environmental, and dependent variables of 
the system, the constraints for the decision variables, and the objective function that reflects the objectives of the 
system operation. The main challenge lies in mathematically expressing how the system is intended to operate 
as a function of the decision and environmental variables. Due to the complexity and incomplete understanding 
of the target system, a hand-crafted objective function may not precisely reflect the actual objective. Addition-
ally, there is no available simulation model that emulates the target system. To address this difficulty, we adopt a 
machine learning approach, which has proven effective in optimizing operating conditions for complex systems. 
With expressing the dependent variables y , the objective function J̃ can be designed in a simpler form. The pre-
diction model f predicts the dependent variables y as a function of the decision and environmental variables, i.e., 
ŷ = f (x, z) . The predicted dependent variables ŷ are then used to approximately express the objective function 
J̃ . The modified formulation can be described as follows:

For the prediction model f, a neural network is trained by learning the working mechanism of the system from the 
previous operational data collected from the system. The neural network is used to approximately represent the 
objective function J̃ in a differentiable form. Given the state of the system environment, the operating condition 
is optimized by solving the optimization problem to improve the system performance. Because the approximate 
objective function is differentiable, the optimization problem is solved using a gradient-based optimization 
algorithm. We investigate the effectiveness of the proposed method in optimizing the actual operation of the 
target system.

Method
VOCs removal system
Figure 2 illustrates the target VOCs removal system developed by Shinsung E&G, named CV-Master. It uses a 
large circular ceramic rotor consisting of four zones: adsorption, preheating, regeneration, and cooling zones. 
The rotor is continuously rotated to alternately perform adsorption and regeneration to remove VOCs from the 
air. The external air with a high VOCs concentration first passes through the adsorption zone of the rotor. In 
the adsorption zone, the VOCs in the air are adsorbed on the rotor. The air with reduced VOCs concentration 
is emitted outside the system. The preheating zone increases the air temperature. In the regeneration zone, the 
VOCs are desorbed from the rotor at high temperatures and are subsequently decomposed into water and carbon 
dioxide via a catalytic oxidation reaction. The heat generated during the reaction is used in the preheating and 
regeneration zones to save energy. The cooling zone reduces the air temperature to facilitate the adsorption of 
the VOCs in the adsorption zone.

The decision, environmental, and dependent variables used in the optimization problem are listed in Table 1. 
Domain experts at Shinsung E&G have specified the variables associated with the CV-Master’s operation and 
monitoring. The decision variables (rotor speed and react fan speed) correspond to the parameters that determine 
the operating conditions of the system. The values of the decision variables can be adjusted within their respective 
control ranges to operate the system more efficiently. The environmental variables (inlet VOCs concentration, 
external temp, and external humidity) are external factors that affect the system performance. If the values of 
the environmental variables change, the operating conditions must be optimized to adapt to these changes. The 
dependent variables (energy consumption, VOCs reduction rate, exhaust VOCs concentration, preheat temp, and 
inlet-outlet temp difference) are observed as the outcomes of the system operation, depending on the decision and 
environmental variables. The performance of the system is monitored by measuring the values of the depend-
ent variables. We denote the vectors of the decision, environmental, and dependent variables by x = [x1, x2] , 
z = [z1, z2, z3] , and y = [y1, y2, y3, y4, y5] , respectively.

The operational goal of the target system is to achieve a VOCs reduction rate of over 95% with lower energy 
consumption while satisfying the required constraints.

Optimization problem
For the current state of the decision variables x0 = [x01 , x

0
2] and environmental variables z0 = [z01 , z

0
2 , z

0
3 ] , the goal 

is to optimize the values of decision variables, x1 and x2 , to achieve the objectives while satisfying the required 
constraints for the operation of the target system, as listed in Table 1.

The objective function J̃ is designed to reflect the multiple objectives of the system operation in the form of 
a function of x , z , and y as follows:

(2)

minimize
x

J̃(x, z, ŷ)

subject to ŷ = f (x, z);

gi(x) ≤ 0, i = 1, . . . ,m;

hj(x) = 0, j = 1, . . . , n.
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Figure 2.  Schematic illustration for VOCs removal process of the target system.

Table 1.  Description of variables in the target system.

Type Variable Name Description Control range/objective Unit

Decision variable
x1 Rotor speed Rotational speed of the rotor [2, 4.4] RPH

x2 React fan speed Rotational speed of the reactivation fan [30, 55] Hz

Environmental variable

z1 Inlet VOCs concentration VOCs concentration in the inlet air – ppm

z2 External temp Temperature of the external air – ◦C

z3 External humidity Relative humidity of the external air – %

Dependent variable

y1 Energy consumption Electronic energy consumed by the 
system operation Minimize kW

y2 VOCs reduction rate Reduction rate of VOCs concentration 
from the inlet to outlet air ≥95 %

y3 Exhaust VOCs concentration VOCs concentration in the exhaust ≤5 ppm

y4 Preheat temp Temperature when transitioning from 
preheating to regeneration zone ≤220 ◦C

y5 Inlet-outlet temp difference Temperature difference between the 
outlet and inlet air ≤4 ◦C
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where α and β are the weight hyperparameters for controlling the relative strengths of the individual objectives. 
The first term is for minimizing the energy consumption of the system. The second-to-fifth terms penalize fail-
ure to meet the target ranges of the corresponding dependent variables. The last two terms correspond to the 
minimization of the difference between the initial and optimized values of the decision variables, which helps 
prevent drastic changes in the operating conditions for the stability of system operation.

As the dependent variables cannot be instantly observed, they have to be predicted during the evaluation of 
the objective function for optimization. The prediction model f is used to predict the dependent variables as a 
function of the decision and environmental variables. Using the prediction model f, the predicted dependent 
variables ŷ are obtained as follows:

The decision variables are constrained to satisfy the corresponding control ranges. The control ranges assigned 
to x1 and x2 are [2, 4.4] and [30, 55], respectively.

After the specification of the objective function J̃ and a set of constraints, the optimization problem is math-
ematically formulated as follows:

Given x0 and z0 , the optimal values of the decision variables, denoted by x∗ , are found by solving the optimiza-
tion problem. We adopt a gradient-based optimization approach. The solution x∗ is interpreted as the optimized 
operating condition of the system. It is important to note that the quality of the solution depends significantly 
on the predictive performance of the prediction model f.

Figure 3 schematically shows the data-driven autonomous operation framework for the target system. The 
following subsections describe how to build the prediction model f and solve the optimization problem.

Neural network approximation of objective function
Owing to the difficulty of observing the actual dependent variables y directly during the optimization, the 
objective function J̃ is approximately evaluated using the predicted dependent variables ŷ instead of the actual 
dependent variables y . We adopt a machine learning approach to build the prediction model f for predicting 
the dependent variables y as a function of the decision variables x and environmental variables z . This approach 
involves training the prediction model f using the previous operational data collected from the target system, 
represented as D = {(xt , zt , yt)}

T
t=1 , where xt , zt , and yt denote the observed values of variables for the t-th 

data instance. The trained model can then be used to predict the unknown value of the dependent variables 
y∗ for a query instance (x∗, z∗) , thereby enabling the estimation of the system performance under the new 

(3)

J̃(x, z, y) = y1

+ α2 ·max(0, 95− y2)
2

+ α3 ·max(0, y3 − 5)2

+ α4 ·max(0, y4 − 220)2

+ α5 ·max(0, y5 − 4)2

+ β1 · (x1 − x01)
2 + β2 · (x2 − x02)

2,

(4)ŷ = [ŷ1, ŷ2, ŷ3, ŷ4, ŷ5] = f (x, z).

(5)

minimize
x

J̃(x, z0, ŷ)

subject to ŷ = f (x, z0);

2 ≤ x1 ≤ 4.4;

30 ≤ x2 ≤ 55.

Optimization

Figure 3.  Schematic illustration of data-driven autonomous operation framework for the target system.
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operating conditions and environment. Using the prediction model f, the objective function J̃ can be approxi-
mately expressed as a function of x and z . The prediction model f must be sufficiently accurate to emulate the 
actual working mechanism of the system.

In this study, the prediction model f is built as a multi-output neural network that predicts all five dependent 
variables. Neural networks have demonstrated remarkable performance in various  applications34 based on their 
ability to represent and learn the complex non-linear relationships between inputs and outputs without strong 
 restrictions35. In addition, neural networks can be efficiently updated without forgetting its existing knowledge 
when new data becomes  available36.

To model the empirical relationship between the decision, environmental, and dependent variables observed 
in the target system, the prediction model f learns the working mechanism of the system from a training dataset 
D = {(xt , zt , yt)}

T
t=1 , which comprises the previous operational records collected by the system. The model f is 

trained by minimizing the squared error loss L(ŷ, y) = �ŷ − y�2 on the training dataset D.

Optimization algorithm
Since a neural network is a differentiable function, the objective function J̃ , which is approximated with the 
predicted dependent variables ŷ , is differentiable with respect to the decision variables x . To efficiently solve the 
optimization problem in Eq. (5), we adopt a gradient-based optimization approach, known to be particularly 
useful when an objective function is expressed through a machine learning  approach37.

We employ the limited-memory Broyden–Fletcher–Goldfarb–Shanno with bound constraints (L-BFGS-B) 
 algorithm38, one of quasi-Newton methods, to perform optimization. L-BFGS-B is an extension of L-BFGS39 
to handle simple bound constraints on the decision variables. This algorithm typically converges faster than 
other gradient-based optimization algorithms. In addition, it is memory-efficient and does not require careful 
configuration tuning.

The current state of the decision variables x0 is used as the starting point for the optimization. Given z = z0 , 
the optimization proceeds by iteratively updating the values of the decision variables x to find the local minimum 
of the objective function J̃ subject to the specified constraints. The solution x∗ corresponds to the values of the 
decision variables leading to the local minimum.

Results and discussion
Data description
We investigated the effectiveness of the proposed method by evaluating it in optimizing the operation of CV-
Master, the VOCs removal system developed by a manufacturer. A dataset comprising 169 operational records 
under various operating conditions was collected from the target system. Each record contained the values of 
the decision, environmental, and dependent variables observed during data collection. Table 2 presents the 
descriptive statistics of the variables in the dataset.

The variables were measured at different scales and thus had different ranges of values. To place all variables 
on the same scale, each variable was standardized to have zero mean and unit variance in the dataset.

Performance evaluation of prediction models
For the prediction model f, we evaluated the predictive performance of neural networks with a hidden layer 
having 2, 3, 5, 10, and 20 hidden units, denoted by NN(2), NN(3), NN(5), NN(10), and NN(20), respectively. 
The tanh activation function was applied to the hidden units. We used the L-BFGS algorithm to train each 
neural network, during which L2 regularization was applied to the parameters. For reference, we also compared 
random forest (RF), ridge regression (Ridge), and k-nearest neighbors (k-NN) as baseline models. All models 
were implemented using the scikit-learn package, with the unspecified configurations set to the default 
in the package.

The predictive performance was evaluated using a ten-fold cross-validation procedure. In this procedure, the 
original dataset was split into ten folds. Each fold was then used once as a test set to measure the performance, 
with the remaining folds combined into a training set to train a prediction model. As the performance measures, 

Table 2.  Descriptive statistics of variables in the dataset.

Type Variable Mean Std. Dev. Min Max

Decision variable
x1 3.00 0.62 1.10 4.40

x2 40.24 5.57 26.00 50.00

Environmental variable

z1 15.23 6.52 1.45 26.11

z2 21.78 2.51 16.76 28.48

z3 29.34 9.42 15.06 44.83

Dependent variable

y1 24.64 1.54 21.48 30.74

y2 95.78 1.97 90.79 99.17

y3 3.38 3.16 0.07 17.35

y4 202.79 14.10 160.67 230.67

y5 3.40 0.45 2.69 5.46
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we used root mean square error (RMSE) and coefficient of determination ( R2 ). Lower RMSE and higher R2 values 
indicate better predictive performance.

Table 3 presents the performance evaluation results of the compared models for the five dependent variables 
in terms of RMSE and R2 . The best RMSE and R2 values for each dependent variable are represented in bold. 
NN(10) consistently yielded high validation performance for all dependent variables. Accordingly, we selected 
NN(10) to predict the dependent variables. Figure 4 presents scatter plots comparing the actual values to the 
predicted values using NN(10) for the dependent variables, visually demonstrating that the predicted values 
closely align with the actual values for each dependent variable.

Table 3.  Comparison of the predictive performance of various prediction models (average ± standard 
deviation). Significant values are in [bold].

Dependent 
variable Measure NN(2) NN(3) NN(5) NN(10) NN(20) RF Ridge k-NN

y1
RMSE 0.8570 ± 0.2210 0.4361 ± 0.1524 0.3883 ± 0.1153 0.2836 ± 0.0934 0.2922 ± 0.0726 0.8111 ± 0.2361 0.7408 ± 0.1913 0.8340 ± 0.2342

R2 0.5654 ± 0.3348 0.8962 ± 0.0565 0.9185 ± 0.0402 0.9500 ± 0.0355 0.9484 ± 0.0310 0.6687 ± 0.0904 0.6552 ± 0.2972 0.6323 ± 0.1351

y2
RMSE 0.9581 ± 0.4406 0.9723 ± 0.4541 0.7302 ± 0.2493 0.4041 ± 0.1262 0.5490 ± 0.2599 0.5845 ± 0.1663 1.0670 ± 0.4693 0.7801 ± 0.2718

R2 0.7054 ± 0.2712 0.6943 ± 0.2890 0.8390 ± 0.1073 0.9504 ± 0.0331 0.9003 ± 0.0981 0.8991 ± 0.0578 0.6435 ± 0.3112 0.8214 ± 0.1173

y3
RMSE 2.1621 ± 0.3605 0.9441 ± 0.2762 0.9043 ± 0.2632 0.6692 ± 0.2289 0.6489 ± 0.1988 1.8212 ± 0.6296 2.0846 ± 0.3685 2.2223 ± 0.6765

R2 0.4015 ± 0.3388 0.8786 ± 0.0687 0.8935 ± 0.0533 0.9325 ± 0.0515 0.9349 ± 0.0469 0.6138 ± 0.1897 0.4642 ± 0.2349 0.4430 ± 0.1812

y4
RMSE 4.6375 ± 0.8277 4.3605 ± 0.8444 3.0487 ± 0.5676 2.1277 ± 0.5801 2.0025 ± 0.6022 4.1454 ± 1.2023 3.8531 ± 0.9148 4.8970 ± 0.9297

R2 0.8798 ± 0.0451 0.8935 ± 0.0464 0.9473 ± 0.0256 0.9744 ± 0.0129 0.9755 ± 0.0192 0.8942 ± 0.0862 0.9180 ± 0.0326 0.8639 ± 0.0619

y5
RMSE 0.2897 ± 0.1139 0.2592 ± 0.1346 0.2729 ± 0.1131 0.2132 ± 0.0973 0.2403 ± 0.1231 0.2723 ± 0.0707 0.2780 ± 0.1095 0.2711 ± 0.1098

R2 0.3566 ± 0.6091 0.4985 ± 0.4599 0.4364 ± 0.5122 0.5910 ± 0.3770 0.4786 ± 0.5405 0.3436 ± 0.7390 0.4221 ± 0.4930 0.3952 ± 0.6394

Figure 4.  Relationship between actual and predicted values according to NN(10) for each dependent variable.
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Optimization results and experimental verification
For the prediction model f in the optimization problem, we used an ensemble of ten NN(10) models built dur-
ing the cross-validation procedure. The ensemble typically yields more accurate and robust predictions than 
individual models by reducing the risk of  overfitting40. The weight hyperparameters in the objective function 
J̃ were set based on the relative importance of individual objectives after discussion with domain experts. The 
hyperparameters α2 , α3 , α4 and α5 were all set to 10. The hyperparameters β1 and β2 were set to 0.001. To solve 
the optimization problem, the L-BFGS-B algorithm was implemented using the scipy package.

We optimized the operating conditions of the target system for seven example cases, each corresponding to 
a different initial state of the environmental variables z0 (i.e., the system environment), as listed in Table 4. For 
each case, the initial state of the decision variables x0 (i.e., the initial operating condition) was equally set to 
[3.0, 40.0] according to the manual operating condition used by domain experts. After the solution x∗ (i.e., the 
optimized operating condition) was derived by solving the optimization problem for each case, we experimentally 
verified the system performance provided by the optimized operating conditions. Running the system under the 
optimized operating conditions, the actual values of the dependent variables y (i.e., system performance) were 
acquired to determine whether the objectives of the system operation were satisfied.

Table 4 lists the optimization and experimental verification results for the seven cases. For each case, we 
present the values of the decision variables, predicted dependent variables, and actual dependent variables 
in the initial and optimized states. The values of the dependent variables are shown in bold if their respective 
objectives were satisfied. Although the initial states of the decision variables were the same, the optimized states 
of the decision variables differed depending on the states of the environmental variables. The experimental 
verification results successfully demonstrated the effectiveness of the proposed method in improving the system 
performance. The optimized states always led to lower energy consumption ( y1 ) and higher VOCs reduction rate 
( y2 ). Compared with the initial operating conditions, energy consumption ( y1 ) was reduced by 8.1% on average 
and the objectives for the other dependent variables ( y2, . . . , y5 ) were all satisfied.

Conclusion
We presented the data-driven autonomous operation method based on optimization and machine learning for 
CV-Master, a VOCs removal system developed by Shinsung E&G. We formulated an optimization problem by 
defining the decision, environmental, and dependent variables, identifying the constraints imposed on the deci-
sion variables, and designing the objective function representing the objectives of the system operation. Using 
past operational data of the system, a neural network was built to approximate the decision variables, thereby 
approximately representing the objective function as a function of the decision and environmental variables only. 
Given the current state of the system environment, the optimization problem was solved using the L-BFGS-B 
algorithm to derive the optimal values of the decision variables corresponding to the optimized operating condi-
tions of the system. The experiments successfully demonstrated that the proposed method improved the operat-
ing conditions for the target system under various environmental states. Compared with the manual operating 
conditions used by domain experts, the operating conditions automatically derived by the proposed method 
reduced the energy consumption by 8.1% on average without violating any system constraints.

In practice, domain experts find it challenging to understand the relationship between the inputs and outputs 
of a complicated system. To circumvent this difficulty, the proposed method empirically learns the relationship 
from past operational data of the system in the form of a prediction model and uses the model to approximately 
express the objective function of the optimization problem. Consequently, the system can be operated in a data-
driven manner without requiring an in-depth understanding of the mechanism of the system. In situations where 

Table 4.  Optimization and experimental verification results for the operation of the target system. Significant 
values are in [bold].

Case ID
Environmental variables 
( z) State Decision variables ( x)

Predicted dependent 
variables ( ̂y)

Actual dependent 
variables ( y)

1 [3.2, 25.0, 43.0]
Initial [3.0, 40.0] [25.7, 97.7,−1.1, 183.7, 3.2] [26.5, 97.8, 0.1, 182.3, 3.2]

Optimized [2.0, 32.0] [24.0, 98.3,−0.8, 182.2, 3.0] [24.3, 98.0, 0.1, 178.0, 3.0]

2 [7.2, 25.0, 43.0]
Initial [3.0, 40.0] [25.4, 97.9,−0.7, 187.4, 3.2] [25.9, 98.5, 0.1, 187.7, 3.2]

Optimized [2.0, 32.0] [23.7, 98.2,−0.2, 187.8, 3.0] [23.8, 98.8, 0.1, 183.1, 3.0]

3 [10.8, 25.0, 43.0]
Initial [3.0, 40.0] [25.1, 97.0,−0.1, 191.4, 3.2] [25.6, 97.2, 0.3, 192.7, 3.3]

Optimized [2.0, 32.0] [23.4, 97.4, 0.6, 194.0, 3.0] [23.5, 98.4, 0.5, 189.7, 3.1]

4 [14.1, 25.0, 43.0]
Initial [3.0, 40.0] [24.9, 95.9, 0.7, 196.2, 3.2] [25.5, 96.3, 0.7, 197.2, 3.3]

Optimized [2.1, 33.0] [23.2, 96.3, 1.3, 200.4, 2.9] [23.0, 97.4, 1.0, 197.7, 3.1]

5 [17.1, 25.0, 43.0]
Initial [3.0, 40.0] [24.4, 95.0, 1.0, 201.6, 3.3] [24.9, 95.8, 1.2, 201.4, 3.3]

Optimized [2.2, 35.0] [23.0, 95.4, 1.9, 206.3, 3.0] [22.8, 97.9, 1.6, 199.5, 3.1]

6 [19.2, 25.0, 43.0]
Initial [3.0, 40.0] [24.1, 94.3, 1.3, 205.7, 3.3] [24.6, 94.6, 1.4, 206.4, 3.3]

Optimized [2.3, 36.0] [22.8, 94.8, 2.3, 210.1, 3.1] [22.5, 97.1, 2.3, 206.3, 3.1]

7 [21.1, 25.0, 43.0]
Initial [3.0, 40.0] [23.9, 93.5, 2.0, 210.7, 3.3] [24.3, 94.1, 2.0, 212.2, 3.4]

Optimized [2.5, 37.0] [22.9, 93.8, 2.5, 214.9, 3.1] [23.1, 95.9, 1.7, 207.6, 3.5]
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the system environment changes over time, the proposed method allows the operating conditions of the system 
to be self-optimized without the need for manual intervention by domain experts, i.e., autonomous operation. 
Moreover, the scalability of the proposed method is not directly determined by the size and complexity of the 
target system, but rather depends on the number of decision variables, the types of objective function and con-
straints in the optimization problem, and the size and complexity of the neural network used as the prediction 
model. We believe that the proposed method can contribute to improving the autonomous operation of real-
world industrial systems of various sizes and complexities.

An important consideration for the practical application of the proposed method is that the reliability of the 
optimization results significantly depends on the predictive performance of the prediction model used in the 
objective function. The prediction model exhibits poor predictive performance when the quantity and quality of 
training data is insufficient. The performance of the prediction model may also be degraded if the relationships 
between the variables in the target system change over time. We anticipate that this issue will be mitigated by 
using the predictive uncertainty of the prediction model as an indicator of the reliability of the proposed method. 
If the uncertainty at a certain moment is high, the operating conditions can be determined with the assistance 
of domain experts rather than relying solely on autonomous operation. Continuously updating the prediction 
model with new operational data will ensure better performance in the future.

Data availability
The dataset used in this study is available from the corresponding author on reasonable request.
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