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AI supported fetal 
echocardiography with quality 
assessment
Caroline A. Taksoee‑Vester 1,2,3*, Kamil Mikolaj 4, Zahra Bashir 1,3,5, Anders N. Christensen 4, 
Olav B. Petersen 1,2, Karin Sundberg 2, Aasa Feragen 4, Morten B. S. Svendsen 3, 
Mads Nielsen 6 & Martin G. Tolsgaard 1,2,3

This study aimed to develop a deep learning model to assess the quality of fetal echocardiography 
and to perform prospective clinical validation. The model was trained on data from the 18–22‑week 
anomaly scan conducted in seven hospitals from 2008 to 2018. Prospective validation involved 100 
patients from two hospitals. A total of 5363 images from 2551 pregnancies were used for training and 
validation. The model’s segmentation accuracy depended on image quality measured by a quality 
score (QS). It achieved an overall average accuracy of 0.91 (SD 0.09) across the test set, with images 
having above‑average QS scoring 0.97 (SD 0.03). During prospective validation of 192 images, 
clinicians rated 44.8% (SD 9.8) of images as equal in quality, 18.69% (SD 5.7) favoring auto‑captured 
images and 36.51% (SD 9.0) preferring manually captured ones. Images with above average QS 
showed better agreement on segmentations (p < 0.001) and QS (p < 0.001) with fetal medicine experts. 
Auto‑capture saved additional planes beyond protocol requirements, resulting in more comprehensive 
echocardiographies. Low QS had adverse effect on both model performance and clinician’s agreement 
with model feedback. The findings highlight the importance of developing and evaluating AI models 
based on ‘noisy’ real‑life data rather than pursuing the highest accuracy possible with retrospective 
academic‑grade data.

Abbreviations
AA  Aortic arch in sagittal plane
AI  Artificial intelligence
CHD  Congenital heart disease
CNN  Convolutional neural network
DFMF  Danish Fetal Medicine Foundation
DL  Deep learning
FN  False negative
FP  False positive
4CV  Four chamber view
LVOT  Left ventricular outflow tract
QS  Quality score
RVOT  Right ventricular outflow tract
3VV  Three vessel view
3VT  Three vessel trachea view
TN  True negative
TP  True positive
VSV  Ventricular septum view
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Congenital heart disease (CHD) is a prevalent cause of infant mortality and  morbidity1 occurring in 1.5 per 1000 
liveborn children in  Denmark2. Early detection through prenatal ultrasound, specifically fetal echocardiography, 
improves perinatal outcomes, and reduces  mortality3,4.

The detection rate of fetal heart anomalies varies widely and is dependent on multiple factors, including the 
clinician’s experience level and  competence5–7, fetal position, and the body mass index (BMI) of the mother, 
which all affect image  quality8.

In recent years, computer technology has advanced significantly, and the application of artificial intelligence 
(AI) presents an opportunity to enhance diagnostic procedures by overcoming some of the inherent limitations 
of human performance. AI has many benefits, including accuracy, objectivity, and  consistency9. AI can prevent 
incomplete examinations and speed up the time-consuming process of taking cardiac measurements, not typically 
done in routine screening  exams9. Within many fields of medical imaging, AI is already being used to improve 
visual  diagnosis10,11.

AI has shown promise in standard plane detection and segmentation of the fetal heart along with detect-
ing CHDs in fetal medicine using techniques like object detection or  segmentation12–26. Previous research has 
emphasized the significance of image quality in ultrasound assessment and developed deep learning models 
for automatic quality  assessment27–29. However, there is a notable gap in the literature concerning the lack of 
multitasking AI  systems9,30 and the integration of image quality scores into AI segmentation models of the fetal 
 heart11. This is particularly noteworthy considering the crucial role image quality plays in CHD detection, directly 
affecting the detection  rates9.

Finally, there is need for prospective testing and validation of AI models in this field to ensure future clinical 
implementation and  use9,31. Most existing studies have been published on retrospective academic-grade data 
(subjected to data cleaning and selection), whereas few studies have attempted to identify how AI models perform 
in real life clinical settings and challenges, evaluated  prospectively32.

Our aim was to address these gaps by developing an AI model based on screening images for the classification, 
segmentation, and quality assessment of eight standard planes and key anatomical features in fetal echocardi-
ography and test the model prospectively.

Results
Patient and image characteristics
For development and internal validation of our AI model 5363 images from a total of 2551 pregnancies were 
retrieved retrospectively. See Fig. 1 for a flowchart.

A total of 100 full-length ultrasound examinations were recorded for prospective validation. The background 
characteristics are presented in Table 1. All data was retrieved at gestational age 18–22 weeks.

Model performance
The average accuracy of anatomical structures for each standard plane is illustrated in Table 2. For individual 
accuracies please refer to Appendix 2. For minimum required anatomical features on each standard plane, we 
found an overall average accuracy of 0.91 (SD 0.09) for the entire screening test set, and a higher average accuracy 
of 0.97 (SD 0.03) for the test set with a QS above average, where all relevant anatomical features scored above 0.9 
in accuracy. See Appendix 2 for performance scores of the entire tests.

Prospective validation
During the prospective validation, ratings of 192 image comparisons, 24 per standard plane, were carried out 
by 10–17 raters per plane consisting of a combination of 40.2% fetal medicine experts and 59.8% sonographers. 
The average preference scores over all eight planes between the auto-capture and manual capture images were 
44.8% votes (SD 9.8) for equal quality, 18.69% votes (SD 5.7) for auto-capture images and 36.51% votes (SD 9.0) 
for manual capture images  (X2 (2, N = 2571 votes) = 262.84, p < 0.001).

The clinical rating panel had a moderate agreement with a multirater kappa value ranging from 0.33 to 0.55 
(mean 0.42, SD 0.07). See Appendix 3 for preference results, chi-square results and multirater kappa results per 
plane basis. In 102 cases the auto-capture or the manual capture image was preferred over the other and for 
these cases we found an overall QS below average (mean 3.4, SD 2.6). The choice of preference was partly due 
to a significantly higher QS (favoring auto-capture: U = 953.5, p < 0.001, favoring manual capture: U = 14,976, 
p < 0.001) and correct standard plane for the chosen image type, (favoring auto-capture:  X2 (1, N = 120) = 15.2), 
p < 0.001, favoring manual capture:  X2 (1, N = 288) = 36.1, p < 0.001). Secondly, we found that the preference 
for auto-capture images consisted of a higher degree of sufficient gain  (X2 (1, N = 120) = 14.35), p < 0.001) and 
magnification  (X2 (1, N = 120) = 7.2, p = 0.007), whereas for the manual capture images it was only the central 
positioning of the manual capture image  (X2 (1, N = 288) = 8.09, p = 0.004) which had significant importance.

The expert evaluation of the model’s segmentations and QS assignment on the prospective data showed, in 
alignment with the model’s performance, a higher agreement with increasing QS (segmentation agreement:  X2 
(1, N = 185) = 34.42, p < 0.001, QS agreement:  X2 (1, N = 185) = 16.55, p < 0.001).

Finally, the auto-capture resulted in more complete scans, as the AI saved non-mandatory standard planes; 
a standard plane of the aortic arch was saved in 31% of the prospective scans with auto-capture, where the 
sonographer did not save the image.

Discussion
In this study, we developed an AI model capable of identifying eight standard planes and 28 different anatomical 
features in fetal echocardiography and assessing image quality. The internal validation of the model demonstrated 
high accuracy, which increased with image QS above average. However, during the prospective validation, 
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the AI model’s performance was partly inferior to that of experienced clinicians in selecting the best standard 
planes. Central positioning of relevant anatomical structures was a contributing factor when manual capture 
was preferred. The auto-captured images were challenged by the fact that these were not meant to be saved by 
the clinician, and therefore not optimized prior to saving, providing a simple explanation for the lack of central 
positioning. On the other hand, the preferred auto-capture images had more adequate gain and magnification, 
which can be explained by the model’s training to save images with the highest QS during the scan. We observed 
that when auto-capture and manual capture were not deemed equivalent, the general image quality was low. 
The prospective validation suggests that clinicians exhibited better performance in situations with lower image 
quality. Even though the model demonstrated high accuracy during internal validation, further requirements 

Figure 1.  Flowchart summarizing the datasets used in development and validation of the model. Note: 
Unlabeled images—only image level label (which standard plane it is).

Table 1.  Background characteristics for retrospective and prospective data. N images under retrospective data 
refer to both the annotated material and the non-heart planes used to train the model. 4.6 M images under 
prospective data refer to total number of video frames used for prospective validation. BMI body mass index, 
GA gestational age.

Retrospective data Prospective data

Patients (N) 2551 100

Images (N) 5363 100 videos (4,688,309 images/video frames)

GA mean (SD) 20.2 weeks (4 days) 20.5 weeks (3.8 days)

Age mean (SD) 31.6 years (4.8) 32.9 years (4.7)

BMI mean (SD) 22.7 (4.1) 24.1 (4.8)
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were revealed by end-user’s feedback and from the interaction during the prospective clinical validation. While 
the ultimate goal is to achieve expert-level performance in the demanding setting of live prenatal scans, it may be 
unrealistic to expect the model to readily attain this level of proficiency, given the differences between the live-
scan environment and the training environment. This highlights the importance of prospective clinical valida-
tion and of evaluating future AI models based on a broad range of data reflecting real-world variance in quality.

The objective of prenatal ultrasound screening for fetal malformations is to distinguish between normal and 
abnormal anatomy. The assistance of AI systems during fetal ultrasound examinations have shown to reduce 
the scan time, and feedback from sonographers indicate that it enables them to focus on the interpretation of 
relevant images rather than the acquisition and measurement  process33. Moreover, the use of AI in fetal echo-
cardiography has other benefits, such as making the examination more standardized and performing automatic 
cardiac  measurements9. Currently, such measurements are not typically used during screening scans due to the 
lack of time or expertise. As such, the implementation of automatic cardiac measures based on AI segmentations 
during screening may improve the detection rate of major  CHDs9.

While previous research has demonstrated encouraging outcomes in the classification of normal and abnor-
mal  hearts12–14,16, image quality is a critical factor in the diagnosis of CHDs using both human and AI-based 
methods. Prior research has emphasized the importance of evaluating image quality to ensure that the AI systems 
can be relied upon for the downstream target task, such as detecting  abnormalities29. This is supported by the 
results in this study, as both the internal and prospective validation showed that the AI segmentation perfor-
mances were highly dependent on image quality. However, high-quality images may not always be feasible in 
real-world scenarios during screening scans that involve varying ultrasound equipment and maternal BMI. It is 
crucial to evaluate and handle image quality issues when creating AI models intended to aid in the diagnostic 
process. This is emphasized as it is known that CHDs are often missed due to incomplete scans, poor image 
 quality8, inadequate standard planes or in some cases the anomaly is visualized but the image is misinterpreted 
by the  clinician34 Our study highlights the importance of considering quality when evaluating AI performance, 
including low-quality real-life data rather than academic-grade high-quality data, and prospective clinical valida-
tion to promote transparency in AI systems, build trust, and improve usefulness for clinical end-users.

One limitation to the study is that the AI model is developed and tested solely on a Danish population. 
However, previous studies have established that AI models based on the same dataset generalize well to other 
European populations and even to low-resource contexts using small levels of transfer  learning35,36. Another 
limitation of the study, often an inevitable bias when working with supervised AI models, is the fact that the 
segmentations and image QS are based on human manual  effort29. We alleviated this limitation by building in 
multiple rounds of discussion and duplicate review during data annotation, and the model segmentation and 
QS outputs were validated in several prospective settings with different experts.

Additionally, there is a need for a future implementation study of the AI model in which it provides feedback 
to the clinician on scan completeness and QS, to determine if it improves the overall scan quality and increases 
the detection rate of fetal heart anomalies by supporting the workflow, quality assessment, and performing 
automatic measurements. In the context of clinical implementation, fine tuning may be necessary if new clinical 
guidelines are introduced in clinical practice. Also, advancements in ultrasound technology, especially those 
significantly altering image appearance (like frequency compounding or coded excitation in challenging patient 
scenarios), may impact the model’s performance.

In conclusion, we have developed a deep learning model trained and validated on screening images from an 
unselected population that can identify simple and advanced fetal echocardiographic planes. The use of deep 
learning techniques allows for automated image acquisition and evaluation, which can provide feedback on 
image quality and the completeness of fetal echocardiography. We discovered that the performance of the model 
is affected by image quality, and prospective clinical validation is crucial to understand the model’s usefulness, 
strengths, and limitations for future clinical practice. At the same time, our findings question existing practices 
when developing and evaluating AI models based on academic-grade retrospective data as this may lead to 
overinflated ideas of model performances and misguide our understanding of when AI models are useful in 
real-life clinical settings.

Table 2.  Accuracy. Mean and SD of minimum required anatomical features’ accuracy pr. plane basis. 3VT 3 
vessel-trachea view, 3VV 3 vessel view, 4CV 4 chamber view, LVOT left ventricular outflow tract, RVOT right 
ventricular outflow tract, QS quality score, VSV ventricular septum view.

Standard plane No. of annotated images

Average accuracy Average accuracy

Mean (SD) entire test set Mean (SD) test set QS ≥ 6

Situs 300 0.98 (0.04) 1.0 (0.0)

4CV 500 0.95 (0.03) 0.98 (0.03)

3VV 483 0.95 (0.03) 0.97 (0.03)

3VT 308 0.74 (0.13) 0.92 (0.03)

RVOT 441 0.86 (0.07) 0.94 (0.02)

LVOT 222 0.91 (0.02) 0.97 (0.03)

Arch 250 0.97 (0.04) 0.98 (0.02)

VSV 233 0.95 (0.04) 0.99 (0.02)
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Methods
Study design and data sources
The study was conducted as a multicenter retrospective study evaluated on prospective data. The study is reported 
according to the Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation 
(PRIME)  guidelines37. The Danish Health Authorities provided permission for the extraction of ultrasound and 
outcome data from a large national database of over 600.000 pregnancies for this project. This study has been 
approved by The Danish Data Protection Agency (Datatilsynet, 12-08-2019, Carl Jacobsens vej 35, 2500 Valby) 
(protocol no P-2019-310) and The Danish Patient Safety Authority (Styrelsen for Patientsikkerhed, 30-04-2019, 
Islands Brygge 67, 2300 KBH S) (protocol no 3-3031-2915/1) waiving the need for informed consent.

The collection of prospective data was approved by the Danish Data Protection Agency (protocol no P-2021-
570). We developed a deep learning (DL) AI model for fetal echocardiography at 18–22-weeks of pregnancy 
with the future purpose of assisting the clinician with feedback of image quality, completeness of examination, 
automatic cardiac measurements, and auto-capture to improve the workflow. The retrospective data consisted 
of image data from routine fetal echocardiographies performed during the 18–22-week anomaly scan in four 
Danish regions from 2008 to 2018 comprising a total of more than 25 million ultrasound images from more than 
600.000 pregnancies. The training data consisted of 2737 annotated images from 2551 patients. The data was 
sorted to ensure that images from a single subject were not duplicated and e.g. only included in one of the train-
ing, validation and testing groups. For prospective testing 100 planned routine 18–22-week scans were recorded 
at Rigshospitalet and Slagelse hospital with informed consent from the involved pregnant women in the fall of 
2022. All images from the routine 18–22-week scan were eligible for inclusion regardless of the maternal medical 
history and the potential finding of fetal anomalies for both the prospective and retrospective part of the study. 
The fetal ultrasound examinations were conducted using General Electrics logiq 7, E6, E8 or E10 machines.

Ground truth
Two-dimensional ultrasound images from the retrospective dataset of the 18–22-week pregnancy scan were 
used to train and validate the model. The annotation included 28 different key anatomical features within eight 
standard planes of the fetal echocardiography scans, defined by existing international practice  guidelines38. 
The standard planes in our model were: the four chamber view (4CV), the ventricular septum view (VSV), the 
right ventricular outflow tract (RVOT), the left ventricular outflow tract (LVOT), the three-vessel view (3VV), 
the three-vessel trachea view (3VT), the aortic arch in sagittal plane (AA) and the abdominal situs (Situs). 
See Fig. 2 for AI annotation and segmentation examples for all planes. The segmentation of relevant anatomi-
cal structures serves as a foundation for conducting cardiac biometric measurements and offers transparent 
explanations to inexperienced clinicians when they have achieved a standard plane or must identify the absent 
structures required for attainment. Furthermore, an image quality score (QS) was integrated in the model. The 
QS is a numeric value ranging from 1 to 10 based on the visualization of the structure—10 for perfectly outlined 
structure and 1 if the outline of the structure was not seen, 5 if the structure was visualized with a degree of 
shadow or blurriness. Please see Appendix 1 for a thorough description of the QS. The manual annotation was 
performed in LabelMe©39 (version 5.01) by a trainee in obstetrics and Ph.D. fellow in fetal medicine (CAT), in 
close collaboration with a fetal medicine expert (MGT) at routine quality meetings evaluating any uncertainties.

Annotations continued until the AI model performed satisfactorily across all image classes. This was reviewed 
in an iterative fashion by annotating 100 images at a time until the model achieved a 90% accuracy in identifying 
relevant anatomical features on each standard plane for images with an above-average QS. We chose to have a 
QS cutoff to evaluate the meaning of the QS both at the internal validation and the prospective validation. See 
Appendix 1 for a thorough description of the model architecture (depicted in Fig. 3), training and standard 
plane classification.

Upon testing the model on videos containing many non-heart images, it became apparent that the model 
trained solely on heart images struggled to distinguish correctly between heart images for segmentation and 
non-heart images, which should not be segmented. This resulted in false-positive segmentations. To address this 
limitation, an additional 2626 non-heart images were included in the training dataset. These images had been 
previously annotated as part of another unpublished study and included only image-level labels that denoted 
the standard plane on which the image was acquired. The purpose of including these images was to ensure that 
the segmentation model outputted empty segmentation masks for non-heart images, effectively reducing the 
false positives.

Prospective validation
In the second stage of the study the AI model was evaluated in a non-randomized prospective validation study. 
The aim was to explore how the model works with live ultrasound scans moving from one plane to the other. 
We collected data and images from 100 18–22-weeks scans.

The AI model automatically collected the standard planes and selected the best images, in terms of appropriate 
visible anatomy and visualization of the structures—highest image QS. Then images selected by the AI model 
(auto-capture) were compared to the saved images by the clinician (manual-capture) during the same exami-
nation. Standard plane images of 3VV, RVOT and VSV with only a color Doppler image saved were removed 
since the AI model were not trained on color Doppler images and flow visualization impairs evaluation of the 
anatomy beneath it. Afterwards an expert panel of sonographers and fetal medicine experts evaluated 24 ran-
domly selected images from each standard plane and each participant noted if they preferred the auto-capture 
image or manual capture image, or if the quality of the two images were equal. The expert panel was blinded to 
the origin of the images.
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Subsequently two sonographers with more than 5 years of experience went through the images from the rating 
where the auto-capture image or manual capture image was chosen over the other. They noted if the choice was 
made due to #1 lack of correct standard plane, defined as missing one or multiple required anatomical features 
of an standard plane, or #2 poor image optimization in terms of magnification, gain, and centralization of the 
relevant anatomical features.

To assess the quality of the model’s segmentations and assigned QSs on the prospective data, two fetal medi-
cine consultants evaluated 12 randomly selected images of varying quality from each of the eight standard planes. 
They evaluated agreement with the segmentations and the assigned QS.

Finally, we evaluated how often the AI saved a useful standard plane from the videos which the sonographer 
had not saved and documented.

Statistics
The model output was evaluated by a Dice score regarding prediction of correct anatomy without focusing on the 
precise outline. This score ranges from 0 to 1 and quantifies the pixel-wise degree of similarity between the model 
predicted segmentation mask and the ground truth. Whether or not the anatomy was correctly predicted it is 
treated as a classification task, where True Positive (TP) refers to a Dice score ranging from 0.5 to 1 Dice between 
prediction and annotation, True Negative (TN) when annotated and segmented areas are both 0. This only hap-
pens if there is no expert annotation and model prediction. Furthermore, in this case the False Negative (FN) 
is defined as Dice below 0.5, and False Positive (FP) as a non-zero predicted area without corresponding expert 
annotation. The following formula is used to compute the model accuracy: (TP + TN)/(TP + TN + FN + FP).

Figure 2.  Examples of model annotation per plane. 4CV 4 chamber view, 3VT 3 vessel trachea view, 3VV 3 
vessel view, LVOT left ventricular outflow tract, RVOT ventricular outflow tract, VSV ventricular septum view.
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From the plenum session the frequencies of votes for either AI, clinician, or equal quality were calculated, 
and a chi-square test was performed to evaluate independence between the three groups. The overall inter-rater 
agreement was calculated with the Fleiss multirater Kappa.

In the sonographer validation the mean and SD for the QS of all images were calculated, and within each 
group (favoring auto-capture vs. favoring manual-capture) the mean QS were compared with a Mann–Whitney 
U test, due to non-normal distribution of data. Each parameter; standard plane, gain, magnification, and central 
position were scored adequate/not adequate by the sonographers, and chi-squared tests were performed for each 
parameter within each group to test for independence.

The model was developed and evaluated in Python 3.9.12 using PyTorch 1.10 deep learning library and the 
statistics for the prospective validation was performed in IBM SPSS statistics 28.0.0.0 (190).

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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