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Determinants and their spatial 
heterogeneity of carbon emissions 
in resource‑based cities, China
Chenchen Guo 1,2,3 & Jianhui Yu 1,2,3*

Global climate change associated with increased carbon emissions has become a global concern. 
Resource‑based cities, by estimations, have emerged as major contributors to carbon emissions, 
accounting for approximately one‑third of the national total. This underscores their pivotal role in 
the pursuit of carbon neutrality goals. Despite this, resource‑based cities have long been neglected 
in current climate change mitigation policy discussions. Accordingly, using exploratory spatial data 
analysis and Geographical Weighted Regression method, this study investigates the determinants of 
carbon emissions and their spatial pattern in 113 resource‑based cities in China. It can be concluded 
that: (1) The proportion of carbon emissions from resource‑based cities in the national total has shown 
a marginal increase between 2003 and 2017, and the emissions from these cities have not yet reached 
their peak. (2) A relatively stable spatial pattern of “northeast high, southwest low” characterizes 
carbon emissions in resource‑based cities, displaying significant spatial autocorrelation. (3) Population 
size, economic development level, carbon abatement technology, and the proportion of resource‑
based industries all contribute to the increase in carbon emissions in these cities, with carbon 
abatement technology playing a predominant role. (4) There is a spatial variation in the strength of 
the effects of the various influences.

Keywords Carbon emissions, Spatial heterogeneity, Driving factors, Geographically weighted regression 
model, Resource-based city

Climate change, stemming from heightened carbon emissions, presents substantial implications for economic 
growth and social development, making it a global  concern1. China’s energy consumption has generally exhibited 
a high-rise trend due to the steady progress of urbanization and industrialization, which has provoked consid-
erable international  attention2,3. As stated by the International Energy Agency, surpassing the United States in 
2007, China has become the top emitter in the world, responsible for about one-third of the world’s total carbon 
emissions. Faced with escalating international pressure for carbon emissions reduction, China is confronted 
with significant challenges to reduce its carbon footprint. In response to this, China has pledged to peaking its 
carbon emissions by 2030 and reaching carbon neutrality by 2060.

Resource-based cities (RBCs) are cities whose primary economic activity is the extraction and processing 
of local natural  resources4,5. Endowed with abundant natural resources, these cities have long played the role 
of resource and energy supply base for the region and even the  country6–8. However, according to the "Carbon 
Curse" theory, fossil fuel endowment is highly related to high carbon  emissions9. Under comparable conditions, 
carbon-intensive development is more likely to occur in regions with abundant fossil fuel resources. Estimations 
indicate that RBCs have become the region with the largest carbon  emissions10, emitting around one-third of the 
total national carbon emissions. In this context, the low-carbon transformation of RBCs is of critical significance 
in terms of achieving the “30/60” dual carbon goal. Despite their crucial role, current discussions on climate 
change policies have consistently overlooked resource-rich  regions9. While a great deal of attention has been paid 
to the differences between established and emerging economies, the differences between resource-rich regions 
and resource-poor regions have been neglected. Further, the distinctive social and economic circumstances of 
resource-rich regions, such as RBCs, pose challenges for the effective implementation of carbon reduction poli-
cies designed for more conventional regions. Therefore, resource-rich regions, such as RBCs, require special 
attention. Studying the factors that affect carbon emissions in RBCs can help better understand resource-rich 
regions and the barriers they must overcome in carbon reduction work. By taking these steps, we will be able 
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to direct the climate debate in a more constructive direction and better appreciate the challenges inherent in 
global carbon reduction.

Population, economy, technology, and industry all contribute to urban carbon emissions. In the 1990s, 
 Engelman11 observed a parallel growth rate between global population and carbon emissions, sparking the 
hypothesis that population growth is a key factor driving the increase in global carbon emissions. Since then, 
increasing numbers of scholars have examined the relationship between population and carbon  emissions12,13, 
finding that the expansion of population size results in an increase in carbon emissions by expanding produc-
tion and consumption  activities14. The discourse on the relationship between economic development and envi-
ronmental protection has persisted for years. Because economic entities around the world rely heavily on fossil 
fuels to promote economic growth and meet the increasing demand for population  growth15, economic growth 
has become one of the contributing factors to the rise in carbon  emissions16,17. However, the relationship will 
revert once economic development arrives at a certain level, due to advancements in technology and industrial 
 structure18,19. Technological innovation is considered paramount in reducing carbon  emissions20–22. The inno-
vation of related new energy, materials and processes can effectively reduce the carbon emissions of the energy 
industry in the production  process23–26. However, the impact of technology on carbon emissions has both a direct 
and scale  effect27. The enhancement of energy utilization efficiency enables innovative technologies to negatively 
influence carbon  emissions28. This is referred to as the “direct effect”. Meanwhile, technological innovation can 
also promote the growth of economic scale and output level, increasing energy consumption and finally caus-
ing the rise of carbon  emissions29, which is the “scale effect”. Industrial development stands as another factor 
influencing carbon  emissions30. Multiple studies have explored the significance of various industrial sectors, 
such as the transport  sector31, the garment  sector32, and the building sector 33, on carbon emissions. Although 
several studies have explored the impact of mining on carbon emissions, most have focused on the influence of 
coal obtained from mining as an energy source rather than the coal mining processes themselves. Furthermore, 
even less attention has been paid to the impact of the dependence of urban economic development on the min-
ing industry on urban carbon emissions.

Following the above analysis, we propose to address the following three questions: (1) What constitutes the 
spatial pattern of carbon emissions in RBCs, and does this pattern exhibit temporal variations? (2) In what man-
ner do population, economy, technology, and industry affect the carbon emissions of RBCs? (3) What spatial 
pattern characterizes the impacts of these factors, and does this pattern undergo alterations over time?

Based on these questions, this study aims to have the following four objectives and contributions: (1) This 
paper supplements the research gap in the existing study by including resource-rich regions in the field of car-
bon emissions for the first time. (2) Incorporating spatial heterogeneity and spatial dependence into the clas-
sical linear model, this study deeply explores how various factors affect Chinese RBCs’ carbon emissions, what 
spatial patterns their intensity exhibit and what are the reasons for formation. (3) By including the proportion 
of resource-based industries variables as potential drivers of carbon emissions, we examine the impact of the 
dependence of urban economic development on the mining industry on urban carbon emissions for the first time. 
Even though several studies have revealed that industrial structure can have a direct or indirect effect on carbon 
emissions, few studies have incorporated resource-based industries into their analyses. It is the first time that 
the dependence of urban economic development on resource-based industries is taken as an influencing factor.

The remaining part of this paper is organized as follows. Section “Literature review” is a literature review. 
The methodology and data are presented in Section “Methodology”. Section “Empirical analysis” provides a 
detailed analysis of the spatial and temporal patterns of carbon emissions from China’s RBCs as well as their 
influencing factors. Section “Conclusions” offers conclusions of the research and proposes possible extensions 
for future research.

Literature review
With the introduction of the carbon emission reduction target, carbon emissions have become a hot topic 
in research. Current studies cover various aspects, including the calculation of total  amount34,  footprint35, 
 intensity36,37, and carbon efficiency  performance38,39, as well as the investigation of factors affecting  them40,41 
and the spatial and temporal patterns of  change42,43.

Over the past several years, increasing attention has been drawn to the issue of carbon emissions and the 
influence they exert on the environment. This has led to a surge in research efforts aimed at understanding the 
spatial distribution of carbon emissions across different regions and countries. Overall, researchers have primarily 
focused on studying the spatial difference in carbon emissions by using administrative units such as countries, 
regions, provinces, cities, and counties. Studies at the country level have revealed that the Asia–Pacific Rim region 
exhibits dense carbon  emissions44. Furthermore, the difference between national groups has been identified as 
the main reason for the formation of the differences in the intensity of carbon emissions across  countries45. At 
the regional level, studies have demonstrated noteworthy spatial disparities in China’s carbon  emissions46,47. 
However, the source of these differences, whether they arise within or between the four major regions, remains 
 undefined48–50. Similar findings have been reported at the provincial  level51–53. China’s carbon emissions show 
a pattern of "lower in the south and east and higher in the north and west"52, with high-value regions located in 
the eastern and southern  provinces54. However, the difference in carbon emissions between provinces appears 
to be  decreasing51,52. This conclusion has also been confirmed in research at the municipal  scale37,41,42,55. As 
township-level data becomes crucial for understanding China’s economic growth, recent research priorities 
have shifted towards this level. Some studies have observed a substantial spatial polarization effect of per-capita 
carbon emissions at the township level, together with significant spatial autocorrelation and a spatial distribution 
characterized by "high in the north and low in the south"56. In mainstream academic research, various methods 
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are commonly used, including standard deviation ellipse, Theil indices, Gini coefficient, Atkinson index, vari-
ance, variance coefficient, convergence theory, and spatial autocorrelation model.

The factors affecting carbon emissions are diverse and complex. Researchers have engaged in the investiga-
tion of these factors using various methodologies, including the IPAT model, STIRPAT model, input–output 
analysis, structural decomposition analysis, LMDI factor decomposition analysis, and geographical detector.

At the national scale, Xv et al.57 examined factors influencing China’s carbon emissions using the LMDI 
method. Their research revealed that carbon emissions are negatively impacted by energy structure and energy 
efficiency while being positively influenced by economic growth. However, while improvements in energy effi-
ciency and energy structure can reduce carbon emissions, they cannot counterbalance the rise in carbon emis-
sions resulting from economic  development57. Sadorsky et al.58 discovered that urbanization can both positively 
and negatively impact carbon emissions, which often complement one another. Accordingly, urbanization barely 
affects carbon emissions on a statistical  basis58. Taking countries in the Association of Southeast Asian Nations 
(ASEAN) as examples, Chontanawat et al.59 utilized the extended IPAT model to decompose carbon emissions 
and discovered that population and economic growth are the key players in the surge of carbon emissions 
observed in these countries, while improvements in energy efficiency and reduced carbon intensity serve as a 
restraint on carbon emissions  growth59. Cheng et al.60 researched 35 OECD countries using a panel data quantile 
regression model. The results suggested that technological innovation can significantly mitigate the rise of carbon 
emissions associated with economic growth, confirming the Environmental Kuznets Curve (EKC)  hypothesis60.

At the provincial scale, Lantz et al.61 selected five Canadian regions as case sites. Through analyzing data from 
1970 to 2000, they confirmed an inverted U-shaped relationship between population size and carbon  emissions61. 
In a related study by Cheng et al.62, the spatiotemporal patterns of China’s energy consumption and carbon 
emissions intensity are found to be influenced by several factors, including energy intensity, energy structure, 
industrial structure, and urbanization rate. To examine how social and economic factors affect carbon emissions 
at the provincial level in China, Li et al.63 utilized the Geographically Weighted Regression (GWR) model in their 
research, finding that carbon emissions intensity, per capita GDP, and per capita total social investment are all 
contributors to per capita carbon emissions. A related study by Zhang et al.64 found that urbanization impacts 
carbon emissions either positively or negatively based on the region, which is further confirmed in the research 
conducted by Wang et al.65. The complexity of the relationship between urbanization and carbon emissions can 
be attributed to the fact that the type of energy used in industry and housing has a great effect on urbanization’s 
impact on carbon  emissions64,65.

At the municipal scale, a geographical detector was used by Wang et al.10 to examine the driving factors of 
carbon emissions in China and determined that energy intensity is the dominant factor that contributes to spatial 
heterogeneity in carbon emissions among RBCs and northern cities. The urban economic size of non-resource-
based cities and southern cities plays a substantial role in the spatial heterogeneity of carbon  emissions10. A study 
conducted by Wang et al.42 demonstrated that economic growth, population expansion, industrial structure, 
and capital investment all positively influence per capita carbon emissions in Chinese cities and that per capita 
carbon emissions are correlated with economic development in an inverted U-shape.

In recent years, academic research has gradually shifted its focus to the municipal scale. Wang et al.56 expanded 
the STIRPAT theoretical framework and introduced the EKC hypothesis into their research, using a panel quan-
tile regression model to explore how social and economic factors, such as population density, government public 
expenditure, and the size of the second industry output, influence per capita carbon emissions at the municipal 
scale. They confirmed that population density and government public expenditure have a suppressive effect on 
per capita carbon emissions, while the size of the second industry output has a promoting  effect56. Overall, carbon 
emissions are profoundly impacted by population size, the level of economic development, energy consumption, 
industrial structure, and urbanization level. However, these factors interact in a complicated manner, and their 
impacts on carbon emissions vary across scales, geographic regions, and time.

Generally speaking, researchers have contributed significantly to the field of carbon emissions, laying the 
groundwork for this article. However, existing studies generally focus on the investigation of geographic units at 
various scales, including national, regional, provincial, city, and town levels, but have not yet addressed special 
types of cities, such as resource-rich regions.

Methodology
Research area
Resource-based cities, which take natural resources mining and processing as leading industries, play a critical 
role in securing China’s strategic energy supply. As stated by the National Sustainable Development Plan for 
Resource-based Cities (2013–2020), China has 262 RBCs. These include 126 prefectures of the People’s Republic 
of China (prefecture-level cities, regions, autonomous prefectures, and unions), 62 county-level cities, 58 coun-
ties (autonomous counties, forest regions, etc.), and 16 municipal districts (development zones, management 
zones). Following the study purpose and data availability, 113 prefecture-level cities were chosen for the study (the 
remaining cities have severe data deficiencies). The following is an overview map of the research area (see Fig. 1).

Research methods
Exploratory spatial data analysis
Spatial data autocorrelation characteristics can be analyzed by exploratory spatial data analysis, which incorpo-
rates adjacent variables and associates specific variables with their location. In this study, we adopted Moran’s 
I index to examine the spatial autocorrelation of carbon emissions in China’s RBCs. Equation (1) shows the 
formula:
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where I denotes global Moran’s I ; xi and xj denote observed carbon emissions in city i and city j , respectively; 
wij represents the spatial weight matrix; n is defined as the number of samples. The range of Moran’s I value is -1 
to 1. If the value of Moran’s I exceeds 0, there is a positive spatial correlation. In this context, spatial clustering 
is more significant at higher values. When the value of Moran’s I is smaller than 0, there is a negative spatial 
autocorrelation, and a smaller value indicates a greater degree of spatial dispersion. Otherwise, the spatial cor-
relation effect does not exist when the value is 0.

However, the global Moran’s I index only takes into account the overall characteristics of clustering, ignoring 
the spatial relationships between neighboring regions on a local scale. Therefore, Moran’s I index and Moran 
scatter plot were used to reveal the spatial clustering characteristics of carbon emissions in local areas. The 
formula is shown in Eq. (2):

where  Ii denotes local Moran’s I ; xi and xj denote observed carbon emissions in city i and city j , respectively; wij 
represents the spatial weight matrix; n is the number of samples.

Geographically weighted regression (GWR) model
Given that the geographical coordinates of the data are integrated into the regression parameters of a GWR 
model, it is particularly suitable for analyzing spatial phenomena with spatial non-stationarity. A variation of the 
parameters of the model is facilitated when local geographical coordinates are changed, which allows the spatial 
relationship between observations of carbon dioxide emissions and the factors influencing them to be revealed. 
The GWR model can be shown in Eq. (3):

where  Ii denotes local Moran’s I ; xi and xj denote observed carbon emissions in city i and city j , respectively; wij 
represents the spatial weight matrix; n represents the number of samples.

Data resource
The prefecture-level carbon emissions data spanning from 1997 to 2017 were compiled by consolidating county-
level data extracted from the CEADs  database34, which calculates emissions based on the consumption principle. 
Data on the permanent population, per capita gross domestic product, the number of miners, and the number 
of workers in the first, second, and third industries were compiled from China’s Urban Statistical Yearbook. In 
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Figure 1.  Study area map (source: GS(2019)1822).
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addition, Statistical Bulletins on National Economic and Social Development from various cities were adopted 
to supplement the missing data. Further, to eliminate the effect of price factors, the normal per-capita GDP data 
were converted into constant prices in 2003 using the GDP deflator index.

Empirical analysis
An analysis of Chinese RBCs’ spatial and temporal characteristics of carbon emissions
Time evolution characteristics
From 2003 to 2017, the total carbon emissions from RBCs increased from 1223.49 ×  106t to 2889.81 ×  106t, with 
their proportion in total carbon emissions slightly rising from 32.66% to 33.87%. There has been a fluctuating 
upward trend in total carbon emissions of RBCs, with a total growth rate of 136.19% and an annual growth 
rate of 6.53%. Specifically, the growth rate of carbon emissions of RBCs showed a characteristic shift from high 
levels before 2011 to lower levels thereafter (see Fig. 2). From 2003 to 2011, RBCs’ carbon emissions increased 
rapidly, expanding at an average annual rate of 11.16 percent. However, since 2011, there has been a noticeable 
deceleration in carbon emissions, with an average growth rate of merely 0.34% annually. The year 2011 marked 
the introduction of the Twelfth Five-Year Plan on Energy Conservation and Emission Reduction was issued. This 
plan, aimed at reducing greenhouse gas emissions, established pilot projects for carbon emissions trading and 
implemented mechanisms for voluntary carbon reduction. These initiatives likely contributed to the significant 
slowdown in the rise of carbon emissions from RBCs since 2011.

In comparison with non-resource-based cities, RBCs experienced higher growth from 2003 to 2013, but a 
lower growth rate from 2014 to 2017 (see Fig. 3). This suggests that, after 2013, within the national framework 
for reducing carbon emissions, RBCs have exhibited a greater decrease in their carbon emissions and garnered 
superior carbon reduction outcomes than non-resource-based cities. In the Sustainable Development Plan for 
National Resource-Based Cities (2013–2020), the State Council classifies RBCs into four types based on their 
resource availability and sustainable development capabilities. According to the plan, each type of city has a spe-
cific development direction and important tasks, and various cities will be guided to explore unique development 
models that reflect their particular strengths. This marked the official launch of the transformation of RBCs in 
China. The transformation of economic development models in RBCs is a possible explanation for the greater 
reduction in their carbon emissions after 2013 compared to non-resource-based cities.

As illustrated in Fig. 2, RBCs’ carbon emissions entered a plateau in 2011 and peaked in 2014. To test whether 
RBCs have achieved “Peak Carbon Dioxide Emissions”, a Mann–Kendall trend test was utilized to estimate the 
tendency of carbon emissions over time. The results are presented in Table 1. The Z value is significantly greater 
than 0, whereas the P value is 3.23 ×  10–5. In light of this, we can conclude that the carbon emissions of RBCs in 
China have not yet peaked and that further increases are still possible.

RBCs in Central China were the largest emitters, comprising a substantial proportion of overall carbon emis-
sions from RBCs (see Fig. 4). Despite this, carbon emissions from these cities have decreased slightly in recent 
years, from 35% in 2003 to 32% in 2017. RBCs in Northeast China accounted for the lowest share of carbon 
emissions, and this share has decreased over time, from 19% in 2003 to 17% in 2017. This may be related to the 
decline in traditional industries in Northeast  China30. Moreover, RBCs in Eastern China produced relatively 
stable carbon emissions during the period 2003–2017. Nevertheless, the share of carbon emissions from RBCs in 
Western China increased from 21 to 26%. As a whole, RBCs in Central and Western China emitted significantly 
more carbon dioxide than RBCs in Eastern and Northeast China combined, with their contribution to total 
RBCs’ carbon emissions in China increasing over time.

Figure 2.  China RBCs’ carbon emissions and carbon emission ratio from 2003 to 2017.
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Over the period 2003 to 2017, mature RBCs accounted for the majority of carbon emissions, exceeding 50% 
(see Fig. 5). However, recently, the share of carbon emissions from mature RBCs has decreased, from 56% in 2003 
to 52% in 2017. The share of carbon emissions generated by growing RBCs was the lowest, but it has shown a 
gradually increasing trend in recent years and has surpassed declining RBCs in 2007 to become the third leading 

Figure 3.  Trends in the growth rate of average carbon emissions from China’s resource-based and non-
resource-based cities from 2003 to 2017.

Table 1.  Analysis results of Mann–Kendall trend test.

Area S V(S) Zmk P Trend

Resource-based cities 85.00 408.33 4.16 3.23 ×  10–5 Upward trend

Figure 4.  Carbon emissions from RBCs in the four economic regions of China between 2003 and 2017.
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source of carbon emissions among RBCs. The combined proportion of carbon emissions in regenerative RBCs 
and declining RBCs were relatively stable, ranging from 20 to 22% and 12% to 14%, respectively.

Spatial association characteristics
We utilized Theil indices to investigate the spatial disparities in carbon emissions across RBCs. Results demon-
strate (see Fig. 6) that the Theil indices of carbon emissions among RBCs were significantly below the national 
average and also below those of non-resource-based cities. However, contrary to the trend of non-resource-based 
cities, there has been a gradual increase in the differences in carbon emissions among RBCs from 2003 to 2017.

A spatial characteristic of "high emissions in the northeast and low emissions in the southwest" was observed 
in China’s RBCs, with the highest values concentrated in Inner Mongolia, Shaanxi, Shanxi, and the northeast 
region of the country (see Fig. 7). All RBCs have exhibited a rise in carbon emissions over time, with inner Mon-
golia, Shaanxi, Shanxi, and the three northeastern provinces displaying a particularly prominent trend. This is 
related to the increasing activities of extraction and processing of coal, oil, and gas in these resource-rich regions.

Using local Moran’s I index and Moran scatter plots, this paper tested for spatial correlation of carbon emis-
sions among RBCs to examine further clustering characteristics and trends (see Fig. 8).

Figure 5.  Trends of carbon emissions ratio in growing, mature, declining and regenerative RBCs from 2003 to 
2017.

Figure 6.  Inter-city differences of carbon emissions among resource-based and non-resource-based cities from 
2003 to 2017.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5894  | https://doi.org/10.1038/s41598-024-56434-2

www.nature.com/scientificreports/

During the sample period, a clear spatial autocorrelation existed among RBCs in China, as evident from the 
global Moran’s I index of carbon emissions from RBCs. This index exceeded zero between the years 2003 and 
2017, indicating high statistical significance. It should be noted that as time progressed, the global Moran’s I 
index decreased, from 0.409 in 2003 to 0.389 in 2017, which implies a slight reduction in spatial autocorrelation.

As the global Moran’s I index can only investigate the presence of spatial autocorrelation from a global per-
spective and ignores the potential instability of spatial processes, further examination of local autocorrelation 
is required. We adopted the LISA agglomeration figure and Moran scatter plot to analyze the local autocorrela-
tion characteristics of carbon emissions from RBCs (see Fig. 8). From 2003 to 2017, "low-low" and "high-high" 
clustering were the most common type of local spatial autocorrelation among RBCs in China. High-value cluster 
zones were found in the northern part of Shanxi Province, the central and southern parts of Shaanxi and Inner 
Mongolia Provinces, while low-value cluster zones were scattered in provinces such as Gansu, Sichuan, Jiangxi, 
and Anhui (see Fig. 8). According to the classification of RBCs based on resource  type66, it can be found that high-
value cluster zones are areas where RBCs with abundant fossil energy resources are concentrated, while low-value 
cluster zones tend to occur in areas adjacent to RBCs with abundant resources of ferrous and nonferrous metals. 
Therefore, the dominant resource type and the type of adjacent cities may have a close relationship with the city’s 
carbon emissions, which is one of the main reasons for the occurrence of high-value and low-value cluster zones.

During the period under review, the spatial autocorrelation of carbon emissions from RBCs did not change 
significantly. Overall, only the number of high-value cluster zones experienced significant changes. High-value 
cluster zones were concentrated in the vicinity of the three provinces of Shaanxi, Shanxi, and Inner Mongolia, 
and their number increased over time. This region is the largest energy production base in China. Since 2006, 
the State Energy Administration of China has approved the construction of multiple large coal production and 
development bases there. Consequently, coal production in Shaanxi, Shanxi, and Inner Mongolia increased by 
121.28% from 2006 to 2017, and total coal production contributed 71.38% of total national output in 2020. Coal 
production, power generation, and chemical fertilizer production have all increased total carbon emissions in 
RBCs located in these provinces, creating an expanding area of spatial autocorrelation that is "high-high".

Analysis of the contributors of carbon emissions in Chinese RBCs
Comparative analysis of fitting results
Based on existing research, this article examines the factors influencing carbon emissions in Chinese RBCs from 
four perspectives: population, economy, industry, and technology (see Table 2). One of the major contributors 

Figure 7.  Characteristics of the spatial and temporal distribution of carbon emissions in Chinese RBCs 
from 2003 to 2017: (a) Result in 2003; (b) Result in 2007; (c) Result in 2012; (d) Result in 2017 (source: 
GS(2019)1822).
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to the rise of carbon emissions is population growth. By increasing production and consumption, population 
growth contributes to carbon emissions. It was therefore decided to adopt the permanent population at the end 
of a year as a representative of the population  size14. Improvement in socio-economic development level can 
affect regional carbon emissions by promoting changes in production patterns, technical levels, and consumption 
concepts. To evaluate the influence of economic factors on carbon emissions, per capita GDP was employed. 
Industrial development is the main source of carbon emissions due to energy  consumption30. For RBCs, as 

Figure 8.  The LISA agglomeration figure and Moran scatter plot of total carbon emissions in Chinese RBCs 
from 2003 to 2017; (a) Result in 2003; (b) Result in 2010; (c) Result in 2017 (source: GS(2019)1822).



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5894  | https://doi.org/10.1038/s41598-024-56434-2

www.nature.com/scientificreports/

resource-based industries are the key support industry for urban development, they are the most outstanding 
characteristic of RBCs, compared to other cities. Therefore, the proportion of resource-based industries was used 
to represent the industrial factor. To determine the proportion of resource-based industries, the ratio of mining 
workers to the total number of workers in the first, second, and third industries was used. Further, enhancing 
energy efficiency can effectively reduce carbon  emissions67. Limited by data acquisition at the municipal level, this 
article referred to existing  research56,68,69 and selected carbon intensity as the characteristic indicator of carbon 
abatement technology. In the city with a smaller value, there is a higher level of carbon abatement technology.

As indicated by the spatial autocorrelation analysis discussed earlier, RBCs’ carbon emissions exhibit a distinct 
spatial clustering pattern, which indicates that the relationship between carbon emissions from RBCs and multi-
ple contributors does not satisfy the requirement for independence between regions outlined in Ordinary Least 
Squares (OLS). Furthermore, RBCs in China display significant differences in resource endowment, development 
stage, terrain conditions, and spatial positioning. The degree to which various factors affect carbon emissions 
may vary greatly among resource-based industries, development stages, and spatial locations in RBCs. Therefore, 
it is necessary to introduce spatial diversity and spatial dependence to modify the classical linear model. The 
expression can be obtained as follows:

where (CO2)i is the carbon emissions in city i ; xik is the independent variable xk in city i ; (µi , vi) denotes the 
location of city i  ; βk(µi , vi) represents the estimated parameter for independent variable xk at city i  ; εi is the 
random error.

Adaptive spatial kernel regression was used as the basis for this study. The AICc method was used to select 
a Gaussian model to calculate the optimal bandwidth of the GWR model. A comparison study was conducted 
on data from different years of RBCs to establish models. Lower AICc values and higher adjusted  R2 values 
indicate better performance and accuracy for a model. The results for 2003, 2007, 2012, and 2017 are presented 
in Table 3. As shown in Table 3, the AICc values and adjusted  R2 values of the OLS models and the GWR models 
are relatively high (see Table 3), indicating that various factors provide high explanation power for the carbon 
emissions of RBCs. Compared to OLS, the GWR model exhibits lower AICc values and higher adjusted R2 values, 
indicating superior fit quality and model performance, attributed to its consideration of spatial heterogeneity.

Analysis of the relationship between population size and carbon emissions
Significant spatial differences are evident in the effects of population size on carbon emissions in RBCs (see 
Fig. 9). The positive correlation between population size and carbon emissions, as depicted in Fig. 9, suggests 
that an increase in population size is associated with a rise in carbon emissions. During the study period, RBCs 
exhibited a pattern where the magnitude of the population size regression coefficient initially increased and then 
decreased, suggesting that the sensitivity of carbon emissions to changes in population size increased and then 
decreased over time. Concerning spatial distribution, population size regression coefficients showed a trend 
toward an increase in spatial distribution from south to north. Moreover, population size impact coefficients 

(4)(CO2)i =∝0 (µi , vi)+ β0(µi , vi)
(

Pop
)

i
+ β1(µi , vi)(PGDP)i

+β2(µi , vi)(Res)i + β3(µi , vi)(CI)i + εi

Table 2.  Description of each variable in the model.

Variables Definition Unit

Carbon emissions Total  CO2 emissions 105t

Population Population size permanent population at the end of a year Million people

Economy Per capita GDP net domestic product (GDP) per inhabitant during the accounting period divided 
by the total population within the specified area 10 thousand yuan

Industry Proportion of resource-based industry the proportion of workers in the mining and extraction industry among the total 
number of workers in the primary, secondary, and tertiary industries %

Carbon abatement technology Carbon intensity CO2 emissions per unit GDP Tons

Table 3.  Diagnostic information of OLS and GWR.

Year Model AICc R2 Adj.  R2

2003
OLS 634.56 0.74 0.73

GWR 620.92 0.79 0.76

2007
OLS 753.40 0.76 0.75

GWR 735.35 0.81 0.79

2012
OLS 853.72 0.75 0.74

GWR 839.22 0.80 0.77

2017
OLS 854.20 0.73 0.72

GWR 837.12 0.79 0.76
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in RBCs displayed more rapid variations in northern regions over time, indicating heightened sensitivity to 
population changes in these cities.

Analysis of the relationship between the level of economic development and carbon emissions
Economic development has significantly increased carbon emissions in RBCs, with a spatially differentiated 
impact degree (see Fig. 10). Except for RBCs in the northeast region, the regression coefficient values for the 
economic development level in each RBC decreased gradually over time. This trend indicates that while economic 
growth in RBCs continued to be associated with an increase in carbon emissions, the amount of carbon dioxide 
produced per unit of GDP per capita has decreased in recent years. There was a gradual shift away from energy-
intensive or highly polluting production patterns in RBCs. Since 2012, the influence of economic development 
on carbon emissions has increased in RBCs situated in the northeast region. It can be concluded that the carbon 
emissions generated by each unit of per capita GDP increased, suggesting that RBCs in this region did not have 
a favorable transformation effect.

In 2003, the regression coefficient for economic development levels followed a latitudinal pattern, increas-
ing from north to south. By 2007, this pattern shifted to ’higher along the coast and lower inland,’ and further 
evolved to ’lower along the coast and higher inland’ by 2012 (see Fig. 10). This transformation can be attributed 
to the declining impact of economic growth on carbon emissions in the east coastal regions, contrasting with 
a slower reduction observed in central China compared to other areas. It suggests that RBCs in central China 
have more rapidly shifted away from the growth model that prioritizes profit over the environment. Additionally, 
studies indicate regional variations in China’s circular economy development, showing a gradual decline in the 
East, Central, and West regions. As anticipated, the development level of the circular economy in the East was 
 higher70,71, providing further confirmation of the above hypothesis. China’s industrial transfer policy, initiated 
in 2010 with the ’Guiding Opinions of the State Council on Undertaking Industrial Transfer in the Central and 
Western Regions,’ accelerated the shift of industries from the eastern coastal regions to the central and western 
regions. Leveraging abundant resources, low factor costs, and substantial market potential, the central and west-
ern regions actively embraced industrial transfers. Research suggests that outward industrial transfer negatively 
impacts carbon emissions in the transferring  regions72. Conversely, recipient regions experience an increase 
in provincial carbon emissions. While acknowledging potential carbon reduction in the eastern regions due 
to technological advancements and enhanced environmental awareness accompanying industrial transfers, a 
comparative analysis of carbon emissions in different geographic and industrial transfer zones reveals an overall 
increase in carbon emissions in recipient  areas72. Therefore, China’s industrial transfer policy may be another 

Figure 9.  Regression coefficients of population size in RBCs: (a) Result in 2003; (b) Result in 2007; (c) Result in 
2012; (d) Result in 2017 (source: GS(2019)1822).



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5894  | https://doi.org/10.1038/s41598-024-56434-2

www.nature.com/scientificreports/

key factor contributing to the significant reduction in the impact of the economic development level on carbon 
emissions in the eastern coastal regions in 2012.

Analysis of the relationship between carbon abatement technology and carbon emissions
Carbon abatement technology emerges as the predominant factor influencing carbon emissions in RBCs, exhib-
iting a negative impact on emissions (see Fig. 11). The absolute values of the regression coefficients of carbon 
abatement technology proficiency in each RBC are much higher than those of other factors, showcasing a grow-
ing trend over time. This underscores the increasing significance of carbon abatement technology in shaping 
RBCs’ carbon emissions, with its impact intensifying over the years. In addition, it should be noted that the 
influence of carbon abatement technology on carbon emissions in RBCs is spatially heterogeneous, exhibit-
ing a stable spatial pattern, with carbon emissions being "high in coastal areas and low in inland areas". The 
emergence of such a spatial pattern is predominantly a result of the unbalanced and inadequate development 
of carbon abatement technology capabilities in different regions of China. Especially in high-tech areas where 
advanced carbon abatement technology is used, technology plays a more significant role in carbon reduction. 
Research confirms that China’s coastal provinces, driven by higher economic development, greater openness, 
and substantial investment in research and development, have matured their carbon abatement technology more 
 effectively73. Consequently, the development of technology in coastal RBCs has proven more effective at reducing 
carbon than those in inland RBCs.

Specifically, from 2003 to 2017, the significance of carbon abatement technology in RBCs in the southeastern 
and northeastern regions of China increased rapidly, and even more rapidly than other RBCs. This means that 
during this period, the advancement of carbon abatement technology in these regions increased more rapidly. 
Environmental regulations are of great significance in promoting environment-biased and energy-biased tech-
nological  progress74. Since the dawn of the twenty-first century, environmental regulations in the Northeast-
ern region have entered an optimization stage. Strategic initiatives, such as the Strategy to Revitalize the Old 
Industrial Bases in China’s Northeast, revitalized the old industrial base and provided a new historical mission 
to the region. During this stage, there has been continuous improvement in environmental regulations in the 
Northeastern region, with a significant increase in the number of regulations and comprehensive coverage of 
various fields related to environmental pollution and ecological destruction. According to statistics, from 2000 
to 2018, the number of environmental regulations and policies adopted by the Heilongjiang, Jilin, and Liaoning 
provinces respectively accounted for 96.0%, 92.0%, and 95.3% of the total number of environmental regulations 

Figure 10.  Regression coefficients of economic development level in RBCs: (a) Result in 2003; (b) Result in 
2007; (c) Result in 2012; (d) Result in 2017 (source: GS(2019)1822).
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and policies adopted since  197275. The optimization of environmental regulations was driving rapid progress 
in carbon abatement technology in RBCs in the northeast region, allowing these technologies to play a more 
important role.

Analysis of the relationship between the proportion of resource‑based industries and carbon emissions
In comparison with other factors, the proportion of resource-based industries have the second greatest impact 
on carbon emissions. There is spatial heterogeneity in the effects of the proportion of resource-based industries 
on carbon emissions in RBCs (see Fig. 12). During the period 2003 to 2007, the proportion of resource-based 
industries impacted carbon emissions with a spatial pattern of "low in the coastland and high in the hinterland", 
which is in general aligned with the spatial characteristic of economic development in China. Over the last few 
decades, the eastern coast of China has been a leading force in reform and opening up, fostering strong con-
nections with other nations, and experiencing relatively high economic development. As a result, the spatial 
distribution in the extent of the impact of resource-based industries, shown in Fig. 12, is primarily a result of the 
more diverse industrial structure of RBCs along the eastern coast, which has a lower proportion of resource-based 
industries compared to regions inland. Thus, in the eastern coastal RBCs, the share of resource-based industries 
had a lesser effect on carbon emissions. Moreover, since 2012, the effect of the proportion of resource-based 
industries on carbon emissions in RBCs has shifted to a spatial characteristic with "low in the northeast and high 
in the southwest". The reason for the occurrence of this transition is the slower growth rate of resource-based 
industries in RBCs in southeastern coastal areas than in other RBCs. As previously mentioned, renewable energy 
technologies, energy-saving technology in energy-intensive industries, and residential energy technologies in the 
southeastern coastal areas of China are more advanced and rapidly  developing72. Therefore, despite the expansion 
of resource-based industries in southeastern coastal RBCs, the impact of these industries on carbon emissions 
was slowing down due to the progress of energy technologies.

Summary
In summary, the factors of population size, economic development level, technical capabilities for carbon reduc-
tion, and the proportion of resource-based industries all interact and synergistically affect carbon emissions in 
RBCs. Among these factors, technical capability for carbon reduction is the dominant factor affecting carbon 
emissions in RBCs, followed by the proportion of resource-based industries. The economic development level 
has the weakest impact on carbon emissions. This illustrates how energy and carbon abatement technologies are 

Figure 11.  Regression coefficients of carbon abatement technology in RBCs: (a) Result in 2003; (b) Result in 
2007; (c) Result in 2012; (d) Result in 2017 (source: GS(2019)1822).
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becoming increasingly important in the reduction of carbon emissions. Despite their limited impact, there is a 
gradual shift away from energy-intensive or highly polluting production patterns in RBCs.

Spatially, a significant spatial difference was observed in the degree to which each factor affected carbon 
emissions, during the study period. The impact of population size increased from south to north, while the 
impact of technical capabilities for carbon reduction showed a stable "coastal high—inland low" spatial pattern. 
Influenced by the development of RBCs in the southeastern coastal region, there were changes in the spatial 
pattern of the effect of the level of economic development, the proportion of resource-based industries, and 
energy consumption on carbon emissions: the effect of the level of economic development on carbon emissions 
has shifted spatially from the "south high—north low" pattern to the "west high—east low" and "northwest 
high—southeast low" pattern; the effect of the proportion of resource-based industries shifted from "coastal 
low—inland high" to "northeast low—southwestern high". Therefore, over the study period, the alternations in 
the spatial differentiation of the effect of each factor on carbon emissions can be predominantly attributable to 
the development of RBCs in the southern coastal region. In summary, during the study period, RBCs located in 
the southeastern coastal region of China made more significant advances in the innovation of energy and carbon 
abatement technologies and were able to overcome the growth model that sacrifices the environment for profit 
more quickly, but the effectiveness of these technologies remained limited and needs to be further improved.

Conclusions
Main findings
In this article, we first examined the spatial pattern of carbon emissions in RBCs along with their evolving char-
acteristics over time. Spatial heterogeneity and spatial dependence were then introduced as a moderator of the 
classic linear model to explore the contributors of carbon emissions in RBCs based on four perspectives, namely 
population, economy, industry, and technology. Here are the primary findings.

1. Between 2003 and 2017, it is estimated that the total carbon emissions from RBCs amounted to around 
30% of the total national output, and showed a "swift-then-slack" upward trend with a breakpoint in 2011. 
In this period, a slight decrease in the carbon emissions ratio was observed in the central and Northeastern 
regions, whereas the western regions experienced a significant increase. Growth-oriented RBCs displayed a 
higher carbon emissions ratio year after year, whereas mature RBCs exhibited a decrease in carbon emissions 
ratio. Although RBCs’ carbon emissions stabilized in 2011, their emissions have not peaked yet and there is 
a possibility of a further increase in the future. Carbon emissions from RBCs showed a higher growth rate 

Figure 12.  Regression coefficients of resource-based industry proportion in RBCs: (a) Result in 2003; (b) 
Result in 2007; (c) Result in 2012; (d) Result in 2017 (source: GS(2019)1822).
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from 2003 to 2013, compared to non-resource-based cities, and a lower rate between 2014 and 2017. The 
breakpoint in 2014 may be related to the issue of the Sustainable Development Plan for National Resource-
Based Cities (2013–2020).

2. The carbon emissions from RBCs displayed a stable "high for northeast and low for southeast" pattern in 
space, with high spatial autocorrelation. The difference in carbon emissions between cities in RBCs was 
gradually increasing, but on average, the gap between RBCs was smaller than that between non-resource-
based cities and the national average. Furthermore, further analysis utilizing a spatial autocorrelation model 
reveals that the spatial autocorrelation of carbon emissions in RBCs was highly pronounced, and the local 
spatial autocorrelation pattern was relatively stable. High-value cluster zones were mainly concentrated in 
the northern part of Shaanxi, Shanxi, and Inner Mongolia, while low-value cluster zones were scattered 
in provinces such as Gansu, Sichuan, Jiangxi, and Anhui. Accordingly, RBCs in China’s Inner Mongolia, 
Shaanxi, and Shanxi regions, as well as those in the northeast of China, were the major contributors to carbon 
emissions. Besides, the high-value cluster zones were concentrated areas where RBCs with abundant fossil 
fuels are located, while the low-value cluster zones tended to occur in areas adjacent to RBCs with abundant 
ferrous and nonferrous metals. It appears that the type of primary resources and the type of adjacent cities 
directly influence the carbon emissions of the city, which may explain the emergence of high-value cluster 
zones and low-value cluster zones.

3. Population size, the level of economic development, carbon abatement technology, and the proportion of 
resource-based industries all interact and have synergistic effects on carbon emissions in RBCs. Carbon 
abatement technology is the key contributing factor to RBCs’ carbon emissions, followed by the proportion of 
resource-based industries. Among the contributors to carbon emissions, the level of economic development 
is of the least significance. There is no doubt that carbon abatement technology is becoming progressively 
vital in reducing carbon emissions. Even though its impact is limited, RBCs are gradually overcoming the 
inefficient production model characterized by “energy intensive or highly polluting”. Therefore, innovation 
in energy and carbon abatement technology should still be the focus of future work in RBCs.

4. There are spatial differences in the extent to which factors influence carbon emissions. The influence of 
population size increased from south to north, while the impact of carbon abatement technology showed a 
stable “high on the coast and low inland” spatial pattern. It is worth noting that influenced by the advance-
ment of RBCs situated in the southeastern coastal region, the spatial patterns of the effect of the level of 
economic development and the proportion of resource-based industries on carbon emissions changed over 
time: the effect of the level of economic development on carbon emissions gradually changed from "south 
high—north low" to " higher along the coast and lower inland " and " lower along the coast and higher inland 
" in space; the effect of the proportion of resource-based industries shifted from "coastal low—inland high" to 
"northeast low—southwestern high". Accordingly, the development of RBCs located in southeast and eastern 
coastal regions of China is the primary cause of the changing spatial patterns of the influence of various 
factors. During the study period, rapid progress was made in carbon abatement technology of RBCs in the 
southeast and eastern coastal regions, enabling these cities to get rid of the growth model that sacrifices the 
environment more quickly, compared to RBCs in other regions. However, the role of technology was limited 
and needs further improvement

In the current debates on climate change mitigation policies, resource-rich regions have long been ignored. In 
terms of the scope of current research on carbon emissions and its contributors, it primarily focuses on the global, 
an economic and political community, a certain country, a certain province, or a city cluster, with research units 
ranging from countries and regions to provinces, cities, and counties. However, there has been a notable gap in 
addressing the distinctions between resource-rich and resource-poor regions. In this article, we take RBCs, which 
have a special socio-economic structure, as the research area, and explore the sensitivity of carbon emissions of 
different RBCs to different influencing factors and their causes. This can help to better understand resource-rich 
regions and the obstacles they must overcome in reducing carbon emissions and can support a comprehensive 
understanding of the basic challenges they face when striving to reduce carbon emissions.

Policy implications
Based on the aforementioned conclusions, this paper suggests the following measures for reducing carbon 
emissions in RBCs.

1. Emphasize technological innovation and promote carbon emission reduction with multiple initiatives. It 
is noteworthy that technology innovation can greatly decrease carbon emissions, and its fluence on carbon 
emissions surpass other factors such as industry and population. This suggests that future efforts to reduce 
carbon emissions should prioritize the promotion of technological innovation, the elimination of outdated 
production capacity, the restructuring of energy systems, and the promotion of energy efficiency. Therefore, 
it is advisable to implement low-carbon technological innovations, with a specific focus on fostering the 
green development of fossil energy, promoting low-carbon utilization, and reducing pollution. These efforts 
should be complemented by strengthening energy-saving and emission reduction systems and mechanisms, 
as well as initiating the reconstruction of the energy structure and the transfer of high-energy-consuming 
industries. These collective measures aim to effectively advance the cause of energy conservation and emis-
sion reduction.

2. Prioritize Central China’s Resource-Based Cities (RBCs) in upcoming carbon reduction initiatives and expe-
dite the phase-out of obsolete production capacity and outdated technology in these regions. Given their 
significant contribution to emissions among RBCs, it is imperative to prioritize the carbon emission work 
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of RBCs in Central China. Future endeavours should encompass proactive measures, including actively pro-
moting the application of energy efficiency and emission reduction technologies, reconstructing the energy 
consumption structure, eliminating the outdated production capacity and promoting renewable energy.

3. Harness the abundant renewable energy in Western RBCs to take over energy-intensive industries from East-
ern and Central China. Carbon emissions from RBCs in Western China has been increasing annually, with 
higher accelerating rate compared to national average. Therefore, it is necessary to place increased emphasis 
on carbon emission reduction efforts in these regions. However, being an underdeveloped area in China, the 
imperative for fostering economic development in Western China makes inheriting high-consumption and 
high-emission industries from Eastern and Central China inevitable for RBCs in Western China. A positive 
aspect is the abundant renewable energy resources, such as wind and solar power, that Western RBCs in 
China are endowed with. This endowment enables Western RBCs to transition from conventional energy 
sources like coal and gas to renewable alternatives, including wind power, solar photovoltaic, solar thermal, 
and hydropower. This shift aligns with the dual objectives of fostering economic development and reducing 
carbon emissions.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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